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Electron-phonon interactions in quantum percolation theory
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The strength of electron-phonon coupling in layered high-temperature superconductors as de-
scribed by quantum percolation theory can be larger than in ballistic metals as described by BCS
theory, but only if the percolation is preceded by local superconductivity. Experimental evidence
for such electronic precursors in Y-Ba-Cu-0 has recently been observed in ion-channeling experi-
ments.

I. INTRODUCTION

Layered cuprate high-temperature superconductors
(HTSC) exhibit many anomalous properties, such as su-
perconductive transition temperatures T, ~ 100 K and
normal-state resistivities linear in T. All of these
anomalies are consistently explained' within the gen-
eral framework of quantum percolation theory (QPT).
Exotic or nonphonon theories of superconductivity begin
with reduced Hamiltonians and attempt to explain the
anomalies of HTSC in terms of novel interactions. By
contrast, QPT utilizes the same reduced Hamiltonian
containing electron-phonon interactions as the conven-
tional BCS theory of superconductive metals (T, ~ 25 K,
constant normal-state resistivities at low T), but it focuses
on the nature of the electrically conductive states near a
metal-semiconductor transition. In this way it is able to
relate the normal-state resistivity anomaly to spectro-
scopic anomalies in the superconductive state and also
to explain why T, is so large in terms of anomalously
strong electron-phonon interactions at Fermi-energy-
pinning interlayer defect states.

At present no Hamiltonian theory is known that is
capable of rigorously deducing the nature of the metal-
superconductor transition, for instance in Si:P impurity
bands. The reason for this is clear: the transition is
essentially percolative in nature, and even scaling theories
are inadequate even for the simpler case of classical per-
colative transitions. However, a set-theoretic or topologi-
cal approach to disorder near the transitions has suc-
ceeded remarkably well in explaining all the salient
features of the Si:P data, without or with compensation.
It is this set-theoretic approach that underlies QPT.

The set-theoretic approach has not gained general ac-
ceptance. ' This is not surprising, because nonperturba-
tive, non-Hamiltonian theories are rare in theoretical
physics —about as rare, in fact, as HTSC is in materials
science. However, we have already a number of exam-
ples ' showing specific successes of QPT in explaining
HTSC. In this paper I extend my earlier work to show
how the set-theoretic approach, previously used to classi-
fy electronic states, can also be used to classify phonon
states and electron-phonon interactions in HTSC. In this
way the similarities and differences between QPT and

Hamiltonian models are brought out more clearly, and
the advantages of QPT in describing microscopically in-
homogeneous materials become more apparent.

II. QPT CLASSIFICATION OF ELECTRONIC STATES

The central idea in QPT is that near certain kinds of
metal-semiconductor transitions it is possible to separate
electronic states near EF into two sets, localized and ex-
tended. This separation need not be exact; indeed it may
only be asymptotic. The prototypical example is Si:P,
where the density of extended states n, (E) is proportional
to (E E, )' an—d ideally at the critical concentration of
P impurities n =n„EF=E, . It is possible that this ex-
pression for n, (E) is valid only in a limited range of ener-
gies E, &E &&E, +EI, where EI is the impurity binding
energy.

The possibility of the separation of n(E)=n, (E)
+ni(E) into localized and extended components in Si:P is
atypical. With more than 10—20% compensation of the
P donors by trivalent acceptors, the separation fails, ac-
cording to the theory because all the P impurities are no
longer equivalent because of acceptor local fields. Also
the separation requires dimensionality d & 2 because for
d ~2 the states all form localized domains, inuch as in
the random-field Ising model. ' This dependence on
dimensionality d actually is crucial for the layered cu-
prates, in which the disorder is certainly much less ideal
than in Si:P. However, in first approximation d =2 for
the electronic cuprate conductive layers, which are
separated by semiconductive layers such as La02 in
(La,Sr)zCu04 or BaO in YBa2Cu&07. According to QPT,
for these materials to be conductive the dimensionality d
must be 2+@, with e &0. This is accomplished by inter-
layer defect bridges, for instance Sr in (La,Sr)2Cu04 or
apical oxygen vacancies in YBazCu307. These interlayer
bridges are easily counted (like the P donors in Si:P) and
they also contribute to n (E) and n, (E) for E near EF. In
their absence n, (E)=0.

