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Direction of the magnetization of thin films and sandwiches as a function of temperature
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We present a simple model for the temperature and thickness dependence of the direction of mag-

netization of ferromagnetic thin films or sandwiches. Above a temperature that is much smaller

than the Curie temperature, the magnetization in the presence of a uniaxial anisotropy is aligned

completely parallel to the surface plane. The main reason for this is the entropy of the magnetiza-

tion vector. Also, the direction of magnetization is determined by the competition between uniaxial

and shape anisotropy. The decrease of the magnetic ordering for increasing temperature turns out

to be not so important.

I. INTRODUCTION

Recently, the magnetic properties of ferromagnetic
thin films, ' sandwiches, and superlattices have been stud-
ied intensively. These are, among other reasons, of great
interest for new magnetic storage technologies (perpen-
dicular recording). The systems consist of a few layers of
3d transition metals (Fe, Co, Ni) on or between nonmag-
netic substrates. They can exhibit a relatively strong uni-
axial magnetic anisotropy, which in turn is intimately
connected with the direction of magnetization. It was
shown experimentally for a variety of systems that the
anisotropy is extremely sensitive to lattice geometry and
thickness, type of substrate and coating layers, adsor-
bates, and also to lattice imperfections, stress, and in-
duced strain due to growth conditions and other
influences. Therefore, a puzzling variety of magnetic sur-
face structures is observed. For example, a thin film
smaller than six monolayers (ML) of fcc-Fe on Cu(100}
shows perpendicular magnetization, whereas bcc-Fe
films on Ag(100) exhibit a remanent magnetization along
the surface normal only for 3 —4 ML. For the latter
system a vertical remanent magnetization exists for un-
covered or Ag- coated films, but does not for Au over-
layers. Co films on an Au(111) substrate exhibit a verti-
cal magnetization, but not on Ag(100). At elevated
temperatures and for thicker films the magnetization lies
always in the surface plane. Due to the strong depen-
dence on the actual film preparation, different experimen-
tal results have been obtained for the same system.

In this theoretical study we want to determine, using a
simple method, how the direction of magnetization of a
thin ferromagnetic film changes with temperature and
film thickness. In particular we look for the therrno-
dynarnic conditions for a magnetization with vertical
components. The anisotropy and exchange coupling pa-
rameters are merely taken as given constants. The deter-
mination of these quantities is beyond the scope of this
work. Its calculation is in fact a very complicated and
expensive task because of the above mentioned variety of
influences. ' '" We claim that despite constant anisotro-

py parameters and a magnetization perpendicular to the

surface at T =0, the magnetization turns into the surface
plane with increasing temperature. The reason for this is
the larger entropy of the in-plane magnetization com-
pared to the magnetization perpendicular to the surface.

In Sec. II we set up the Hamiltonian containing the
essential interactions and describe the approximate parti-
tion function to estimate the temperature dependence of
the surface magnetization. In Secs. III and IV results for
some special cases are given. These are discussed in Sec.
V.

II. THE HAMILTON FUNCTION

The exchange coupling in a ferromagnetic system (only
such collinear structures are considered here) generates a
parallel alignment of the magnetic moments, but has no
influence on the direction of magnetization relative to the
crystal lattice. This is rather fixed by the much weaker
spin-orbit and (classical) spin-spin interactions. For sur-

face layers and interfaces these interactions are pro-
nouncedly stronger than in bulk. " Due to the strong ex-
change coupling the Curie temperature T& is still much
higher than the interesting temperature range considered
here. So we use —also for itinerant electron systems-
the picture of classical localized magnetic moments

p =pS with constant magnitude and only a small
decrease of magnetization: ~(M(T))

~

= ~(M(0})
~

=Mo. Visualizing a classical vector picture this means
that the magnetic moments are completely aligned or
have only a small angle with the average direction of
magnetization. For a given lattice geometry we assume
completely filled and perfectly ordered layers with the
same magnitude of the magnetic moments throughout
the film. Only the uniaxial anisotropy is considered here.
An azimuthal (in plane) anisotropy may also be present,
but is normally one order of magnitude weaker. ' There-
fore, we assume the magnetization vector M to precess
freely around the surface normal n, I9M being the angle
between M and n. Thus the in-plane component of M
can be aligned by small external fields.

