
PHYSICAL REVIEW 8 VOLUME 42, NUMBER 13 1 NOVEMBER 1990

Elastic properties of central-force networks with bond-length mismatch
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We study a triangular network containing two kinds of Hooke springs with different natural

lengths. If the two spring constants are the same, we can solve the model exactly and show that
Vegard's law is obeyed, irrespective of whether the bonds are arranged randomly or in a correlated

way. A more complete description of these networks is obtained through the mean lengths, the

length fluctuations, and the strain energy. The complete distribution of bond lengths is obtained nu-

merically and shows an interesting and unexpected symmetry for the random case. Finally we show

that numerical results for a similar system, but with different force constants as well as different nat-

ural lengths, can be well accounted for by using an effective-medium theory that reduces to the ex-

act results when the two spring constants are made equal. These lattices can be described very ac-

curately up to about 50% length mismatches, when "pleating" occurs and the lattices develop local
instabilities.

I. INTRODUCTION

All solid elastic materials, in the absence of an induced
external stress, can relax to a state of zero macroscopic'
stress. More precisely, this means that, when an external
strain is applied to a material in this reference state, there
is no term in the strain-energy density that is linear in the
strain. This reference state defines a natural size or
length scale for the material. One general way to define
this length would be by the edge length of a cube formed
from a unit mass of the solid at standard temperature and
pressure, for example. In the case of an undistorted crys-
talline solid with known crystal structure, this prescrip-
tion is equivalent to specifying the lattice, although see
the caution at the end of Sec. V.

A state of zero macroscopic stress does not, however,
necessarily imply a state of zero strain energy. Only if
the same natural length applies throughout the solid is
the internal strain energy also zero. This would be the
case for a perfectly crystalline solid. In general, however,
there can be "mismatches" in natural length between
different regions in the interior of a solid. In the absence
of an applied stress, this will lead to an effective macro-
scopic natural length that is some microscopically
weighted average over the internal lengths.

There are many examples of this kind of behavior and
we list a few gleaned from the recent literature to illus-
trate the broad range of materials in which natural length
mismatch between "matrix" and "inclusions" is impor-
tant. Boron- and/or germanium-doped silicon is a good
example of natural length mismatch, as the dopant atoms
try to fill silicon-sized holes in the silicon lattice. Boron,
being smaller than silicon, induces lattice shrinkage while
germanium, being larger than silicon, induces lattice ex-
pansion. ' In boron-doped silicon, hydrogen passivation
of the boron acceptors causes the effective natural length
of the material to increase because of natural length in-
creases at the boron sites due to the formation of B-H
complexes. Lower-density amorphous regions in

radiation-damaged ceramics and oxide precipitates in
oxygen-implanted Si-on-Si02 structures can produce
natural length mismatch and stored strain energy. Natu-
ral length mismatch is also an important factor driving
the amorphization of Mn-implanted Al films and single
crystals as well as the formability of a whole range of
metallic glass alloys.

In the area of materials science, natural length
mismatch is exploited to strengthen glass using the pro-
cess of chemical tempering. ' In this process, larger ions
are exchanged for smaller ions in the glass network,
thereby inducing stored strain energy associated with
compressive stress in the surface. ' The surface compres-
sion tends to deactivate the surface cracks, which are the
strength-limiting flaws, '" thereby increasing the overall
tensile strength by roughly the amount of the surface
compressive stress. ' In the area of engineering materi-
als, the durability of concrete is controlled to a large ex-
tent by natural length mismatch. The aggregate that is
mixed with portland cement and water to make concrete
can react with alkaline element constituents. The prod-
ucts that are formed have a larger natural length than the
original aggregate, inducing intense local compressive
and tensile stresses, which can cause cracking. ' Sulfate
ions can attack cement paste, resulting in chemically in-
duced local expansion and other deleterious effects. '

Finally, almost any kind of elastic solid that is formed
at least partially by the consumption of a liquid constitu-
ent is subject to tensile stresses due to natural length
mismatch arising from the collapse of capillary pores as
the liquid is removed. The ubiquitous "mud-cracking"
seen in dry lake beds is a good example of this behavior, '

as is residual tensile stress and cracking in sol-gel films. '

In this paper, we focus on a simple central-force model
that can describe the general features of this
phenomenon. It is an extension of a previous model'
and consists of a two-dimensional triangular network of
Hooke's-law springs with natural lengths L; and force
constants K,- . Natural length mismatch is built in from
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the start by allowing the lengths L; to be random vari-
ables. In this paper we concentrate our attention on the
case where there are only two kinds of springs, A and B.
The network is allowed to relax to its preferred size by
minimizing the energy.

