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Numerical studies of antiferromagnetism on a Kagome net
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We investigate the Heisenberg antiferromagnet with spins on a Kagome net as recently proposed
to explain an anomaly in the heat capacity of adsorbed He. The model reveals a disordered ground
state from our spin-wave calculation which is consistent with the results of the spin-spin correlation
functions computed by direct diagonalization of small clusters. We also obtain evidence of a
double-peak feature in the heat capacity using the decoupled-cell Monte Carlo simulation technique
introduced by Homma et al.

I. INTRODUCTION

The study of nuclear spin ordering in multilayer He
films has been a stimulating subject for the last decade.
A combination of techniques including NMR, ' neutron
scattering, and heat-capacity measurements ' has led to
a fairly detailed description of the phase diagram of He
adsorbed on graphite. The second He layer, in particu-
lar, can form a low-density solid with considerably larger
exchange interactions than the highly compressed first
layer on which it rests. Recently, heat-capacity measure-
ments at millikelvin temperatures by Grey wall and
Busch" have revealed two mysterious facts: (1) The
second-layer heat capacity shows a sharp peak at 2.5 mK
and (2) the entropy change through this peak is only
one-half of the expected k~ln2 per second-layer spin. It
is interesting to note that this experiment leaves little
choice about the existence of another peak in the heat
capacity below 2.5 mK to account for the missing entro-
py.

Various explanations of the double-peak anomaly in
the second-layer heat capacity have been proposed.
One of us exploited the likely registered structure of the
low-density second-layer solid to obtain a nearest-
neighbor Heisenberg antiferromagnet (HAF) spin Hamil-
tonian with two exchange constants. The double peak
was claimed to arise when one exchange constant, which
couples only spins on a Kagome net (see Fig. 1), is much
larger than the other. Meanwhile, Roger has em-
phasized the role of multispin ring exchange processes
and also finds a double peak in a finite-size cluster (16
spins) by tuning different exchange constants. A some-
what different approach, involving a nearly half-filled
Hubbard model, was explored by Machida and Fujita.

The motivation of the study presented in this paper is
twofold. On the one hand, we wish to provide further
evidence for the existence of a double peak in the heat
capacity of the HAF on a Kagome net. The HAF on a
Kagome net is interesting in its own right since it appears
to be the first spin- —, model in two dimensions involving

only nearest-neighbor interactions that shows a disor-
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FIG. 1 Unit cell of the triangular lattice with two exchange
constants Jl and Jz. Jl couples only spins on a Kagome net
(thick lines). The twelve sublattices Az, Bz, Cz, and Dz are di-
cussed in Sec. III.

dered ground state. As our second aim, we explore using
spin-wave calculations the effect of coupling the spins of
the Kagome net to the remaining spins in the triangular
He lattice.

The paper is organized as follows: In Sec. II numerical
diagonalization of clusters up to 21 spins are performed
to obtain the ground-state energy, spin-spin correlation
functions, and spin gap at zero temperature. In Sec. III
we present a spin-wave calculation for a spin- —,

' triangular
lattice with two couplings. Section IV deals with thermo-
dynamical properties. We have used the decoupled cell
Monte Carlo scheme introduced by Homma et al. to
show the double-peak feature. We end in Sec. V with our
conclusions.

42 8436 1990 The American Physical Society



42 NUMERICAL STUDIES OF ANTIFERROMAGNETISM ON A. . . 8437

II. DIAGONALIZATION OF FINITE CLUSTERS

We have obtained fairly direct numerical evidence that
the spin- —,

' HAF on the Kagome net has a disordered

ground state by diagonalizing the Hamiltonian for small
clusters. The Hamiltonian may be written in the form

C3

CO

H=J gS; Sj, (2.1)

z'.

0

Mz= gSz (2.2)

where the S; are the spin- —,
' operators, the sum is over

nearest neighbors of a Kagome net, and J has the positive
sign for antiferromagnetism. Following Fujiki and
Betts, ' " we used equilateral parallelograms with
N =9, 12, 15,21 spins and a nonequililateral parallelogram
with N=18 spins, all having periodic boundary condi-
tions. These finite clusters are depicted in Fig. 2.

The Hamiltonian (2.1) commutes with each component
of the uniform magnetization operator M, and so the ei-
genvalue of
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FIG. 3. Ground-state energy per spin as a function of the in-

verse cluster size. The data points correspond to N= 9, 12, 15,
18, 21 from the right to the left. Only the odd-N data have been
used for the least-squares fit (solid line) to extrapolate to the
infinite size estimate —0.434.

