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Monte Carlo simulations of a two-dimensional hard-disk boson system
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The ground-state properties of a two-dimensional hard-disk boson system at zero temperature
were studied using a Monte Carlo method. The configurations were generated from trial Bijl-
Jastrow-type wave functions for the fluid state and Nosanow-type wave functions for the solid state

by the standard Metropolis random-walk algorithm. %'e found that the long-range-ordered crystal
melts when the Lindemann ratio is greater than y, i„„~=0.279. The corresponding fluid-solid

phase-transition densities and pressure were determined to be p fl d 0.32+0.01 and

p„&;d=0.34~0.01 and P =7.3+0.3 in reduced units. The physical picture emerging from the Monte
Carlo results is discussed.

I. INTRODUCTION

This paper is concerned with the phase-transition
properties of a hard-disk system at zero temperature. Be-
sides the simplicity and relative transparency of the
hard-disk system, which make it worthwhile in them-
selves to perform a detailed study, our interest in this
subject was inspired by the recent experimental and
theoretical progress in research on the magnetic flux lines
in high-T, superconductors. ' Various regimes of the
flux lines in high-T, oxides and a two-dimensional in-
teracting boson system were brought together by an
elegant mapping relation through the isomorphisrn of the
trajectories of vortices and boson world lines. The parti-
tion function for classical flux lattice melting is approxi-
mately related to the S matrix in the study of quantum
melting. The two-dimensional (2D) hard-disk boson sys-
tern may also serve as a primary model to improve our
knowledge on absorbed helium monolayers. A better
understanding on these typical two-dimensional (2D) bo-
son systems will therefore provide some insight on many
systems. Once this system is well understood, the
remaining corrections, such as perturbation theory etc. ,
to various systems can be introduced. It is the objective
of the present paper to predict the transition densities be-
tween fluid and solid phases of the hard-disk boson sys-
tem, and to illustrate some basic properties emerging
from the simulations.

The most reliable and direct way to investigate a fluid-
solid phase transition is to compute and compare the free
energies for two phases. Once the free energies of the
solid and fluid phases are determined, the fluid-solid
equilibria are calculated by constructing common
tangents in a Helmholtz free energy versus area diagram.
Our procedure is based on an extension of the method
used by Hansen, Levesque, and Schiff for a three-
dimensional hard-sphere system and therefore bears a lot
of resemblance. In Sec. II we will model our system, in-
troduce the variational wave functions, a Bijl-Jastrow-
type wave function for the liquid phase a a Nosanow-type
wave function for the crystalline phase, and briefly de-
scribe the procedure for evaluating the ground-state ener-

II. MONTE CARLO METHOD
AND CALCULATION RESULTS

A collection of N hard-disk bosons of diameter o and
mass p is described by the Hamiltonian

1V

H= g —7+ g V(~r; —r1~),

with

oo ifr(1,Vr='
0 otherwise.

The Bijl-Jastrow wave functions that describe the ground
state of the fiuid phase were formulated in the same spirit
of Hansen, Levesque, and Schiff:

r; —1
tanh

bm
l,J

0 otherwise,

=gf(rj) if r ) 1

where m and b are two variational parameters and are
determined by minimizing the total free energy for a
given density. This wave function gives the correct be-
havior when r ~ l and r ~ ~, and is found to be quite
good as a first approximation. The long-range crystal-
line states were constructed by multiplying the Bijl-
Jastrow wave function (2) by Gaussian factors
g;exp[ —A (r; —R;) ] centered at triangular lattice sites

IR; ). This is the so-called Nosanow-type wave function.
This function breaks the translational symmetry of the

gy and pressure. The simulation results for the energy
expectation values and pressures are also included in this
section. %'e found that the system undergoes a first-order
transition at densities p„„,d=0. 32 0.01(cr ) and

p„&;d=0.34+0.01(o ). We conclude with a discussion
of our results in Sec. III. The reduced units have been
used throughout this paper. That is, the unit of length is
o', the reduced densities is po, and energies are in units
offi /2p, tr .
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trial wave function and localizes the particles on lattice
sites, and hence describes a solid. The lack of symmetry
with respect to particle interchange in this wave function
should not be a major shortcoming since many simula-
tions have indicated that several physical quantities, such
as energy and pressure, etc. , are not very sensitive to the
symmetrization. '

The expectation values of the Hamiltonian for both
liquid and solid state are obtained by virtue of the formu-
la
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= —+fg (r)V Inf (r)dr+33, (3)

where g(r) is the pair distribution function. "' Note
that A =0 corresponds to a Bijl-Jastrow liquid state.
This equation reduces our problem into the calculation of
two-body correlation function g (r). The relation between

g (r) and the variational wave function is

N(N —1)f . f ~%i dr3dr4 dr&
g(r)=

p f i% i dry ' ' ' dr~
(4)