The layout of this paper is as follows. In Sec. II we
define the notation, and give some general results that
can be derived without any detailed calculation. In Sec.
III we present the exact solution when the spring con-
stants are all equal. In Sec. IV we show how correlations
can be treated. These correlations introduce a local ten-
dency to cluster. It is shown that the work of Sec. III can
be generalized to cover this case. Details of the statistics
associated with the correlations are given in Appendix A.
In Sec. V we develop an effective-medium theory that is
shown to be rather accurate when the spring constants
are not all equal. The general problem of what is meant
by "length" is also discussed, and it is shown that for tri-
angular networks, the microscopic and macroscopic
definitions do agree. In Sec. VI we give a general discus-
sion and examine the length probability distributions. It
is shown that the A and 8 distributions are identical (of
course shifted and with different weights) when the spring
constants are equal and the distribution of bond lengths is
random. We also discuss the elastic moduli. We show
that the harmonic approximation is excellent until
"pleating" occurs. Throughout the paper our exact (or
effective-medium results) are compared with computer
simulations.

II. GENERAL RESULTS

We consider a stable lattice such as the triangular net
shown in Fig. 1. Other two-dimensional lattices, such as
the square net and the honeycomb lattice, are unstable
under purely nearest-neighbor central forces. ' In three
dimensions, the face-centered-cubic lattice is stable under
nearest-neighbor central forces, and the formalism in this
paper would apply equally well for the face-centered-
cubic lattice or any other stable lattice. We retain the
conductivity of the lattice in Fig. 1, but the bonds have
natural (unstretched) lengths L; with spring constants
E,&. Much of our theory applies quite generally, but to be
specific, we consider a distribution, which can be random

Notice that R, is now the relaxed vector and so R; is a
unit vector along the relaxed bond direction. These
equations determine the equilibrium positions of all the
sites. An example is shown in Fig. 2, where Lz is 30%
larger than L~, and K~ =K~. Here the equilibrium of
the sample was determined numerically, using standard
techniques. '

The average bond length is defined by

(L)=—y L„
1

(ig }

with similar definitions for (L„) and (L~) for the A-

and B-type bonds. Here N is the number of bonds in the
lattice and we are always concerned with the thermo-
dynamic limit N~ 00. By definition

(L ) =(1—x)(L„)+x(L ) . (4)

We have chosen the notation to parallel that of Thorpe,
Wei, and Mahanti' who have recently studied similar

or correlated, of two kinds of bonds .One of these has a
natural length L~, spring constant Kz, and occurs with

probability 1 —x. The other has a natural length Lz,
spring constant Kz, and occurs with probability x. This
may be thought of as a solid A, B„where A, B refer to
bonds and not to sites. This solid is described by a poten-
tial

V=-,' g SC;, (IR; —R, I

—L,', )'.
(ij }

Here L; can take on the two values L~ and Lz with

probability 1 —x and x, respectively. The summation
goes over all nearest-neighbor bonds ij and the angular
brackets denote that nearest-neighbor sites are only
counted once. The vector R, goes to a site at the end of
the bond ij from some (arbitrary) origin. The potential
(1) can be minimized with respect to the R; to give

0= g K,i [(R, —R ) L~ R;J—] . (2)
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FIG. 1. A perfect undistorted triangular network.

FIG. 2. A piece of a relaxed triangular network. The short

bonds are shown as dashes and the long bonds by solid lines.