Eo/NJ = —0.434+0.002, (2.3)

where the uncertainty was estimated by least-squares fits
of various pairs of odd-N data. If, as we believe, the
ground state has spin-Peierls order, i.e., broken transla-

has been chosen as a good quantum number where S is
the z component of the ith spin. The orthonormal states
denoted by ~S;Sz S~) have been used as base states
to generate matrix elements of the Hamiltonian. For the
ground-state properties, we restrict ourselves to the sub-
space with the minimum magnetization M', i.e., M'=0
for even-spin clusters and M'= —,

' for odd-spin clusters.
For N & 21 we were able to diagonalize the Hamiltoni-

an by using translational symmetries alone. The rank of
the Hamiltonian to be diagonalized for N =21, for exam-
ple, after using all seven translations is 50388 for M'=

—,
'

and 41999 for M'=
—,'. The ground-state energy and

wave function have been obtained by a simple iterative
power method.

The ground-state energy per spin as a function of 1/N
is plotted in Fig. 3. The data follow two different trends
depending on whether N is even or odd. Only the odd-N
values were used to perform a least-squares extrapolation
for N ~ ~ because (1) there is one more data point and
(2) the N =18 cluster forms a nonequilateral parallelo-
gram unlike the others. The least-squares fit (solid line in
Fig. 3) yielded

tional symmetry, then the corrections to the ground-state
energy would not scale smoothly with N but rather would
reflect the commensurability of the magnetic unit cell
with each cluster. In view of the small number of the
data points, we have not pursued this form of analysis. It
is worth noting that (2.3) is substantially lower than the
exact upper bound —

—,', = —0.417. . . given by Elser.
Our results for the spin-spin correlations on the N =21

cluster are given in Table I. Since the N =21 cluster has
a lower point-group symmetry than the infinite Kagome
net, we averaged the spin-spin correlation functions for
spin pairs that become symmetry related in the infinite
system, but are symmetry inequivalent in the cluster.
When the signs of such spin pairs begin to fluctuate, we
display the range of their values (last two rows in Table
I). We identify spin pairs in terms of their separation:
the Euclidean distance r as well as the minimum path
length of bonds n connecting the two spins. The rapid
decay of correlations with separation is especially striking
when compared with the corresponding values on a tri-
angular lattice given by Nishimori and Nakanishi (repro-
duced in Table I). While the spin correlations on the tri-
angular lattice vary slowly, e.g., the second-nearest-
neighbor value being about 95% of the nearest-neighbor
value, the results on the Kagome net reveal a dramatic
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FIG. 2. Finite clusters used in the numerical diagonaliza-
tions.

n r &s; s„)
(Path length)(Distance) (Kagome net)

(s;.s„)
(Triangular lattice)
(Refs. 11 and 12)

1

v'3
2
2

v'7

—0.072 79
0.009 74
0.013 69

—0.000 38-0.000 51
—0.01543-0.019 57

—0.062 32
0.059 16

—0.025 56
—0.025 56

0.032 88

TABLE I. Spin-spin correlations in the 21-spin Kagome clus-
ter. The spacing of near neighbor spins is unity.
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TABLE II. Numerical diagonalization results for ground-
state energy Eo and spin-gap 5.

N
(System size)

9
12
15
18
21

Eo /NJ
(Ground-state energy)

—0.4410
—0.4537
—0.4393
—0.4449
—0.4368

h=E, —Eo
(Spin gap)

0.6750
0.3827
0.4193
0.2451
0.2394

8 C

l—A B C A B C—
rx /x /x rx rx /l

drop, i.e., the corresponding ratio becomes about 15%.
This itself strongly suggests the possibility of a disordered
ground state on the Kagome net in contrast to the tri-
angular lattice where the ground state is believed to have
antiferromagnetic order with three sublattices. Indeed,
this conclusion is given additional support by our spin-
wave calculation in Sec. III.

Our cluster studies appear to argue against the specula-
tion by Elser that the double-peak feature in the Ka-
gome net heat capacity is a manifestation of a finite spin
gap. According to that view the high-temperature peak
corresponds to a condensation into a classical liquid of
nearly degenerate singlet states formed by near-neighbor
valence bonds. The low-temperature peak would then be
the freezing of this classical liquid into a crystalline ar-
rangement of valence bonds (spin-Peierls transition). The
spin gap, or excitation energy from the ground state to
the lowest state having higher total spin, as determined
by our cluster studies seems to be quite small (see Table
II). Even supposing this gap remains finite in the infinite

system, its value is certainly much less than —
—,'J where

the first peak occurs.