For the crystalline state, the g (r) used in (3) is an average
over the orientation and different lattice sites. The for-
mal analogy between this and a classical N-body system
allows us to use a stochastic Monte Carlo method to at-
tack this problem. In this approach, the sample
configurations were generated from the trial wave func-
tions by the Metropolis random-walk algorithm. ' '

All the computations reported here were on the
ARDENT-Titan 3 minisupercomputer. We used a 90-
particle system in a rectangular box of aspect ratio
5&3/9, chosen to accommodate a perfect triangular lat-
tice in high densities. We also did several runs on two
larger systems, N =224 and 480, and we found that the
size-dependent effect was negligible for the system. Start-
ing from a random configuration for the liquid state and
a triangular lattice for the crystalline state, we let the sys-
tern approach equilibrium for the first 144 000
configurations and perform the averaging to obtain g (r)
over the next 144000 configurations. The probability of
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FIG. 1. Ground-state energy as a function of the area per
particle. The circles and squares denote our measurements on
the fluid and solid states respectively. The solid lines are fitted
curves of the data to a polynomial. The inset represents the
Maxwell double-tangent construction, which yields the phase
transition densities p&„;d=0.32+0.01 and p„&,d =0.34+0.01.

accepting the trial configuration was adjusted to about
50% for every measurement.

We show the measured curve of energy E versus area
0 in the region of phase transition in Fig. 1. The circles
and squares denote our measurements on the fiuid and
solid phase, respectively. The solid lines are fitted curves
of the data to a polynomial. In the inset of Fig. 1 we
plotted the Maxwell double-tangent construction. The
apparent discontinuity of curvature exhibited by the
energy-versus-area plot suggest the existence of a domain
of metastable state included between the two densities
corresponding to the contact points of Maxwell double-

TABLE I. Variational results of the ground-state energy E and pressure P for both fluid and solid
phases at different densities. The values of Lindemann s ratio y for the solid phase, defined by rms de-
viation of a particle from its lattice site divided by the nearest-neighbor distance, is also tabulated.

0.200
0.225
0.250
0.275
0.300
0.330
0.340
0.350
0.375
0.400
0.425
0.450

Fluid

3.14+0.03
3.92+0.01
4.90+0.04
5.96+0.06
7.33+0.05
9.26+0.02

10.00+0.03
10.71+0.06
12.93+0.06
15.73+0.09
18.76+0.16
21.94+0.14

p

1.5
1.6
2.5
3.8
5.3
7.5
8.6
9.4

13.6
18.1
22.3
28.1

9.88+0.08
10.51+0.02
12.28+0.02
14.38+0.07
16.61+0.10
21.39+0.04

Solid
P

7.3
8.0

10.6
14.1

18.3
22.8

0.279
0.266
0.253
0.238
0.222
0.213
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tangent construction, a characteristic of a first-order
phase transition. The double-tangent construction yields
the transition densities pz„;z =0.32+0.01 and

p, &;z
=0.34+0.01. The corresponding transition pres-

sures were found to be P =7.3+0.3. The numerical re-
sults of the minimum energies and pressures are listed in
Table I. In Table I we also listed the values of
Lindemann's ratio y for the crystalline state, i.e., rms de-
viation divided by the nearest-neighbor distance. It is
seen that the solid melts when Lindemann's ratio y is
greater than 0.279, about 3 times larger than the value
for a classical system, and is consistent with other quan-
turn systems. ' The pressures in the Table I were ob-
tained by fitting the free energies to a polynomial of area
0 and then using the relation I' = —BE/B(Q/N). The
overall error is estimated less than 8% on the pressure.

III. SUMMARY AND DISCUSSION

The fluid-solid phase transition of the system was
marked by the fact that a long-range crystalline state, i.e.,
a Nosanow state with A WO, becomes energetically favor-
able at density p=0. 33, and below the transition density
it is the delocalized Bijl-Jastrow-type wave function (2),
i.e., a Nosanow wave function with A =0, that optimizes
energy. The pair correlation function g (r), shown in Fig.
2, exhibits only a short-range order in the flui, d just before
freezing. The hard-disk boson system is is many ways
similar to other quantum systems. No precursors of
freezing, such as large fluctuations and surprisingly or-
dered liquid, etc. , were observed before freezing. The
crystallization of the system occurs at a much lower den-
sity in comparison with a classical hard-disk system; the
classical hard-disk fluid is known to coexist with its crys-
tal phase at a density p=0. 89. ' For a qualitative ex-
planation of this fact, we refer readers to Ref. 7.