Before dealing with special cases we consider first the
total Hamiltonian function:
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&g =A,'„+%/+Ad+AS, . (2.1) Az and A4 (cf. Appendix A):

The exchange interaction (Heisenberg model) and the
external field energy are given by

S,'„+9/= —J' $ S, S, —H'. $y,;,
(l,J )

(2.2)

(i,j ) denotes summation over nearest-neighbor pairs. In
order to calculate hystersis loops we consider an external
magnetic field H'=(O, O, H') perpendicular to the film

plane. %d is the demagnetization energy (shape anisotro-

py) which originates from the classical spin-spin cou-
pling' and can readily be written as

pp
(M n)g(p, n),

I

(2.3)

pp being the vacuum permeability. For surfaces or lay-
ered structures &z prefers an in-plane magnetization
(8~ =m'/2), but does not depend on azimuthal angle for
(100) or (111) faces of cubic lattices. %d is proportional
to the total number of magnetic moments and, respective-
ly, to the volume of the sample. The first two terms of
the uniaxial anisotropy are given by

&,',= g [K&(p,; n) +K~(p; n) ], (2.4)

where we adopt the sign convention of Gradmann. ' In
many cases ~Kz ~

) ~K4 ~, therefore in the following calcu-
lations we consider first the K2 term only. In principle
these parameters can be calculated by taking the spin-
orbit interaction as a small perturbation of e.g., a Hub-
bard Hamiltonian. ' Unfortunately, a reliable calculation
is very troublesome because of its strong dependence on
details of band structure and a variety of other inAuences.
The effect of a surface or interface are confined practical-
ly exclusively to the surface/interface layer itself as
shown by theoretical" and experimental examinations.
For other layers the parameters Ez and E4 are compara-
ble to the bulk anisotropy constants. Because these are
=100 times smaller than the ones in the surface layers, "
they will be neglected in the following calculations.

Therefore, the uniaxial anisotropy energy is propor-
tional to the surface area of the sample. Because the
demagnetization energy is proportional to the volume,
the magnetization of thick films and pure surfaces of bulk
systems will lie in the surface plane (8M =m /2). In con-
trast, for thin films (M) may be perpendicular to the
surface or can have a vertical component (HM & n /2) pro
Uided that Kz &0 and if the uniaxial anisotropy is strong
enough to overcome the demagnetization energy. Be-
cause we are interested in the case of competing uniaxial
and shape anisotropy interactions, we assume throughout
this work Ez &0 only. In polycrystalline films the uniax-
ial anisotropy vanishes, the direction of the magnetiza-
tion is solely determined by the shape anisotropy.

Callen and Callen' and later on Levinson' examined
the temperature dependence of the magnetic anisotropy.
They treated Eq. (2.4) as a small perturbation of the ex-
change coupling which leads to an expression of the free
energy with temperature-dependent anisotropy constants

+ =Fo( T)+ A 2 ( T)cos Hsr + A ~( T)cos HM . (2.5)

ff',„+gfI= —J(cosH —
—,'(u ) )(u ) —dp Hg,

&d =ad(u )gcosHM,

&„=(Kz" +K2 '
)g +(K"'+K' '

)g

with

(2.2')

(2.3')

(2.4')

g =cosHM cosH —sin HM sinH cosP, (2.6)

&M&

, }z

FIG. 1. Illustration of the geometry of the magnetic moment

p, and the average direction of magnetization (M); d is the

thickness of the film.

Az(T) and A4(T) vary only through the decrease of the
average magnetization

~ ( M( T) ) ~. A variation of HM can
happen if both Ez and K4 terms are present. If only a
Kz &0 term is considered, the magnetization will main-
tain the constant direction 0~ =0 up to T, . ' An explicit
temperature variation resulting from the entropy of the
magnetization vector M itself was not taken into account.

In the following calculations the exchange coupling is
treated within a molecular field approximation (if the
complete spin-spin interaction' is required, it should also
be treated in this way). This means that only one mag-
netic moment p& is considered, and it interacts with the
average magnetization (M). The surface normal n is set
along the z axis, whereas the x axis is chosen to be paral-
lel to the in-plane component of M. Therefore M is given
by M=(p/U)(sinHM, O, cosHM), U being the unit-cell
volume of the respective lattice. The polar coordinates of
p, relative to M are 8 and P, so that p, relative to n is
readily written by