III. SPIN-WAVE CALCULATION

It has been proposed' that in low-spin antiferromag-
nets strong quantum fluctuations may generate a new
kind of ground state without long-range order. The con-
ventional spin-wave approximation has recently been ap-
plied to various types of two-dimensional quantum spin
models with or without frustration' ' to address this is-
sue. The zeroth-order approximation, corresponding to
S= 00 or classical spins, already displays a pathology in
the Kagome system. This is in sharp contrast to the tri-
angular lattice system which we use as a comparison.
First note that the minimum of the classical energy of
three spins mutually coupled in a triangle is a planar
configuration of spins with relative angles of 120'. Any
state that achieves this local ordering in all triangles of
the structure is a classical ground state. It is the solution
of the global problem that distinguishes the Kagome
from triangular lattice systems (Fig. 4). In the latter, the
local ordering at one triangle determines the ordering
everywhere while in the Kagome system there is a certain
amount of freedom locally. This means that the zeroth-
order spin-wave approximation is ill defined in the Ka-
gome system. A simple remedy is suggested by the tri-
angular lattice itself: introduce two exchange constants

—A

—C B
/

C A C
/

FIG. 4. Classical spin ordering on the triangular lattice and

Kagome net. A, 8, C denote three-spin orientations with the
property that the angle formed by any pair is 120'. One of the
many classically degenerate ground-state structures is shown for
the Kagome net.

J& and J2 so that with J2=0 one decouples one-quarter
of the spins with the remainder coupled by J, in a Ka-
gome net. Keeping J2 finite, the ordering at one triangle
will select a unique global ordering as in the triangular
lattice.

The Hamiltonian can be written in the following form:

H=J, g S; SJ+J2 g S; S;,
(ij ) (ii')

(3.1)

where the S, are spin S operators and the assignment of
J& and J2 to the nearest-neighbor bonds of a triangular
lattice is shown in Fig. 1.

Although with J2@0 we now have a proper starting
point for the calculation, the details of the calculation
have become quite demanding. The Kagome superstruc-
ture of the triangular lattice involves four spins in a unit
cell while the &3 X &3 spin ordering involves three spins
with the unfortunate consequence that to accommodate
both a unit cell having 12 spins is required. This defines
12 sublattices denoted A &, Bz, Cz, Dz where the sub-
script A, runs over 1, 2, and 3 {Fig. 1}.

Following Jolicoeur and Le Guillou, ' we choose the
spins on the sublattices with subscript A, = 1 (A&, B&,C, ,
and D&) to orient along the z direction, and those with

subscript k=2 and 3 rotated —120 and 120' away from
the z axis in the x-z plane. We then introduce 12 kinds of
Holstein-Primakoff bosons, a&, b&, c&, and d& to describe
the quantum fluctuations of the spins away from the clas-
sical directions. To leading order in 1/S the spin opera-
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tors S on sublattice A, are parametrized as follows:

S„" = (a+a),&2S

where

d (k) = [d, (k), d z(k), dt3(k)] (3.10)

S' =S—a1a1 .
1

(3.2)

and likewise for a (k), b (k), c (k). The Hermitian
conjugates of these operators arranged in a column vec-
tor are denoted a(k) and p(k) =a( —k). The new Hamil-
tonian to be diagonalized is H(k), a 24X24 matrix of the
form

S~ = (a —a ),&2S
21

&3 V'2S
S„' = —

—,'(S —a~a~)+
2 2

(aq+a~) .

(3.3)

Substituting the above expressions back into the Hamil-
tonian (3.1) and expanding it, we obtain the Holstein-
Primakoff oscillator Hamiltonian by keeping only the
terms quadratic in the boson operators.

Each of the 12 kinds of Holstein-Primakoff bosons
forms a triangular superlattice with lattice constant 2&3.
Since the coupling among these is translationally invari-
ant with a unit cell of the same dimensions, we use the
Fourier representation

a&(r)= g a, (k)e'"',1

N keA

The same formulas hold for sublattices B1 C1 and D1 by
replacing a1 with b„etc. On the sublattices with k=2
and 3, the three-spin components in (3.2) are rotated
about the y axis by —120' and 120'. As an example, we
give the expression for the spin operators on sublattice
A2.