The sample shown has equal numbers of short and long bonds
and the natural length of the long bonds is 30%%uo greater than the
natural length of the short bonds. The two spring constants are
equal.
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problems associated with two-dimensional alloys in inter-
calated graphite and in clays. The present situation is
formally quite similar, but more complex, because here
the displacements are not uniaxial. Nevertheless, many
of the results carry over. ' '

The Feynman-Hellman theorem has been shown to
be useful in this type of problem. ' In the present con-
text, this theorem states that

2e(Ks K—„)(L ) =(1—x )L„+xLs+
K„Ks(L~ L—„)

(L„)=L„+
(1—x )K„(Ls L„—)

(I., & =I.,'—
xKti(Lti L~—)

(10)

(~)= '),
where the energy e= V/N depends explicitly on some pa-
rameter p. From Eq. (1), we see that p can be set equal to
L„orLB, which leads to

K (1—x)((L ) L)=——p BF
A A A BLo

(6)

Ksx((Ls ) Ls ) =—— E,

LD

Equation (6) involve no assumptions about small dis-
placements. However, they are not very useful as they
stand. If we assume that the displacements from a per-
fect triangular network are small, and if we note that
there is no net macroscopic force on the system in equi-
librium, we find that

(1—x)K„((L„) L„)+xK—s((Ls ) L~ )=0,—(7)

BE BE

BL„BLs

which states that the net macroscopic tension is zero per-
pendicular (or parallel) to any line drawn parallel to the
bonds in Fig. 2. This line is imagined to be a rigid
mathematical line. This procedure is equivalent to re-
placing the R;~ in Eq. (2) by the undistorted unit bond
vectors from Fig. 1. Combining Eqs. (6) and (7), we see
that

These are important general results which show that if
Ks )K„, the mean length lies above Vegard's law ' (su-
perlinear) and if Ks (Kz, the mean length lies below
Vegard's law (sublinear). This result is independent of
any correlations in bond positions that may exist. In the
extreme case of complete phase separation, c.=O and
Vegard's law ' is recovered froin (10) as expected. The
interface energy is negligibly small in the thermodynamic
limit. Note that we define LB )L~ throughout this pa-
per.

The Feynman-Hellman theorem (5) is also helpful in
finding the fluctuations. If we set p equal to E~ and EB,
respectively, in (5), we find that

(1—x)((L„L„)) =—2
A

&(L, —L,')'& =2
B

The total fluctuations are given by'

&(L —(L &)'& =(1— )&(L„—&L, &)')

+ &(L, —&L, ))'&

+x(1—x )((Lq ) —(Ls ) ), (12)

which follows directly from the definitions. Using (9) and
(11), the fluctuations (12) become

((L —(L ) ) ) =2 +2 +x(1—x)(L L)—B A

(Lo Lo )2

and hence the energy can only depend on the difference
(Ls L„). Howeve—r, we can invoke dimensional argu-
ments from the potential (1) to see that the energy must
be proportional to (Ls L„) and there—fore may be writ-
ten as

—4s[(1—x )K„+xKsj/(K„Ks ) . (13)

The general relations (9)—(13) are particularly useful
when E„=LB. %e obtain Vegard's law ' directly from
(10)

e= )(K„K~)'~ x(1—x)(Lti L„)F,(x,Ks/K—„) . (9)
(L&=(1—x)L„+xLs . (14)

It is convenient to include a factor x(1—x ) in (9) when
defining the diinensionless function F,(x,Ks/K„). A
similar result was found previously. ' ' Here (9) is only
true in the small displacement limit. The symmetry of
the potential (1) under the interchange A~8 together
wit x~1—x puts a restriction on the function, namely

F,(x,Ks/K„)=F, (1—x,K„/Ks). Note that if any one
of the quantities (L ), (L„),and (Ls ) are known, then
the other two can be found using Eqs. (4) and (7), unless
K„=K&. Using (6), (7), and (9), we find that

No assumptions have been made in this derivation, so
that Vegard's law (14) is proved to be true for any ar
rangement of bonds Two extr.eme cases are a completely
random arrangement and phase separation. An inter-
mediate case, with correlations, is studied in Sec. IV. The
fluctuations in (13) become