~'

sinHM cosH+ cosHM sin8 cosP

P&=P sinH sing

cosO~cos8 —sin8~sin8 cos8

(cf. Fig. 1). In molecular field theory (M) is given by
(M) =(u )M with u =cosH. Therefore, the four terms
of the Hamiltonian &g per area of unit cell of the fer-
romagnetic film with thickness d ~2 lead to the expres-
sions'
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+ad ( u )g cos8~ . (2.7)
I

and J = [(d —2)q + 2q ]J', H =H'Iv, a= po()u/v ) l2,
and finally K "'=p'K "', i =1,2; n =2,4. q and q are the
coordination numbers of the respective (cubic) lattice and
its surface/interface. Like the magnitude of moments p
the exchange coupling J' and the angles 8 and 8~ as-
sumed to be the same for all film layers. K ' 'are the an-

isotropy parameters for the two surfaces/interfaces of the
film. We put 2K; =K "+K ' and point out again that
K, =K, (d) may depend critically on the film thickness d
(Refs. 10 and 11). Neglecting a constant the Hamiltonian
per unit area is summarized as

a, = —J(u )cos8 dI H—g+2K, g'+2K, g'

For finite temperatures T the partition function of this
Hamiltonian (with %=P%=elks T, etc. , ks
Boltzmann constant) is given by

=2m d Msin6IM 8 sin e ' . 2.8
0 0 0

Although
~
J

~
&& ~K; ~, we avoid calculating the expecta-

tion value (8 ) using the uniaxial anisotropy as a small

perturbation of the exchange coupling. For reasons stat-
ed below we rather confine the integration range of Z to a
constant angle 8)ir and determine this value by minimiz-

0
ing the free energy F0= —k~ T lnZ0:

Z0=2m f d8Msin8M f d8sin8f d(()e '5(8' —8M)
0 0 0 0

=2msinOM sin exp J u cos + pH 0 2K2 0 2''4 0 + ~ o«s M0 0 0 0
(2.9)

We point out that the value 8M calculated in this way is
0

only an approximation to the statistically correct value

(8M ). For the simple external-field-only term the accu-
racy of this method is estimated in Appendix B. The ex-
pectation value for u =cos8 is calculated in the usual

way: Zo(u ) =True '5(8tir —8'�). To emphasize the
0

basic features of this model we consider in the following
sections some special cases.

[

temperature dependence of (8M ). Thus the magnetic
moment p, , is fixed to the surface of a cone. We arrive at

y cos 8~2

Z0=2m sinHM e
0

(3.3)

sin 8~ =sin 8M,„=kiiT/2y . (3.4)

By minimization of the free energy (BFO/88M =0) we

reach for the case y & —,
' at

III. COMPLETELY ORDERED SYSTEM AND K4 =0

First we assume a complete magnetic ordering, i.e.,
(8)=0 or (u ) =1 or ~(M(T)) ~=MD, and put
K4=H =0. Therefore, the Hamiltonian Eq. (2.7) is re-
duced to the expression

The vertical component of the maj.netization is given by

M, =Mocos8M =MOQ(2y ksT)I2y, w—hich is shown

in Fig. 3. The value of 8M ( T) yielded with this approxi-
0

mation is smaller than the correct one because fluctua-

&=%o+2K2cos 8M+ad cos 8M . (3.1)

One sees immediately that at T =0 a perpendicular mag-
netization occurs (8M=0), if 2K2(d) & —ad. The parti-
tion function for this case is F 2"

7T y cos 8~2

Z=2m f 18~sin8Me
0

(3.2)

with y = —2K2 —cud. The integration argument
f' cos 0~f(8M)=sin8~e is symmetric with respect to

8M=sr/2 (Fig. 2). It has for y & —,
' one maximum at

OM,„=m. /2, whereas two maxima at
sin8M, „=+QksT/2y are present for y & —,'. Therefore
the average value (8M ) is alivays n/2 (or (cos8~.) =0)
for all temperatures. This is plausible for the case y & —,'.
On the other hand for k~ T & —2K, —ud this is caused
by the symmetric positions of the f (8~ ) maxima around
m/2, while the statistical weight, e.g., for OM, „ is evi-
dently larger than for OM =m. /2. This is the reason why
we confine the range of 8~ integration [cf. Eqs. (2.8) and
(3.2)] to a constant value 8~ as a first estimation for the

0

I

Jtg2

y COS 0~FIG. 2. Statistical weight f (8u ) =sin8~ e of the
Hamiltonian Eq. (3.1) for two values of y = —(2K&+ad ),
p=y/k&rbelo~ and above T~~ =2y. Note, at T~~ the two maxi-
ma off (8M ) shrink to a single one for T & Tl . K2 is the uniaxi-

al anisotropy coe%cient, ad refers to the shape anisotropy.
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o10
K~/K2 = 1.3