Dimensionality dependence of a quantum system is an
important issue in simulation and experiment study. In
the last two decades, extensive work has been done corn-
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FIG. 2. Pair correlation function of the Auid state of the
hard-disk boson system at the transition density p =0.32.

paring two- and three-dimensional He interacting via the
Lennard-Jones potential. ' It is instructive to compare
our present results with those obtained for a 3D hard-
sphere system. A 2D hard-disk fluid freezes at p=0. 32,
while the freezing density for a 3D hard-sphere system is
only p=0.23.' The apparent difference between them
disappears if we compare the mean particle separation at
the freezing point. It is found that the mean particle sepa-
ration d zD

=2( 1/mp )
' =2.00, which is very close

to the value for a 3D system, 13D=2(3/4irp)' =2.02.
This is quite different from other quantum systems with a
relatively "softer" interaction. For instance, Whitlock,
Chester, and Kalos found that the particles are 22% far-
ther apart in 2D helium than in 3D helium at the freezing
point. We speculate that for extremely hard core in-
teractions, freezing occurs when mean particle separation
is close to 2. In other words, a dimensional scaling of
freezing exists for extremely hard core interactions. We
attribute the apparent difference of the freezing densities
between 2D hard-disk system and 3D hard-sphere system
to this dimensional scaling. Whether this rough dimen-
sional scaling can be extended to higher dimensions clear-
ly deserves further investigation. We mention here that
in analyzing the dimensional dependence of a system, the
fact that a particle in a lower-dimensional system has
fewer nearest neighbors might be important in some cases
because the simplification of the configuration space
would weaken the competitive ability of the interaction
potential against the kinetic energy which tends to delo-
calize particles.

Properties of the 2D hard-disk boson system in the
low-density limit have been investigated by Schick by
summing ladder diagrams in the cluster development of
the integral in power of the particle density. The
ground-state energy per particle was found to be
E = —4mp(lnp) '[1+O(1/lnp)]. The method limits the
validity of the results to very low densities and does not
appear to be useful at the intermediate densities that are
most interesting physically and where variational
methods work. Nevertheless, for the sake of testing we
did a few Monte Carlo runs at some fairly low densities
to compare with Schick's formula. It turned out that
they yielded close values.

The structure function S(k), defined by

S(k)—1 =p f [g(r) —1]e '"'dr

=2irp I (g (r) —1)JO(kr)r dr, (&)

is an experimentally measureable function and can be
easily obtained once g(r) is known; here Jo(x) is the
zero-order cylindrical Bessel function. Conversely, one
can obtain the pair correlation function from a known
S{k).' In Fig. 3 we plot the calculated structure factor
of the system in the fluid state at the freezing density
p=0. 32. It would be most interesting to measure the
structure factor in systems, such as absorbed helium
monolayers etc., by using a neutron-scattering technique
and make a comparison with the variational calculation.
The dashed line in the small-k region in Fig. 3 is an
artificial result according to Feynman's results
S(k)=fik/2ps, ' where s is the velocity of sound. An in-
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investigations on the flux lines in high-T, superconduc-
tors has suggested the existence of a hexaticlike region
followed by an entangled isotropic Aux liquid region.
We have attempted to calculate the energy for the hexat-
ic phase by using a variational function

'0= gf (r, )+exp
a3cos60,,

a4
lJ
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FIG. 3. Structure factor S(k) of the Quid state of the hard-
disk boson system at the transition density p =0.32.

corporation of the zero-point motion of long-wavelength
long-range phonon modes is required to yield the linear
behavior in the long-wavelength region in a variational
calculation. The infinite-range correlation entails an in-
clusion of an additional product of pair function of
infinite range in the wave function, which would make
the calculation much more involved.

The subject of a hexatic phase has long been an out-
standing problem. ' It is natural to ask whether there is
a hexatic phase in a 2D quantum system. In fact, recent

where I9, is the angle between two particles i and j, a3
and a4 are two variational parameters in addition to the
paratneters in f(r) given in Eq. (3). Unfortunately, we
could not find any region where a hexatic phase is ener-
getically favorable within our statistical errors. This, of
course, does not rule out the possible existence of an in-
termediate hexatic phase. It is believed that the transi-
tion from a solid or a liquid phase to the hexatic phase is
a second-order transition, i.e., the first-order fluid-solid
transition being replaced by a succession of two "continu-
ous" transitions. Therefore, in order to study the hexatic
phase, one should seek other probes, such as derivatives
of energy, other than energy itself. This work is still in
progress.
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