&(L —&L &)'&=2 '+ (1 )(L' L')' 4./—K. — —
ar B A

(15)

Using (12) we may also show that
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(1—x)&(L„—(L„&)'&+ &(L, —&L, ))') 0= gK;, [(u; —u. ) R; —((L) L—; )]R; (22)

=2 —4E /[K x(1—x)(Ls —L„) ] . (16)

It is convenient to define a local dimensionless length d;
such that Du=v, (23)

If all the K;.=K, Eq. (22) can be rewritten in terms of the
usual dynamical matrix D for the triangular net

L, =L"q+d, (L~"L—~ ), (17)

where d; =0 or 1 given by L„or Lz, respectively. Then
the general results of this section can be summarized as
follows:

where the column vector v is given by

v;=K g (L;J —(L )) R;~ .
J

Solving for the displacements u; gives

(24)

(d)=x,
(d„)=x[1—a'(x)],
(d~ ) =1—(1—x)[l —a'(x)] .

(25)u= —Gv

(18) or in components

u ~= —y 6'~U('
jp

(26)

where 6 is the usual Green function for the perfect sys-
tem. ' ' Combining (21), (24), and (25)

L)=(L)+K g [k; (6; —6 ) R, ](L, —(L &)
lm

=(L &+2K y(R,, 6,.k,.)L.,'. .
Im

(27)
E =

—,'Kx (1—x }[1—a '(x)],
&(d —(d))'&= (1—

) '( ) .

(19)

Equation (27) gives the actual length of the bond ij in
terms of all the natural lengths LI . If we average over
both sides of (27) we get an identity because for all sites i

QRq=0 . (28)
J

(20}

The relations (18)—(20) assume only that the displace-
ments are small and Kz =I% z. The bonds can be ran-
domly mixed or correlated. The degree of correlation
determines the dependence of a'(x) on the concentration
x. The individual fluctuations ((d„—(d„) ) ) and

&(dz —(d~) ) ) cannot be found by the general argu-
ments given in this section and have to be found from the
more detailed considerations in Sec. III.

In order to facilitate the averaging, we introduce bond
variables 0, , where 0, =1 if the bond ij is A, and
o.

,
"= —1 if ij is B. The concentration x is given by

&o„)=1—2x . (29)

Note that the difference (d~ ) —(d„)=a'(x) gives a
direct measure of a "(x). The quantity a'(x)
=1 F,(x, 1—) is used to link up with previously used no-
tation, ' and is also equivalent to the Watson integral 8'
used in other recent work. ' ' The energy and the total
fluctuations are given by

III. EXACT SOLUTION WHEN SPRING CONSTANTS
ARE EQUAL

The average length of the A-type bonds (L„) may be
written

When the spring constants K„and Ez associated with
the A- and B-type bonds are equal, the model can be
solved exactly in the small displacement limit. This solu-
tion closely parallels previous work. ' The essential ob-
servation that makes the solution possible is that there is
no randomness in the dynamical matrix. This exact solu-
tion plays a similar role here to the exact solution of the
two-dimensional Ising model in statistical mechanics,
and can act as a guide in more complex situations.

Because of the general results of Sec. II, our main task
is to calculate a*(x). We shall do this here for a random
distribution of bonds. We imagine a reference lattice that
is a perfect undistorted triangular network, as in Fig. 1,
with all the bonds having the as yet undetermined mean
length (L ). Assuming small displacements u, associated
with the sites R,-, we may write

4X 1 —x

X g (( I+cr; )(1+o
&

) )
ij lm

X(R; 6; R, )(L„L~) . —(30)

Comparing with the expression for (d„) in (18) and
remembering that the dimensionless lengths are intro-
duced via (17},we can extract a*(x)

4%x 1 —x
(31)

The result (31) is completely general and allows the quan-
tities needed in Eqs. (18)—(20) to be obtained. For a ran-
dom distribution of bonds in the solid A, B, the pair-
correlation function is given by