05

k BT/lK2l

FIG. 3. Vertical component of the 61m magnetization

M, /M0=cosHM for E4/E2=0. 0, 1.3, and —1.3, assuming
0

K2 &0 and a=0. The dotted line denotes an unstable solution.
Note the discontinuity of the curve for E4/E& =1.3 in contrast
to the other cases.

tions of OM are completely neglected. The temperature

Ti at which vertical components of the magnetization
vanish (i.e., 8~ =m /2) is given by

0

k T =2y= —4E —2ad .B ii 2 (3.5)

Note that 8M ~ v'T or cos8M =1—T/2T) for T&0,
0 0

and 7r/2 8' =—cos8sr /Ti —T for T & T).
0 0

We emphasize that T~~ is in general much smaller than
the Curie temperature Tc. Such a temperature does not
exist for a system confined to a circle, i.e., in two dimen-
sions. Possibly the estimated value of T~~ is too large. In
principle one can determine the parameter Kz(d) by
measuring this temperature. However, for T= Ti the an-

gle 8M is subjected to strong fluctuations because the
0

free energy is almost fiat in the region 8M =n. /2. A
0

similar property of fluctuations is found, e.g., in the
neighborhood of Lifshitz points. '

IV. EFFECT OF DIMINISHED
MAGNETIZATION AND E %0

If the decrease of magnetization for finite temperatures
is taken into account one has to, in principle, carry out
the integrations over (() and u =cos8 [Eq. (2.9)]. Because

~
J

~
&& ~Kz ~, (u ) can be taken from the mean field result

of the pure exchange interaction. A subsequent expan-
sion of the respective equations to order T/J shows that
the correction to the temperature Ti is of order ~Kz~/J.
We do not show here the rather lengthy expression.

We like to emphasize for the temperature behavior of
the magnetic anisotropy the important difference between
the earlier calculations' ' and our results. For a pure
E2 term the average value of OM yielded by the former
method does not depend on K2, but takes the values
(8~ ) =0 or (8' ) =m/2 for all T &. Tc according to the
sign of Kz. Even if the parameter Az(T) [cf. Eq. (2.5)] is
interpreted as a vertical component of the magnetization,
it results in a value (8~ ) & ~/2 also for T & Tc (assum-
ing Kz &0). On the contrary our results state that the
orientation of magnetization is aligned to the surface
plane (8M=m/2) above a temperature Ti much lower

than Tc. This holds also if a decrease of magnetization is
taken into account.

We examine now the effect of an additional K4 term
[Eq. (2.4)] on the uniaxial anisotropy. For simplicity we
assume (8) =0 and also a=0 [cf. Eq. (2.3')]. Similar to
the K2 term with K2 & 0 a pure K4 term with K4 & 0 re-
sults in a perpendicular magnetization at T=O, i.e.,
8~ (0)=0. For T & 0 we use the same approximation of

0

the partition function Eq. (2.9) and determine the direc-
tion of magnetization 8M through dF/88~ =0. There-

0 0

fore 8sr in this case is given by sin (28sr ) = T/( 2K4—),
0 0

at T= 1.639( K4 )
—the value of 8' jumps from

8M =32.25' to m/2. In contrast, for a pure Kz term the
0

high temperature value 8M =rr/2 is reached continuous
0

ly at T~~
=4( E, ), c—f. Eqs. (3.4), (3.5), and Fig. 3.

If both E2 and E4 terms are present, the average value
of 8M is given by

0

sin 8
+25
45

+(y+ 25) —45
45

K2+ 2E4 + Q(Kz+2K4) +2k' TK~
4 4

(4.1)

or

sin 8~ =y+25++(y+25) —45

2
(Ez+2K4)

B

+ Q(Kz+2K4) +2ks TK4,
BT

(4.1')

V. DISCUSSION

Experimental results state that for all systems the mag-
netization turns into the surface plane with increasing

where we put 5= —2E4 and, as usual, Ez&0. For
~K4 ~

& ~Kz ~
/2 the temperature behavior is very similar to

the case K~=0. At low temperatures again 8~ ~v'T,
and the value n/2 is reache. d steadily at T~~

=4( —Kz ), in-
dependent of K4.