S„" = — (S—azar') — (az+az),&2S

H(k)=

where

M +K —3K
3E M +E (24 24)

and

3yI 0
0 (2+@)I
0 0
0 0

0 0
0 0

(2+y)I 0

(&z x tzi

yJ] yJ3 yJ2

yJ1 0 J2 J3

yJ, J, 0 J,
yJ2 J3 (12x 12)

with

In these formulas, I is the 3 X 3 identity matrix and

0 x x,

x, 0 x;*

(3x3)

(3.1 1)

(3.12)

(3.13)

(3.14)

a, (k)= —g a, (r)e
1

VQ
(3.5)

r, =(0, 1),
(3.15)

with similar expressions for other operators. In (3.4) and
(3.5) we assume the system consists of v'N X &N super-
lattice points A so that the set of k-space points A* itself
is a triangular lattice of N points within the Brillouin
zone. Upon substituting (3.4) and (3.5) into the Holstein-
Primakoff expression of the Hamiltonian, one obtains

rz=( —&3/2, —
—,'),

r3=(&3/2, —
—,') .

(3.16)

Following Jolicoeur and Le Guillou, ' we consider the
generalized Bogoliubov transform matrix T as follows

H =Ho+H2,

with

(3.6) A(k)
'

T a(k)
& (k) . P"(k) (3.17)

and

Ho = 9NS (J, +J~
)— (3.7) where A(k) is a column vector with 12 components

A„(k) (n =1,2, . . . , 12) and likewise for X (k). To
preserve the bosonic commutation relations, T has to
satisfy

H~ =
—,'SJ, g ~a (k), P(k)][H(k)]

k

—18(1+y) (3.8}

T '=gTg,

where

I 0

(3.18)

where y=Jz/J, . The symbol a (k) represents a row
vector of 12 operators ordered as

a (k)=[d (k), a (k), b (k), c (k)], (3.9}

(24X24)
(3.19)

and I is now the 12X12 identity matrix. Substituting
(3.17) and (3.18) back into (3.8) we have
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H2= —,'SJ, g [A (k), %(k)]rlT[7)H(k)]T
k

—18(1+y) (3.20)

To obtain a diagonal form for H2, an appropriate choice
for Tis'

T
—1

( Vl. . . V12W1. . . W12) (24X24) 7 (3.21)

12

H=HO+ ,'SJ) g —2g (co„+—,')At%„—18(1+y)
k n=1

(3.22)

where V" and W" are the eigenvectors of gH(k) with
corresponding eigenvalues (co„, —co„) where we have
used the fact that the eigenvalues of riH(k) occur in pairs
and set co„)0.

Expressed in terms of normal modes A„, the Hamil-
tonian becomes

p, (x; ) =x;*+x;,
p2(x;)=cox +co x;,
p3(x;)=co x;*+tax;,

(3.27)

where co=e ' ~ . The eigenvalue problem of riH(k)
thus reduces to that of three smaller matrices of the form

3yP

rp;(xi)Q
yp;(x3)Q

rp;(x&)Q

rp;(xi)Q

(2+ y )P

p;(x2)Q

p, (x3)Q

rpi(x3)Q yp (x2)Q'

p;(x2 )Q p;(x3 )Q

(2+y)P p;(x, )Q

(sxs)

problem can be simplified following the observation by
Jolicoeur and Le Guillou' that the J, can be diagonal-
ized simultaneously. The eigenvectors v1, v2, and v3 and
the corresponding eigenvalues p1, p2, and p3 of J; are

1 1 1

V1 = 1, U2
= cO, V3 — CO (3.26)

1 ~ co

with ground-state energy

12

Eo = 9NS (J )
—+J2 ) +—,

' SJ) g g co„—18( 1+y )

k n=1

(3.23)

where

1 0P=
0 —1

1

3

—3

i =1,2, 3, (3.28)

(3.29)

The ground-state expectation value of the operator

M'„=SN —Q a, (k)a ) (k)
k

(3.24)

12

gives the ground-state staggered magnetization on sublat-
t1ce A ],

Each of the three matrices still preserves the eigenvalue-
pair property. Keeping this in mind and noticing that
P, Q, PQ, and QP all commute among one another, we
can square (3.28) to simplify the eigenvalue problem fur-
ther. The following conclusion is obtained after those
manipulations: co„are the eigenvalues of three 4X4 ma-

trices,

(M„- )=SN —g y ~W,"~',
k n=1

(3.25)

where subscript 4 means the fourth row element of the
vector W" and comes from our definition of a (k).

