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Enhancement and suppression of the transition temperature of a three-dimensional XF
ferromagnet by control of vortex-loop fugacity
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A previous vortex-loop scaling analysis for the three-dimensional XF model is extended to in-

clude an external loop-segment chemical potential p=k, k&T. The loop fugacity yo is suppressed,

yo~yoe, for A, )0, enhancing the transition temperature T, (A, ), in agreement with the Monte
Carlo work of Kohring, Shrock, and Wills. One also gets the suppression of transition temperatures

T, (e ) of lattice superconductors by electromagnetic charge e, by mapping onto this loop-fugacity
model. A possible approach to superconductor high-T, enhancement, by tailored suppression of to-
pological excitations, is briefly conjectured.

I. INTRODUCTION

The raising of transition temperatures is of much
current interest in the context of high-T, superconduc-
tors. ' The three-dimensional (3D) planar ferromagnet or
XY model is isomorphic to 3D Josephson-junction arrays
and is closely related to 3D lattice superconductor mod-
els ' and may be relevant for high- T, phenomena.
Thermally generated topological excitations (vortex
loops) have been conjectured to play an essential role in
the 3D XY transition.

The 2D XY and superconductor-film transition are
controlled' by 2D topological excitations (vortex points).
A 3D XY vortex-loop scaling approach ' closely follow-
ing the 2D XY vortex-point scaling of Kosterlitz has
been developed. The transition involves an added expan-
sion of loop size by nested-loop screening as temperature
T increases, with a size blowout at T= T, of the dom-
inant loop diameter g —( T, —T ) . The transition tem-
perature depends on the bare-loop fugacity yo=yp(KO),
which is controlled solely by the bare coupling
Ko —=J/k~T) 0.

Kohring, Shrock, and Wills, in Monte Carlo (MC)
work, have introduced an externally controlled chemical
potential p =Eke T for vortices in the angular

tr) 8, sr varia—bles on a cubic lattice (i). They find
that, for A. & 0 (suppression of vorticity), T, is enhanced,
with no transition out of the ordered state for
k) A., =0.55.

A similar enhancement of T, for the suppression of the
appropriate topological excitations is found for the
Heisenberg ferromagnet, ' and for lattice gauge models"
that are similar to those emerging' from high-T, Hub-
bard Hamiltonians.

In this work, we show that the external (scaled) chemi-
cal potential k) 0 simply suppresses the loop fugacity
yo ~yoe of the previous scaling analysis. The previ-
ous results then yield a backward-bending transition line

II. VORTEX-LOOP MODEL
WITH CHEMICAL POTENTIAL

The 3D XY model, with a chemical potential for vorti-
city, is (Ko =J /k& T, k—:p, /—k& T )

PH= —Ko g cos8,, +A, g g 't'8, ,/2n.
(ij ) p

(2. l)

where 0„:—0, —0,- is the phase difference and

&8; & non c.ubic l.attice sites Ii ). The A, term in-

volves a sum of 0, around a plaquette p, and a sum over
all such plaquettes. The modulus ensures the same con-
tribution —A, , regardless of the sign of the vorticity S' ':

Q '~'8, /2sr=S'~'=0, +I .

Defining a bond variable

S =S'P'
/J

(2.2)

(2.3)

for bonds ij around a plaquette p, the last term can be

A,-KO, i.e., an enhancement of the transition temperature
T, (A. )) T, (0). A complementary lattice-superconductor
problem with a fiuctuating electromagnetic field (and
coupling e ) can be mapped onto this loop-fugacity model
through Ko~e /4', A, ~(4Ko) '. A backward-
bending e -Ko ' transition line then results, i.e.,
T, (e ) & T, (0), as in the MC results of Dasgupta and
Halperin. Inverted XY behavior, found on the e -Ko '

line, should occur at the Ko=O, A, =A,, point in the Ko-A,

diagram.
In Sec. II we relate the 3D XY model with a vorticity

weight A, to a vortex-loop model with a modified fugacity
yo(Ko, i, ). The k-Ko line follows. In Sec. III the lattice
superconductor problem also maps onto a loop model
withyo(e, K&&

') loop fugacity. The e Ko ' line follo-ws.

