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Harris criterion for direct and orthogonal quenched randomness
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Critical-behavior stability is studied, with respect to the introduction of quenched randomness
that is direct (e.g. , field randomness at field approach to criticality) or orthogonal (e.g. , field random-
ness at temperature approach to criticality). Rather than resorting to renormalization-group
theory, an argument is conducted by considering the effective uniform field per spin within a corre-
lated region. By comparing the correlation lengths limited by this effective uniform field and by the
actual uniform deviation from criticality, it is recovered that nonrandom critical behavior is not
maintained under random fields when its susceptibility critical exponent y is positive, and converse-

ly.

Microscopic phenomenological arguments have yield-
ed much insight, with little effort, to questions pertaining
to the occurrence and nature of phase transitions under
new conditions. Duly most celebrated examples are the
Harris' criterion for random bonds and the Imry-Ma ar-
gument for random fields. Harris asked whether the na-
ture of a critical point is modified by quenched random
bonds. ("Random bonds" most generally mean a distri-
bution of local interactions that does not favor, at any lo-
cality, one of the coexisting ordered phases of the non-
random system. ) He compared, in the neighborhood of
the critical point, the deviation of local critical tempera-
tures between different correlated regions and the devia-
tion of the actual temperature from the global critical
temperature. He deduced that nonrandom critical be-
havior is maintained (not maintained) under random
bonds when the nonrandom specific-heat critical ex-
ponents a is negative (positive). Imry and Ma considered
the occurrence of phase transitions under quenched ran-
dom fields. ("Random fields" most generally mean a dis-
tribution of local interactions that favors, differently at
various localities, one of the coexisting ordered phases of
the nonrandom system. ) By cotnparing the energy costs
of random fields under order and of domain boundaries
under broken order, they deduced that the lower-critical
spatial dimension for order under random fields is dI =2
for n =1 component order parameters and dI=4 for
n ~2 component order parameters. Today, neither of
these two results are in doubt, and they provide valuable
guidance.

In the present paper, we ask Harris's question for
random-field systems at dimensions d) dI at which the
phase transition is allowed by the Imry-Ma argument: Is
the nature of the nonrandom criticality modified by ran-
dom fields? We give a microscopic phenornenological ar-
gument in the style of Harris. ' We recover that the
nonrandom critical behavior is not maintained when its
susceptibility critical exponent y is positive, and con-
versely. This result has been previously obtained by rath-

er more technical studies employing renormalization-

group theory ' or correlation functions. Our present ar-
gument, although delivered in random-field language, is
general. It equally applies to (i) bond randomness at tem-
perature deviation from criticality, or field randomness at
uniform-field deviation from criticality and (ii) field ran-
domness at temperature deviation from criticality, or
bond randomness at uniform-field deviation from critical-
ity. We shall call these different situations, (i) and (ii),
direct and orthogonal randomness, respectively (Fig. l).
Orthogonal randomness has not been previously con-
sidered, to our knowledge.

Consider an originally nonrandom system that is at a
small temperature or uniform-field deviation from its
critical point, now perturbed by quenched random fields
of root-mean-square strength h. A correlated region in-

cludes g aligned spins, where g is the correlation length.
The net random-field energy of the entire correlated re-
gion is +g ~ h, by the central-litnit theorem. This is
equivalent to having each spin, within the correlated re-

gion, subject to the same uniform field h, with

(b)

0

FIG. 1. Solid and open arrows respectively show criticality
approaches for direct and orthogonal random perturbations: (a)
random-bond perturbation, (b) random-field perturbation. The
thick segment on the temperature axis is the coexistence line of
the two phases with positive and negative magnetizations, re-
spectively. This coexistence terminates at the critical point.
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In general, a system that deviates, in temperature, by ~
from criticality has correlation length

(2)

where y, is the scaling exponent in the temperature direc-
tion. On the other hand, a system that deviates, in uni-
form field, by A from critically has correlation length

gt,
= Ah~h~ ", vt, =1/y &0, (3)

where yz is the scaling exponent in the uniform-field
direction. When both deviations are present, the smaller
length of g, and (t, limits the correlations and therefore is
the true correlation length (. In fact g, =gt, determines

the "crossover" boundary ~It~
—

~r~
" ' between regions

of temperature-approach and uniform-field-approach ex-
ponents.

Returning to our case of random-field perturbation,
and substituting Eq. (1) into Eq. (3),

(4)

2 dvg ( 0 (6)

The left side of this equation equals yvt, /v„where y is

where g„ is the correlation length limited by the random
fields and g is the true correlation length. For the
random-field perturbation to be irrelevant, the correla-
tion length limited by the uniform deviation, Eq. (2) or
Eq. (3), must be the true correlation length, as it is in the
unperturbed system. This requires g, of Eq. (4), with the
smaller of g, and gt, substituted for g, to be greater than
this smaller of g, and gt, as given by Eq. (2) or Eq. (3).
Thus, for temperature approach (i.e., when random fields
constitute orthogonal randomness), this requirement is

?

Ah(, "
h " & g, as r~O and (,~Dc, (5)

or equivalently,

'7

(„= At, g„" h " as („ (8)

This is incorrect: Since in general ys =1/vh (a nonran-
dom system scaling exponent) does not equal d /2 (except
at d =6), but is greater than d/2, there is an inconsisten-
cy in the derivation of Eq. (8). This can be narrowed to
the application of Eq. (1). We conclude that for a criti-
cality that occurs modified by randomness, ' the cumula-
tive effect of randomness on correlated regions is more
complex than the simple Eq. (1).

Repetition of the analysis leading to Eq. (6) for
quenched random-bond perturbations leads to the Harris
criterion, whereby the nonrandom specific-heat exponent
a determines whether nonrandom criticality is stable
(a (0) or unstable (a & 0) to random-bond perturbations,
for both direct randomness (i.e., temperature approach)
and orthogonal randomness (uniform-field approach).
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the critical exponent of the susceptibility, by standard
scaling-exponent analysis at pure-system criticality. For
uniform-field approach (i.e., when random fields consti-
tute direct randomness), the requirement is

'J

v~ d/2—
At, gh h & („as h 0 and gt, ~ao,

which also reduces to Eq. (6). Thus, nonrandom criticali-
ty with y & 0 is modified by quenched random-field per-
turbation, and conversely.

For most systems, the response function of the order-
ing density to its conjugate field is strongly singular at
criticality, namely the susceptibility diverges (y & 0).
Then, does the above analysis imply that some equivalent
of uniform-field approach to criticality will be observed
as r~O for fixed h&07 The answer is no, as seen below.
In this case, by our original analysis, g„ is the true corre-
lation length and, by substitution into Eq. (4),
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