The diagonalization of the non-Hermitian 24X24 ma-
trix qH(k) is the nontrivial part of this calculation. The

where

—a, +c1
—a3+c3
—a2+c2

a1+c1 a3+c3 a2+c2
'

d, b2 b3

b2 d3 b1

d2

(3.30)

Q
I I I I I I I I I I I I I I I I I I

0.0 0.5 1.0 1.5 2.0
y

FIG. 5. Phase diagram of the triangular lattice HAF with ex-

change constants J& and J2. The solid line shows where the
sublattice magnetization is zero as calculated in the spin-wave

approximation.

a =9y —8y [p, (x, )+p;(x2)+p;(x3)],

a, =6(1—y)yp, (x& ),
(3.31)

b, =2(2+y)p, (x, )
—8(1+y )p;(x2)p;(x3),

c, =(4y +2y)p;(x, ) —16p, (x2)p;(x3),

d, =(2+y) +8(1—y )p;(x&)

—8[p;(x, )+p, (x2)+p;(x, )],
and other entries of the above matrix (3.30) can be evalu-
ated by cyclically permuting the subscripts 1,2,3.

Because of the complexity of these 4X4 matrices, the
final diagonalization of (3.28) is carried out numerically
and V and 8' are obtained by the inverse iterative power
method. For the triangular lattice (y=1), the ground-
state energy and ground-state sublattice magnetization
given by Jolicoeur and Le Guillou' are recovered as a
test of our programs. In Fig. 5 we plot the locus of points
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in the (S,y) "phase diagram" where the sublattice mag-
netization M~ vanishes as calculated above in the lowest

1

spin-wave approximation. Below the solid curve (phase
boundary) M'„%0 and the system has long-range

1

&3Xv 3 spin ordering. Above the curve the sublattice
magnetization is presumed to be destroyed by quantum
fluctuations and the spins are said to be "disordered. "
Evidently there exists a finite region near y =0 where the
ground state is disordered even for large spins. For the
case of physical interest, S=

—,', the transition from an or-
dered to a disordered ground state occurs at y -0.2. The
divergence of quantum fiuctuations as y ~0 (making
even the large spin system unstable) is similar to what
was found by Chandra and Doucot' for the case of the
square-lattice HAF with competing nearest- and next-
nearest-neighbor interactions. Shown in Fig. 6 are the
dispersion relations for the 12 spin-wave modes A „.The
growth of the quantum fluctuations which destroy spin
ordering can be associated with the softening of half of
these modes as y ~0.

IV. DECOUPLED-CELL MONTE CARLO SIMULATION

The double peak in the nuclear spin heat capacity is a
distinctive property of the He second layer and one that
presents a significant challenge to theoretical models. Al-
though a double peak was found in a numerical calcula-
tion for the present model on a 12-site cluster, we do not
accept this as strong evidence. For example, one might
worry that the low temperature of the second peak
(=0.1Jlks) merely refiects a subtle form of frustration
when the magnetic unit cell of the ground state does not
agree with the dimensions of the cluster. The same criti-
cism applies to the calculation of Roger using a different
model but a cluster of essentially the same size. In this
section we present a study of the thermodynamics of our
model in the Kagome limit (J2=0) using the decoupled-
cell Monte Carlo method (DCMC) introduced by Hom-
ma et al. This method also suffers from finite-size limi-
tations but we feel these limitations are signficantly
different so as to complement the previous study.

The DCMC is very appealing for the Kagome net be-

I I
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~ ~ I I ~ ~ ~ ~

~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~I I; I ~ ~ ~ ~
~ ~

I II
~ ~ ~

~ ~
~ ~
~ ~

~ ~ I I ~ ~ ~ ~~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~

~ I I ~ ~ ~ ~~ I I
~ ~ ~ ~ ~ ~ ~ ~

~ ~
~ ~

~ ~ ~ ~~ ~ ~ ~ ~
~ ~~ I ~

~ ~ ~ ~
~ ~~

~
~ ~~ ~ ~ ~ ~ ~~ ~

~ ~
0

~ ~

0
S 2
U'
S

S 2 —"
V'
04

~ ~~
~

~ ~ I I
~ ~

~ ~
~ ~

~ I~ ~
~ ~

~ ~~ ~
~ ~ ~ ~ ~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~ ~
~ ~

~ ~

joe)