Section IV has a summary and comments on possible fur-
ther work.
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written as

g '~' 8; /2m =A, g S(~) g (~) 8,"/2m.
P P

0;
=2k. g S,, (2.4)

A factor of 2 appears going from plaquette sums to bond
sums, since counting every plaquette means each shared
bond between neighbors appears twice. Thus, the parti-
tion function can be written

0, 2Ag exp Ko g cos8, — g S, .8,,2m Is I (, .
)

X+5 (,) @()) (2.5)

This can be mapped via a dual transform' onto vortex
loops with an external fugacity, as now shown. The
reader interested in the application of this map can go on
from (2.18) below.

Expanding both terms, the Kronecker 5 is
(
—cc & Q'P' & ao )

z s(~), g(~)e ~ ~ exp
I~(p)

I

exp
I
g(p)I

2n i g . S '~' —Q '~' '
Q

'~'
2'

2~i QS(~)Q(~) exp 2i —g Q; S;
P &ij )

(2.6)

where Q; =Q'~' round vorticity bearing plaquettes and zero otherwise, analogous to (2.3). The Boltzmann-factor
Fourier expansion is

00

exp Kocos8; ——S,"8; exp( 2iQ—; 8; )= g exp[ V(n, ;A, )]e.xp[i(n, —2Q"; )8; ]
7T Ig. = 00

IJ

V(, n,. +2Q,. ;A, ) in, .8,-

lJ

(2.7)

where e '"' is the Fourier coefficient of the weight factor in curly brackets and n; =0, +1,+2, . . . is the Fourier label.
For low temperatures, Ko ' &(1,using the inverse Fourier transformation'

e "' =I(O, A. ) exp[I(n, ~, A, )/I(O, A, ) —1],
where

I(n,j, (() , d 8, d 8) Kocose," —As, 8, . /n (n, .8,. ——1=— e ' "e " " [e " "—1]/I(O, A, )
I(O, A, ) —~ 2n —~ 2'

2
iA,+ S;ni (2.8)

where A, /Ko =p/J « 1 has been taken.
Using (2.6)—(2.8) and doing the 8; integration, one gets

Ze=Ze(Ko, ))(, )= g g g exp 2ni gS' 'Q' exp —g n; /2KO exp —2 g Q; /Ko exp —g n;.QJ/K()
I ~„ I I

g(P)
I I s;, I . P (ij ) (ij ) (ij )

Xexp i g S, (2Q~; +nJ; )Jg5 s

r=l

(2.9)

As usual, ' the 0,- integration gives a zero-divergence
constraint on the Fourier label n; . In terms of a vector
notation n; ~n„, for ij in the p=1,2, 3 direction, the
Kronecker 5 constraint enforces

tures (ignoring improbable system-spanning lines). For
future reference we note, as done by Dasgupta and Halpe-
rin, that the KOWO, $(~'=0 case corresponds to loops
interacting only by a contact interaction

3

b.„n„,=0 Vi,
@=1

(2.10) Ze(KO, A. =O)= g' exp —g n„, /2K() (2.11)

where 6„is a discrete divergence in the p direction. This
means the n„; field forms closed loops at finite tempera-

where irrelevant factors have been dropped and the
prime refers to the closure condition (2.10).
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n„;~ g e„„),b.~),(i ),
V, A,

Q„,~ g E„).b +).(i ),
V, A,

S„;~ g e„„).hP) (i ) .
V, A,

(2.12)

Going over to a dual lattice to satisfy (2.10) as an iden-

tity, the closed-loop original-lattice fields are expressed as
curls of dual-lattice fields [on a cubic lattice shifted by

Here variables with arguments like I)I)(i) refer to the
dual lattice, while variables with subscripts like n„, refer
to the original lattice. Since dual variables pierce
through the original lattice plaquettes, and Q()'), S()') are
plaquette variables P) (i ) =Q'~', S) (i ) =S(~) for pla-
quettes P, perpendicular to the dual-lattice direction A, .
(The )(, direction label is not to be confused with the
chemical-potential variable, or &—1 with the site label i.)