On the other hand for ~K4~ & ~Kz~/2 and K4 &0, the
direction of magnetization jumps to a/2 at a temperature
T& Ti, the width b, 8M and the transition temperature

0

are dependent on ~K4/Kz~. In this case the (unstable)
end point of the magnetization curve is given by
2cosz8M, „d= 1 —1/2x and 2ksT, „d/y=(1+ I/2a)(1
+2m. ), assuming a=5/y &

—,
' (cf. Fig. 3). In addition for

~K4~ & ~Kz ~ /2 and E~ & 0 one has to take into account
that for T =0 the magnetization is no longer perpendicu-
lar to the surface, but has an angle cos 8M = Kz/2K4. —
Starting from this value 8M ( T) is continuous and reaches

0
m/2 at Ti. Note that the model used by Levinson also
exhibits discontinuities if both Ez and I( 4 terms are
present. '
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film thickness and temperature. This is also a property of
our model, and by comparing our theoretical ansatz with
experiments we can estimate the values of the anisotropy
parameters. Many experiments determined the hysteresis
curves. ' ' ' Very thin ferromagnetic films are assumed
to be in a single domain state in the direction vertical to
the film plane. ' This in turn would produce a hysteresis
loop with a discontinuous jump from ( M ) to —( M ) .
However, experiments show a slightly tilted curve which
may indicate the presence of a domain structure along
the film surface. In addition, a remanence magnetization
close to the saturation magnetization, resulting in an al-
most rectangular hysteresis loop [cf. Fig. 4(b)], was re-
ported. To examine this we consider the external field
term Eq. (2.2'). Our calculations assume inherently a
single domain state. For small temperatures compared to
T~~ we obtain also an almost rectangular hysteresis loop
with only a minute variation of ~M(H)~, see Fig. 4(a).
For larger temperatures the hysteresis loops become visi-
bly rounded. The coercive field strength also diminishes
with increasing temperature and, more pronounced, with
increasing film thickness. All these theoretical results are
in close agreement with experimental observations.

It should be mentioned that the system
Au/Co/Au(111) [cf. Fig. 4(b)] might not be well suited as
an example for our madel, since Co might be in an hcp

structure. ' In this case the uniaxial anisotropy is not
solely confined to the interface layers, but extends also in
the bulk. Despite a thickness dependence of the hys-
teresis curves is also visible in this experiment, one
should merely compare our theoretical results to systems
with cubic symmetries such as ' ' Fe on Cu(100) or
Ag(100), in which the uniaxial anisotropy exists practical-
ly exclusively in the surface or interface layers.

A Mossbauer spectroscopy experiment allows for cer-
tain cases a direct estimation of the angle L9M. For the
system bcc-Fe on Ag(100) at T =15 K Koon et al. ob-
tains OM-—28' for a 2.4-ML film and I9M-—49' for a 5.5-
ML one. Using Eq. (3.4) and assuming pF, =2.2ju& we
calculate E2 ———4.2 meV/atom (T~~ ——160 K) for the 2.4-
ML and K2-——2.0 meV/atom (T~~ ——65 K) for the 5.5-

ML film. One should remember that K2 is thickness
dependent and Eq. (3.4) is only a rough estimate for K2.
Nevertheless band-structure calculations at T =0 obtain
the same magnitude for I( 2, whereas measurements '

taken at T=300 K yield K2 ——1 meV/atom.
It is known that the walls between ferromagnetic

domains on a surface are of Neel type. ' This means that
the magnetic moments are aligned to the surface plane in
order to avoid a perpendicular stray field. If a strong sur-
face uniaxial anisotropy is present, the behavior of

IvI, /IvIo

..1.0

0.1

-2
k

pH/IK21

N

C

L

U

s.sX

--0.5

0.1

0
I

0

H(kOe}

FIG. 4. Comparison of the perpendicular hysteresis loops M, (H): (a) theoretical results for temperatures T/y =0.1, 0.5, and 2. 1

obtained by Eq. (3.4); (b) experimental results for the system Au/Co/Au(111) by Chappert and Bruno for different film thicknesses
and T=10 K (Ref. 8).
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domain walls might be different. Therefore, it may be
possible that for T& T~~ the magnetization maintains
vertical components in the domain walls because of local
weakening of the spin-spin interaction [Eq. (2.3)], i.e.,
T~~

"' ) T~~. In contrast, the magnetization in the interior
of domains are oriented in-plane above T~~.

We considered in our model the direct temperature
dependence of the surface magnetic anisotropy, i.e., the
decrease of the ferromagnetic ordering (which turns out
to be not so decisive) and the variation of its direction.
The parameters I( z and K4 are taken as constants. How-
ever, we emphasize that an indirect temperature depen-
dence of these parameters may still be present, e.g.,
through the thermal lattice expansion, roughness effects,
or segregation. This in turn can seriously affect the
values of E2 and E4 and may even change their sign.
Also collective fluctuations of the magnetization (surface
spin waves) are not considered here. These effects have
to be taken into account for a complete determination of
the temperature dependent magnetic anisotropy. The
effect of interface roughness and lattice mismatch on the
shape, as well as on the uniaxial anisotropy were treated
within a phenomenological model. It produces a contri-
bution to the E2 term in Eq. (2.4) like the also-not-
considered magnetostriction. Surface roughness always
diminishes the shape anisotropy.