~ ~

~ ~
~ ~

~ ~

~
I

~
~

'~ ~

~ ~ ~ ~

0 I I0 I '
I

1.00.0 0.5
vector (A)

0.0 0.5
vector (B)

1.0

I I I I I I I I I

Jq/J, =0.05
I I I I I I I I

J,/J, =O.O5

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ' ' ' ' ~ ~ ~ ~ ~ ~ I E I I
~ ~ ~ ~ ~ ~ ~ ~ ~~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~

~ ~ I ~~ ~ ~

~ ~

I I ~ I
~ I

~ I ~

~ ~

~ ~ ~ ~

~ ~
~ ~

~ ~
~ ~

~ ~ ~ ~ ~

w ~ ~ I I

~ ~

~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~

~ ~

m ~ ~ I I

~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~:I::::r''r ''I I I I I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I I I I I I I I I ~ I I ~ ~ ~ I ~ ~ ~ ~ ~ I ~ ~

~ ~
I q ~ ~ ~ ~ I ~ ~ ~ ~ I I I0

~ ~ ~.slIII) ~ ~ ~ . ~ ~ h0
0.0 0.0 0.5

k vector (B)
0.5 1.0

k vector (A)

1.0

FIG. 6. Dispersion relations of magnons along directions 3 and B in the first Brillouin zone.
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cause of the possibility of having relatively large decou-
pled cells. We begin with a description of the core of the
DCMC algorithm. The canonical ensemble of a quantum
spin- —,

' system can be generated by the time sequence of a
Markov chain whose transition probability for
single —spin-flip W(o; ~—a;) satisfies the detailed-
balance principle. One of the commonly chosen forms of
the transition probability is the Metropolis function:

W(0;~ —cr;)

X/
/X
c(5}

~ — ~

=max 1,
~e )'H~ . o

(4.1)

X/
c(I5}

FIG. 7. Decoupled cells c(5), c(11),and c(13).

where
~ o; . } denotes the spin configuration of the

whole system and, S =o;, and P= ( ks T ) '. The
DCMC algorithm approximates W in (4. 1) by WDC
defined as the following:

W(cr;~ rr; —)
= WDC(0;~ —o;)

PH(v, i)~ .

~ —0

o }

(4.2)

where H(v, i ) is the restriction of the Hamiltonian H to a
finite neighborhood v about spin i (the decoupled cell).
Once the transition probabilities 8'Dc are obtained, the
algorithm can be implemented as a classical Monte Carlo
simulation. In practice, transition probabilities %Dc in
(4.2) are obtained by exactly solving the eigenvalue prob-
lem of Hamiltonian H(v, i ) and stored before the main
Monte Carlo simulation.

In the Ising limit of our Harniltonian, the DCMC algo-
rithm is exact already when v consists of spin i and its
near neighbors. When the off-diagonal couplings are
turned on, it is believed that the dependence of the transi-
tion probabilities on the spin configurations outside the
decoupled cell becomes less and less significant as the cell
size increases, particularly at higher temperatures. At
lower temperatures, in analogy with the growth of the
thermal de Broglie wavelength of a particle, one expects
that larger cells are needed to capture the correlations
that determine WDc. While we do not know the scaling
of cell size with temperature, we feel safe in using the fol-
lowing empirical rule: follow the behavior of a thermo-
dynamic function down to the same low temperature us-

ing one size of decoupled cell and repeat using a cell that
is slightly larger. The point where the two functions de-
viate is then the lowest temperature for which the simula-
tion results are reliable.