Using the Poisson summation formula as usual, '

Z()= g g ~ exp 4' Q S„(i)P„(i) exp —2 + (ebP)„(i)/Ko exp QP„(i )(eh) S~(i )

Is„(i)j I p~(i) j p j p, ] ~Ko

f dP„exp —g (eb(t))„(i )/2Ko exp 2~i g J„(i)P„(i )

Ij„(i ) j p, l

where (eb, )—:—lL, and we define

(2.13)

J (r)=J (r)+ (
—4')S (r) —

( —5')P (r) .P P 2 2K P ~K P
lT 0 0

(2.14)

A gauge transform P„(i)~P„(i)+5~(i)leads to a conservation constraint on J„. Since S is related to J as shown

later, the conservation constraint is a loop condition 5 J=0, denoted by the prime on the J sum.
Doing the Gaussian [(t)„(i) I integration yields

Zz-—Zz= g g g' exp
IS (i) j I Pg(i) j I J (i ) j

mKo

2 g J„(r)U(r —r')J„(r') (2.15)

where the curly bracket is as in (2.13). Here,
2

E„U(r ) = —4a5„o
p=1

(2.16)

and the spin-wave exchange interaction is U(r ) =ao/r, where ao is the lattice constant [more precisely, U(r ) is the 3D
lattice Greens function].

Neglecting the terms A. /Ko &&1 with k&1 for consistency with the previous Ko &&1 expansion, one gets, from
(2.14) and (2.16),

Z, = X X IISJ (;),s„(,)exp
IJ (i)j IS (i)j p, i

Ko

2 g J„(r) U(r —r')J„(r') exp —2A, g J„(i)S„(i )

p, r, r p, l

(2.17)

i.e., the 8 vorticity, related to S, is the same as the J vari-
able consistent with our previous backward-dual result. '

For J„(r) =0,+1 dominant values, one gets the final re-
sult

yo yo(Ko X)=yo(Ko 0)e ' ',
where

—5.631KO
yo(Ko, 0) =yo = e

(2.19)

Z= g' exp
IJ (i)j

~Ko
g J„(r) U(r r')J„(r')—

p, r, r

Comparing (2.18) and (2.11), one has the "self-duality"
result

Xexp —2A, g J„(r) (2.18)
Z()(Ko, X=O)=ZJ(Ko=0, )(,=(4Ko) ') (2.20)

p, r

This is just the vortex-loop model with an externally con-
trolled fugacity factor, i.e., the loop-fugacity model.

The bare- (circular) loop fugacity at the smallest scale
is modified by the second term as

and hence a phase transition occurs moving along the k
axis, at A, =X„where, for ' Ko, =0.453,

A., =(4K(), ) '=0.552 . (2.21)

This is close to the series value and MC value of
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A,, =0.55+0.005. (There is an element of arbitrariness in

connecting large-scale continuum results to the appropri-
ate square-lattice original scale, as mentioned in Ref. 7,
where a plaquette relation between the bare core cutoff a,
and lattice size ao is chosen. The numerical agreements
are thus, in some sense, fortuitous. )

Since Eo ' —T while A, -T ', it is clear that the transi-
tion along the (KO=0, LAO) axis will have an inverted
JF nature with the nonsingular specific-heat asym-
metries in T switched about T„as compared with the
(KOWO, A, =O) transition. Since Ko controls the dom-
inant long-range behavior in (2.18), the rest of the KO-A,

line for KOAO must be of the XY type.
The scaling analysis proceeds as in the A, =O case, but

with the bare fugacity reduced as in (2.19). The physical
picture is as before. As the temperature is raised from
zero, larger, but still simple, loops are thermally generat-
ed; these can accommodate more nested screening loops,
allowing the loops to grow still larger. A size blowout of
the dominant tumbling loop excitation of diameter

-(T, —T) occurs at T, when screening sets in by
vector cancellations between random segments t J(r)I.
Above T, one has long, random, screened interaction
loops. A loop-crinkling ansatz relates the irregular scale
or core size a, below T, to the self-avoiding random-walk
exponent x =0.6 in 3D. T, is determined as before, with
only the bare fugacity changed by the short-ranged (and
critically irrelevant) chemical-potential term; the ex-
ponents are unchanged.

The transition temperature T, =J/Ko, in terms of
small deviations K:—(Ko K')/K' a—nd yo=(yo —y')/
y' from fixed point (K",y')=(0. 3875,0.0624), is given
by

sco —1=
6(1—E/L")

yo(Ko, i, ) —1 (2.22)

=0.942(KO, —Ko) . (2.23)

The transition temperature is thus linearly enhanced by
the loop chemical potential p & 0,

Here ~a =2.4888 is the negative eigenvalue of the loop
stability matrix I. '=1—x lnE*, and x =0.6 is the 3D
self-avoiding walk exponent. %ith A, =O and Eo=Eo„
the deviations are small, E =0.17 and y =0.25. Equation
(2.22) can be written, for Ko, =0.453, as