When we separate n (E) for E near EF into n, (E) and
n&(E), we have a kind of two-fluid model, in contrast to
conventional Hamiltonian theories where the presence of
disorder is usually treated by one-component Fermi-
liquid theory. The two approaches lead to qualitatively
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different predictions for normal-state behavior. One-
component Fermi-liquid theory predicts, " from the
normal-state resistivity which is linear in T, a specific
heat y that diverges logarithmically at T~O. My two-
component theory predicts a constant y; in other words,
the resistivity anomaly arises from a selection rule on
scattering of normal states by residual disorder. This
scattering produces no thermal anomalies. When
sufficiently large quantities of BizSrzCu06 (or some simi-
lar compound) with T, 5 10 K become available to permit
specific-heat measurements, it should be possible to dis-
tinguish the two theories.

It appears that QPT has already succeeded in explain-
ing the changes in the electronic continuum in Y-Ba-
Cu-0 from above T, to below T„ from a constant
scattering strength to a scattering strength linear in
~E EF ~.

—Thus we can say that there is tangible spectro-
scopic evidence for the separability of n&(E) and n, (E).
This separation is also consistent with more complete
tunneling data. '

III. PHONON STATES AND ELECTRON-PHONON
COUPLING

While the electronic states are localized (apart from
dopants and defects), the vibrational states are much less
localized. Because of mass di6'erences normal modes
which are cation-centered may be localized to some ex-
tent in layers but normal modes based on the anion oxy-
gen sublattice must be extended and phase coherent be-
tween layers, apart from a small number of modes with k
very near symmetry points. As a first approximation this
leads to the classification of all phonon modes as extend-
ed.

Before proceeding to the next step we must recognize
that for HTSC we are in the strong-coupling limit' A, ~ 2.
In this limit all electronic quasiparticles are polarons,
composite electron-phonon complexes. The following
selection rules appear, however, to remain valid even in
the strong-coupling limit.

The basic observation now is that the characters of
products of states are quite s'imple: extended times ex-
tended equals extended, and extended times local equals
local. Thus phonons scatter extended states only among
themselves, and local states only among themselves. '

This means that so far as the extended states are con-
cerned, even though they are not Bloch states, but are in-
stead complex states which percolate from layer to layer
in a phase-coherent way, ' almost all the Hamiltonian
methods of BCS-Eliashberg theory' can describe equally
well the superconductive transitions of HTSC. Only the
normal-state transport (not thermal) properties are
affected by the marginal dimensionality of the layered
structures because the scattering from residual (locahzed)
defects obeys the extended times local equal local selec-
tion rule. '

IV. CALCULATION OF ELECTRON-PHONON
INTERACTIONS

The close parallel between QPT and BCS-Eliashberg
theory established by the selection rules described in Sec.

III suggests that it should be possible to estimate the
strength of electron-phonon interactions in QPT. We do
this here using a simple model in which k, the electron-
phonon coupling strength, is approximated by an exten-
sion of weak-coupling BCS theory, where it is identified
with N (0)V, where N(0) is the density of states at E =EF
and V= ( Vk k+q ) is a suitably weighted average of the
electron-phonon scattering matrix element. Our discus-
sion necessarily contains several unknown parameters,
and its aim is not the exact calculation of A, . Rather we
seek to show that the usual limitations on X set by band
theory do not apply in the context of marginal dimen-
sionality' and quantum percolation. '

Band theory normally establishes limitations on A, in
two limits: the free-electron limit and the tight-binding
limit. In the free-electron limit A, =0 and k is small in
nearly-free-electron metals (such as the alkalies ). In
transition metals, where the d bands can be described by
the tight-binding approximation, '

A,z 1. This apparent-
ly leaves little room for A, —3—4 which is needed' to ex-

plain T, -90 K in Y-Ba-Cu-O.
In QPT extended states are hybrids of ballistic states

(similar to Bloch states) which are confined to domains in
a single cuprate plane, with resonant interplanar defect
states which pin EF. Let us denote these states by gb and

P„, respectively, and represent an extended state P, as a
superposition of ballistic and resonant states

where u is the phonon amplitude and 8' is the self-
consistent screened ionic potentials. Different expres-
sions are obtained for Vb depending on whether one
represents Pb by pseudopotential' or tight-binding'
wave functions, which do not concern us here.

In the percolative case the density of states near EF has
two components,

n( E)=n (bE) +„n(E) (4)

associated with the Bloch-like ballistic intraplanar states
and the resonant interplanar states. Although the total
number of the latter is small, they are concentrated in a
narrow range ( ~0.05 eV) near E„, compared to the
bandwidth B -2 eV for the relevant ballistic states. Thus
we expect that n„(EF ) -nb(EF ).

Does the increase in n (E) due to the presence of nb(E)
in (4) mean a large increase in A. = n (EF ) V? At first sight
the answer to this question seems to be negative. This is
because in

Because the extended states P,„coexist with localized
states g,„ofthe same energy, the phases y'„" defined by

a„&/b„= ~c ~exp(iy'„)

are physically significant; for the extended states g'„
must correspond to traveling (not standing) waves.