L, =R, —R =L+ [(u, —u ).R;.]R; (21)
&o,,o, &

—&o,, &&cr, &=4x(1—x)6,, , (32)

where the R; are unit vectors along the undistorted bond
directions. Inserting this into (2), we find that

Only the nearest-neighbor terms survive when we insert
(32) into (31) to obtain
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a*(x)=a'=2K[R,, (G„—G;;).R;, ]

=2d /z

=2
3 7

(33)

and for the face-centered-cubic lattice pi =0.620. Thus
the correlations introduce an x dependence into a*(x ).
For the triangular net a*(0)=a (1)=—,'as in the random

case, while a '( —,
'

) =0.529. For small x or 1 —x, we have

where ij is any nearest-neighbor bond. The result (33) is
also given in Ref. 17 in a different context. For the tri-
angular net, the dimension d=2 and the number of
nearest neighbors z=6. The other important quantities
of interest are the fluctuations ((1„—(d„) ) ) and

((ds —(dz ) ) ). For the random distribution of bonds,
a direct calculation can be made by squaring (27) and do-
ing the appropriate projected averages. The surprising
result is that the two fluctuations are equal;
((d„—(d„)) ) = ((ds —(ds ) ) ). Therefore from (16)
and (19), using the dimensionless units we find that

((d„—(d„))'& = &(d —(d, ) )'&

a*(x)=—,
' —0. 106Vx(1—x) . (36)

This input can be used to calculate the quantities of in-
terest in Eqs. (18)—(20) and the results are shown in Fig.
4. Notice that Vegard's law still holds for (d ), but that
(dz ) and (ds ) are no longer straight lines. The curva-
ture is caused by the correlations and by the associated x
dependence of a "(x). The energy and total fluctuations
are no longer parabolic, although they are still symmetric
about x =

—,'.
The fluctuations in the A and B bond lengths can be

obtained as follows. The rate of change of the energy

=x(l —x)a'(1 —a') . (34)

The result (34) for the fluctuations can also be obtained as
a special case of the more general results for the fluctua-
tions when correlations are present, given in Sec. IV. The
results for the random model are shown in Fig. 3 as a
function of the composition x. The computer simulations
were performed using the standard relaxation method, '

and details of the parameters used are given in Appendix
B. The natural lengths were taken to be L„=1.00 and

L~ =1.01. These lengths are not important as they scale
out as long as the difference (L~ L„) is su—fficiently
small. The agreement between the simulation and theory
checks the accuracy of the simulation. The quantities
( d „)and ( d~ ) are straight lines because a '(x ) is a con-
stant. The energy and the fluctuations are parabolic in
this case. We will show in Sec. VI that the nth moments
of the A and B bond-length distributions are the same for
all n ~ 2. This leads to identical line shapes for the A and
B distributions. These distributions are centered on
(d„) and (ds), and have weights 1 —x and x, respec-
tively.

1.0

z 0.8
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Q
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IV. CORRELATED MODEL

We use a model described in Appendix A to introduce
correlations between bonds. The model leads to correla-
tions between nearest-neighbor bonds at a concentration
x as given in Eqs. (A5) and (A6). The correlation between
other pairs of bonds is zero. This simple short-ranged
correlation allows us to calculate a'(x) explicitly from
(31). The result is

0.04
K
LLI
X

0.02

(c)

a*(x)=a*—16[p(1—p )] (a*/2+ —,
' —pi )/[x(1 —x )],

(35)

0
0 0.2 0.4 0.6 0.8 1.0

where a *=2d /z =—', for the triangular net as given in

(33). The quantity pi comes from a lattice integral over
the nearest-neighbor shell and 16[p(1—p)]3 is just the
nearest-neighbor correlation (A6) where p is determined
by the concentration x. The lattice integral pi also
occurs when studying the bulk modulus in a sample with
isolated sites removed; for the triangular net pz =0.696