A, =0.896(KO, —Ko ) —0. 159 in[ 1 —0.292(KO, Ko )]—

p'C ' 552

0.4
ordered

0.2
disordered

OC
=.453

O. I 0.2 0.3 0.4 0.5

FIG. 1. KO-A, phase boundary for vortex-loop-fugacity model
with Monte Carlo data points of Ref. 9. The solid line is the
boundary within the I,'linear) regime of validity, the dashed line
is the extrapolation; the arrows denote critical points (KO„O),
related to (O, A,, ) by self-duality.

linearized form (2.22) breaks down, the upper part of the
line is shown dashed. There is reasonable agreement in
the regime of validity of the loop-scaling calculation of
the critical temperature. The intersection is A,, =0.428
for the dashed linear extrapolation while the self-duality
arguments give the better value of (2.21). Thus, the
I J(r ) ) loop description, ' complementary to the I 8; ) an-
gular description, is lent further support.

Kohring et al. find a residual degeneracy and a re-
duced magnetization at A, )X„Eo=0. In the loop pic-
ture, this corresponds to a subcritical fugacity

yo(KO=O, A, ) &yo(O, A, , )=0.078 .

Their other plots, e.g., total loop density versus T, would
involve an integration over all scales of yi, while the re-
sults are valid for scales —g . Therefore, we do not pur-
sue that here.

T, =(J+1 07@)/ksKO, . . (2.24) III. LATTICE-SUPERCONDUCTOR MODEL

Figure 1 shows the MC data and the Ko-k transition
line of (2.23). Since, for A, -A,„one has K —1 and the

The lattice-superconductor model involves both the
I 8, j phase and gauge-field I A „;i fluctuations and is

„dO;
Z, =Z, (Ko, e )=Q f ' f dA„, exp Ko g cos(6„8,. —A„', ) exp

' —g (hX A) /2e
P, , l P, l 1

(3.1)

where e is the (scaled) electromagnetic coupling that, in these units, depends on temperature e —T.
In an early work, Peskin had shown that there is a transition along the e line for Eo =0. Dasgupta and Halperin

had, in MC work on the equivalent Villain model, found a second-order backward-bending e —Ko ' line with inverted
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XY behavior except at the XY point e =0, Kp =Kp, . Kleinert had mapped the model onto a Ginzburg-Landau form
and obtained a mean-field e —Kp ' transition line. It is also possible to do a topological mean-field theory' on the
vortex-loop model itself, with spin ordering corresponding to the loops orienting and canceling from the bulk as T~O.
In the following, one finds that the lattice superconductor (e —Ko '

) can be mapped onto the loop-fugacity model
(Ko, A. ) and the critical line T, (e ) obtained here from the scaling approach.

Integrating over I 8, ] variables after the usual Fourier expansion

Z, (Ko, e )= g' exp —gn„, /2KO g J dA„, exp i g—n„, A„.; exp , g(h, x A, )'
2e i

(3.2)

where the prime denotes the zero-divergence restriction of Eq. (2.10), i.e., original-lattice loops. Doing the Gaussian
integration over the vector potential 2„;,a (original-lattice) loop-fugacity model results,

2

Z, (Ko, e )= g' exp —— g n„„n„„.U(r r') —exp
tn 1T p

f, I'

(3.3)

Here U(r r') —is the 3D (original-lattice) Greens func-
tion, as in (2.16), and comes from the exchange of a "pho-
ton" rather than a "spin wave. "

Comparing (3.3) and (2.18), one has the correspon-
dence

with the critical value

Kp 17 88 (3.7)

for K0, =0.453. The transition line of (2.22) is, in this
case,

or

Ko~e /4m. , A, ~(4KO) (3.4) Kp, 2

=0.736 1—
Kp e

2—0.2888 ln 1 —0. 132 1—
2

C

Z, (Ko, e )=ZJ(e /4', 1/4KO),

the duality ' first found by Peskin.
From (2.19) the bare-loop fugacity is

(e2/4 2 1/4K )
——5.631(e /4m )

+ 0
yp e

(3.5)

(3.6)

2

=0.774 1—
2

C

Once again the analysis is valid for small deviations

e '=(e' 4n'K')/4~—'K' « I,
yo =(yo —y')/y' ((1,

(3.8)

0C

0.8—
disordered

06—

04—
ordered

0.2

0 0.2 0.4
e2/e2

0.6 0.8

).o — = — Ko (e' = o) = Koc

I.O

as indicated by the solid line of Fig. 2. For Kp =0, one
has the point e /e, = 1.