In the band case we may write schematically for the
electron-phonon interaction
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= Vbns(EF )[nb(EF)+n„(E )] (5)

The second factor on the right-hand side of (5) arises
from the normalization of t/,". The direct terms of P„
with itself should be small because the defect states have
little overlap. The cross terms between Pb and P„can
have either sign and so by symmetry (or the random-
phase approximation) should average to zero. We are
thus left only with (5), and when this is multiplied by
nb(EF )+n„(Ey ) to obtain k „we find that it is the same
as A, s, namely nb(EF ) Vb

The essence of QPT is that it is a two-component
Fermi-liquid model with both extended states g, and lo-
calized states pt, and the discussion just given concerned
only ij't, . When we consider i/t, the localized states, it
seems that these may provide a source of broken symme-
try, so that the cross terms involving P, and P„do not
cancel, but instead become phase coherent. If this is
the case, then we should first have some indication of
broken symmetry, probably as a precursor effect due to
strong electron-phonon coupling and lattice reconstruc-
tion.

Recently anomalies in ion channeling have been ob-
served ' that provide strong evidence for just such a pre-
cursor effect, which starts above TI —120 K in Y-Ba-Cu-
O. Channeling experiments measure departures from
planarity of the atomic sites, and the striking aspect of
these data (measured with temperature decreasing) is that
the disorder of the planarity of the oxygen atoms de-
creases rapidly starting near 120 K. Such a reduction in
disorder cannot be caused by beam damage. It seems
likely that it reflects the onset of some kind of local su-
perconductive fiuctuations which favor (and are favored
by) oxygen planarity. This is consistent with the phe-
nomenology of HTSC and layering. It has already been
noted that the buckling of the Cu02 sheets decreases
( T, =90 K) from Y-Ba-Cu-0 to Bi2Sr2CaCuzOs (T, = 85
K) to Tlz BazCaCuzOs (T, =110 K), which suggests a
positive correlation between decreased buckling and
higher T, .

Independent evidence for precursive local supercon-
ductive fluctuations is provided by electron-loss experi-

there are three kinds of terms. We have the direct terms
of i/b with itself, of P„with itself, and the cross terms.
The direct t/jb terms yield

( X IObu~~X~I 4b)'
n, l n, I'

ments. The interpretation of these data is complicated
by surface cleavage and electron-beam damage, but the
loss edge near 45 meV which persists to T ~ 120 K (well
above T, -90 K) is still related to local superconductivi-

23

If local superconductivity is present, then the cross-
terms between i/tb and P, need not average to zero, but in-

stead may attain their maximum value in certain materi-
als. (Near-attainment of an upper bound for T, in ballis-
tic metallic superconductors has been shown. ) It is easy
to show from the golden rule that the overlap interaction
energy S between P„and t/tb is approximately given by
S =BI, where 8 =2 eV is the ballistic bandwidth and
I =0.05 eV is my estimate of the resonant peak width.
This gives S=0.3 eV. If we now assume
n„(EF)=2nb(EF), we have for the overlap contribution
to A, a value 2S [n&(EF )+n„(EF)]=k&„-A &. This means
that A,

p
=kb +Ab, 2Kb.

The simple estimates we have just given for A, and A, b

are not true upper bounds. Even for the elemental metal-
lic and binary intermetallic superconductors it is known
that experimentally kb'" is greater than or equal to 2.
Presumably this is due to local-field corrections which are
omitted from the simple estimates that give A, b

—1. How-
ever, just as k -2k.b, so we expect A, '"-2A,„'"-4when
these corrections are taken into account. A value of
kp 4 is enough to explain T, —100 K with coD —300
cm ' according to standard strong-coupling theory. It
also gives EglkT, in the range 6—7, which seems to be
the value most in agreement with a variety of optical,
tunneling, and NMR relaxation data.

V. CONCLUSIONS

We have seen that percolation, by itself, does not lead
to enhancements of A. over the ballistic value A, b found in
intermetallic compounds. Instead local superconductive
fluctuations must also be present to produce the broken
symmetry that can generate phase coherence between the
ballistic and resonant components of extended states.
Such fluctuations are observable as a precursor effect
through the temperature dependence of the oxygen
planarity as measured in ion-channeling experiments. '

Increased planarity corresponds to reduced intraplanar
disorder, as already described in my earlier discussion of
the existence of extended states in the context of marginal
dimensionality. ' It therefore seems that a consistent
theory of HTSC, well supported by recent experiments, is
emerging in the context of quantum percolation. Further
evidence for precursive local superconductivity is
planned to be discussed elsewhere.
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