We have performed the DCMC simulations on decou-
pled cells with 5, 11, and 13 spins (Fig. 7). These decou-
pled cells will be referred to as c (5), c (11), and c (13).
Using only block diagonalization by the total z com-
ponent of spin we were able to construct the Hamiltonian
matrix H(v, i ) and evaluated the transition probabilities
in (4.2) without utilizing any other symmetries for the

(4.3)

can be measured directly, the heat capacity
which involves off-diagonal operators
[H ~ (S; SJ')(S;" Sg) ] cannot since the DCMC
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FIG. 8. Internal energy per spin vs temperature of a spin- —,
'

Kagome HAF. The symbols (0), (0), and (~ ) are DCMC re-
sults obtained from decoupled cells c(5), c(11), and c(13), re-
spectively. The solid line shows the lowest-order term of the
high-temperature expansion. The mark on the energy axis cor-
responds to the ground-state energy of the Kagome net obtained
by direct diagonalization.

smallest decoupled cells. For c(13) we were forced to
consider additional symmetries because of memory limi-
tations. While the translational symmetries no longer ex-
ist because of the free boundary, the Hamiltonian H(v, i)
is invariant under the exchange of the outermost spins
within each of the outermost triangles. Utilizing all the
16 symmetry elements, the rank of the largest Hamiltoni-
an matrix to be diagonalized is reduced to 494. The com-
putation of the transition probabilities in (4.2) for 40
different temperature values takes about 10 h on the Sun
Spare Station1.

The internal energy and heat capacity were computed
with different decoupled cells for a Kagome net of
8 X 8 X 3 spins having periodic boundary conditions.
Whereas the internal energy,
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FIG. 9. Heat capacity per spin (in units of kz) as a function
of temperature from c(13).
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FIG. 10. Entropy per spin (in units of k~ln2) as a function of
temperature from c (13).

method only generates diagonal elements of the density
matrix. Nevertheless, the heat capacity can be computed
using finite differences of energy measurements,

(4.4)

We have used 100000 Monte Carlo steps per spin, di-
vided into 20 groups to estimate the statistical errors.
This main part of the simulation also takes about 10
hours.

In the high-temperature regime, the internal energy
obtained from different decoupled cells is in good agree-
ment as expected (Fig. 8). Agreement with the first term
in the high-temperature expansion, E= —0.375PJ, is
also quite good. Towards the low-temperature regime,
the situation becomes more intriguing. The simulation
with c(5) behaves like the corresponding Ising problem
in that the internal energy extrapolates to a value close to
—0.5J per spin. The internal energies of the larger cells
c (11) and c (13) are substantially shifted up with respect
to c (5) at low temperatures. A clear sign that the validi-

ty of the DCMC method fails at low enough tempera-
tures is seen from the fact that the internal energy of
c(11) actually turns up slightly. The same behavior was
observed by Homma et al. on a one-dimensional HAF
chain. To our delight, this pathology of the method is
corrected by c(13). This, our largest cell, rather than
showing a minimum in the energy has a monotonic be-
havior with an inflection point. Below the inflection
point the downturn in the energy even offers hope that at
T=O it will be close to the value —0.434J determined by
the exact diagonalization studies in Sec. I. Clearly larger
cells are needed to study this very-low-temperature re-
gion. Nevertheless, we believe that we have achieved
reasonable convergence down to temperatures near this
inflection point and it is really only this part that is re-
sponsible for the first maximum in the heat capacity.

The heat capacity calculated with c(13) is plotted in
Fig. 9. Clearly, besides the first peak located at about
T=0.75J/kz, a second peak emerges when the tempera-
ture drops below 0.3J/k~. The location of the second

peak can roughly be estimated at T=O. 1J/kz. These re-
sults for the heat capacity match those of the earlier
study excellently, i.e., both in the location of the peaks
and their heights. Although the agreement in the low-
temperature peak may be fortuitous we believe now that
the high-temperature peak is an intrinsic property of the
model. A plot of the entropy in Fig. 10 shows that the
entropy below this peak is in rough agreement with the
value determined by Greywall and Busch.

V. CONCLUSION

Our numerical studies of the HAF on a Kagome net
have revealed two things: (1) the likely absence of spin
ordering in the ground state and (2) a double peak in the
heat capacity. Moreover, our spin-wave calculation for
the triangular lattice with exchange constants J, and Jz
suggested the possibility of two zero-temperature phases
where the phase corresponding to the Kagome limit,
y=Jz/J, ~O, has disordered spins. Thus we speculate
that a double-peaked heat capacity is a characteristic
property of the J, /Jz triangular lattice system, provided
that y &0.2. We do not have a precise picture of the
form of condensation responsible for the high-
temperature peak. The burden of demonstrating that the
present mode1 describes the absorbed He system has now
shifted to the microscopic origins of exchange. Besides
the need to have biquadratic spin terms (from four- and
higher-order cycles) negligible it is necessary that the
combined contributions of pair and three-cycle exchange
either are small for Jz or nearly cancel.
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