MC work by Dasgupta and Halperin for the Villain
model, where Kp, =0.33, finds that, for e =—5, Kp '

=1.62. Our analysis uses the cosine interaction, that
asymptotically has the same topological excitation in-
teraction as the Villain model, but may differ at the origi-
nal scale. Our choice of core size a, =a, (ao) that deter-
mines Kp, was with the cosine interaction vortices in
mind. Thus, for comparison with the Villain results,
scaled variables e /e, , Kp, /Kp are used with appropri-
ate Kp, . The MC Villain-model data point is then
e2/e2=0. 383, Ko, /Ko =0.535, indicated by a dot in Fig.
2. One finds from (3.8), for e =5,KO, =0.453, that the
theoretical curve falls nearby at e /e, =0.28,
Kp /Kp =0.558. Since the lattice-superconductor model
is mapped by (3.4) onto the loop-fugacity model, further
MC work on the former for other e /e, points might be
compared with existing Kp —X MC data of the latter.

FIG. 2. e -Ko ' phase boundary for the lattice superconduc-
tor with the Monte Carlo data point e =5 of Ref. 2. The solid
line is the boundary within the (linear) regime of validity, the
dashed line is the extrapolation, the axis critical points, related
by self-duality, are scaled to unity.

IV. SUMMARY AND FURTHER PROBLEMS

An externally controlled chemical potential
Eke T =p )0 for 3D XY vorticity is shown to decrease
the vortex-loop fugacity and enhance the transition tem-
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perature T, . Self-duality arguments relate the transition
at (Ko=Ko„A,=O) to the transition at (KO=O, A. =A,, ),
with the theoretical result A,, =(4Ko, ) '=0.552 agreeing
closely with the MC value 0.55+0.005. The I( O-A, transi-
tion line is close to the MC data in the region of validity
of the linearized fixed-point analysis. Inverted XYbehav-
ior is predicted at (KO=0, A, =k, ).

The lattice-superconductor model with an electromag-
netic coupling parameter e can be mapped onto the loop-
fugacity model. The backward-bending e -Ko ' (T,
suppression) line maps onto the backward-bending (T,
enhancement) line. Further MC e -Ko ' data on the lat-
tice superconductor (for both Ko) 0 and Ko (0) and
comparison with the Ko-X data would be useful.

Capacitive 2D Josephson-junction arrays' are also
possible (2+1)D applications of the 3D loop ideas. The
phase boundaries of the (4+1)D lattice gauge and Abeli-
an Higgs models, and the effect of topological excitation
suppression, have been explored" in MC work. A topo-
logical and scaling analysis of these gauge models would
clearly be of interest.

It is amusing to note that metal-oxide-metal structure
of Josephson-junction arrays' has some conceptual reso-
nance with the copper-oxygen-copper structure of the
high- T, materials, where the coherence length is of
atomic-spacing size. Apart from the fact that arrays con-
sider 2e pairs rather than electrons, the coupling Ko is
like a tunneling parameter t, the grain-charging energy
EcG is like an on-site Hubbard repulsion u, the junction
charging energy EcJ is like an extended Hubbard
nearest-neighbor coupling V. Resonating-valence-bond
ideas map the Hubbard model onto local pair amplitudes

with bond variables (gauge fields) rather than the site
variables 0; of the XY model. The phase boundaries of
the 3D Josephson array (insulator-superconductor) in
terms of charging energies-dissipation-anisotropy may
provide insight into such other models. A similar MC
and topological scaling investigation of Hubbard-related
(2+ 1)D lattice gauge models' would be of interest.

As Anderson' has emphasized, the generalized helici-
ty modulus is an ordering probe for several phase transi-
tions. The superfluid fraction p, /po, for example, is unity
at T=O and reduced to zero as T~ T, by thermal excita-
tions. In the topological viewpoint, these are vortex
points (2D) or loops (3D), and a suppression of topologi-
cal fugacities means having to go to a higher temperature
to reach the critical fugacity value at which a size
blowout occurs. The viewpoint is complementary to the
usual focus on factors that enhance the order parameter.
One focuses instead, on parameters IA.;I that suppress
disorder parameters. For high-T, superconductors, this
suggests a focusing on how possible IA, , I parameters like
electronegativity (atomic charging), dissipative local
mode coupling, composition, and structure, might
suppress or raise the relevant topological fugacities, and
raise or suppress T, in the families of candidate materi-
als.
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