Besides the thermal dependence the anisotropy param-
eters depend strongly on changes of the local environ-
ment which lead to the confusing variety of surface mag-
netic structures. Therefore, it is possible for certain sys-
tems that their uniaxial anisotropy is strong enough to
maintain a magnetization with vertical components also
at comparable high temperatures (TI 5400 K} and thick
films, e.g., Fe/Cu(100) (Refs. 2 and 3) or Au/Co/Au(111)
(Ref. 8).

For very thin films the Curie temperature Tc may be-
come very low ' and comparable with T~~. In this case
the itinerant nature of magnetism becomes important and
the picture of localized magnetic moments is no longer
valid. In addition, strong fluctuations of the magnetiza-
tion are present. Therefore, we conclude that in such a
case our approach should not be used.

Theoretical calculations predict an enhanced magnetic
moment for ferromagnetic surfaces, whereas from the
experimental side the situation is not clear. ' We as-
sumed the same magnetic moment throughout the film
and also a uniform exchange coupling constant. It is pos-
sible for our model to take into account a variation of the
coupling constant and the amount of magnetic moments.
However, we emphasize that such a large reduction of
coupling constants near surfaces, as recently assumed to
predict noncollinear surface magnetic structures, is un-
likely for the systems considered here.

APPENDIX A

The temperature dependence of the Ai(T) enter in only
through the average magnetization ~M( T) ~. For low
temperatures ( T &( Tc) one can show that

(A3}

Therefore, Az(T) ~ ~M(T)) and A4(T) ~ ~M(T)~',
Ai(T)—=0 for T) Tc. The sign of the A, (T) are deter-
mined by the sign of the anisotropy constants E&.
sgnA4(T)=sgnE4, and for K4=0: sgnA2(T)=sgnE2.
The A, ( T) are only minor affected by external fields

APPENDIX 8

Here we like to examine the validity of the approxima-
tion for the partition function Eq. (2.9) used in this work.
We restrict the calculation to the case of a pure external
field.

&f= —pH= pHu, — (B1)

with u =cos8. The exact result of the average value (u )
is the well-known Langevin expression

CD )0
Ul0
O
II

05

I

kBT/pH

Magnetic uniaxial anisotropies are found in hcp lat-
tices or on surfaces or interfaces and layered structures.
Callen et al. ' ' considered %,', [Eq. (2.4)] as a small per-
turbation of the exchange coupling. For this the polar
axis is transformed using spherical harmonics Yi (cos8st )

from the surface normal (or c axis in a hcp lattice) to the
direction of magnetization M. Then the Hamiltonian is
solved within a molecular field approximation, leading to
a free energy with temperature dependent anisotropy
coefficients A, ( T):

F(T)=Fo(T)+ A2(T)cos 8~+ A&(T)cos 8' . (Al)

The expectation value ( 8~ ) is determined through
BF/r)8st =0 and given by

(A2)

ACKNO%'LKDGMKNTS

This work has been partly supported by the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 6.

FIG. 5. Expectation values for u =cos8 for a classical spin p
in an external magnetic field H. The value uo=cos00 obtained

by the approximation Eq. (2.9) (dashed line) is compared with
the exact solution ( u ) (solid line). The insert shows the statisti-

c@.-o.e/k r
cal weight f(8)=si ge nfor pH/keT=1. 4, the values

00 and (8)=arccos( u ) are indicated.
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(u ) =coth(pH/k~T) —ksT/pH . (B2)

Using our approximation Eq. (2.9) we obtain for the par-
tition function

2
kaT

+1
2pH

1/2

2pH
(B4)

—h /k T
Zo =Tre f 5(8o—8)

—2 + ) ~ PHuPlks T
0

uo=cos80 is determined by minimizing the respective
free energy:

The two curves for (u ) and uo are depicted in Fig. 5.
The behavior for T)0 and for T~ ~ is the same besides
constant factors. In the intermediate temperature range
large quantitative deviations are present. Nevertheless
we assume this approximation to be a reliable qualitative
estimation for the temperature dependence of u =cos8.
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