FIG. 3. Showing (a) average lengths (d), (d~ ), and (d~),
{b) fluctuations in length, and (c) the energy per bond in units of
K(L& —L„) for the random triangular network with K„=.Kz.
The solid lines are exact results and the symbols represent simu-

lation results. The length of the vertical lines in (a) represents

the width of the 3 and 8 peaks, calculated as the root-mean-

square value as in (b) and obtained from the simulations.
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with composition x is set equal to the total change in en-
ergy of the system when an A bond is replaced by a B
bond. We obtain

Thus we can extract the A and B bond-length Auctua-
tions explicitly to give

(37)
(d„)—(d„) =x(1—x)[1—a*(x)]

(38)

where E is given by (19). The right-hand side of (37) is ob-
tained by removing an A bond at random and replacing
it by a B bond to give a configuration at a slightly larger
x. The factor [1—a '(x)] arises from the effect of the lat-
tice around the bond that is being changed. Thus we are
led to the difference of the A and B fluctuations if we
make a simple change inside the brackets in (37) to re-
place the natural lengths by the average lengths by add-
ing and subtracting an appropriate term. The sum of the
fluctuations can be obtained from the energy (19) directly.

1.0

(d ) —(d ) = —x(1—x)[1—a*(x)]2 2= t)[(1—x )a *(x )]

These results are also compared with the simulations in
Fig. 4. When correlations are absent, the parameter
a'(x) is independent of x and we recover the exact result
(34). The arguments leading to (38) are not exact when
correlations are present because the random replacement
of A bonds by B bonds does not give a proper
configuration at a concentration x+dx. This error ap-
pears to be very small, judged by the agreement between
the simulations and the result (38). A similar line of
reasoning has been used recently in a correlated multilay-
er model for binary alloys in graphite. '

0.8
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G 04
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0.2

0.20

V. EFFECTIVE-MEDIUM THEORY

We develop an effective-medium theory to handle the
case KzXKz, which cannot be solved exactly. The work
in this section follows the general ideas of Feng, Thorpe,
and Garboczi, ' who studied networks with different
spring constants K," but no length mismatch. Recent
work on alloys in layered systems extended this work to
the case where there is length mismatch. ' ' The result
is expressed in terms of an effective spring constant K„
where

0.15— (Q2) (Q)2 K, =K/a* (39)
COx

0.10

0.05

0.08 ((,)

0.06

U
K

0.04

0.02

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Showing (a) average lengths (d ), (d„), and (da ),
(b) fluctuations in length, and (c) the energy in units of
K(L& —L~ ) for the correlated triangular network with
K„=K&. The solid lines are exact results and the symbols
represent simulation results. The length of the vertical lines in
(a) represents the width of the A and B peaks, calculated as the
root-mean-square value as in (b) and obtained from the simula-
tions.

We note that this equation is the standard effective-
medium equation for spring constants and contains no
lengths. This is a direct consequence of the superposition
principle for small displacements. The dynamics are
unaffected by the (small) static distortions. Not only will
the elastic constants be unaffected by the static distor-
tions, but the complete phonon density of states will simi-
larly be unaffected.

The problem is now effectively reduced to just two
springs. ' One of these springs is K, where a can be ei-
ther A or B with probability 1 —x or x, respectively. The
other spring is K,'=K, —K, formed by removing the
spring K which is in parallel. The total energy per site c
for a single impurity is given by

s= —,'K,'(L L, ) + ,'K (L L—)——(41)

where L, is the effective length which, like the effective
spring constant K„ is to be determined self-consistently.
We are considering only a single impurity spring K in

and a* is equivalent to the Watson integral' ' used pre-
viously. The self-consistency condition for the case of in-
terest here with two kinds of bonds A, B can be written as

x(K —Ks )/(K,'+K~ )+(1—x )(K —K„)/(K,'+K„)=0 .

(40)



42 ELASTIC PROPERTIES OF CENTRAL-FORCE NETWORKS. . . 8411

Eq. (41}. We minimize the energy s with respect to L and
obtain the local length L

Either directly, or using Eqs. (7) and (10), we can find
&d„& and (ds &,

L=(K,'L, +K L )/(K,'+K ) . (42) (d„&=xK,K,'Ks/[K(K, '+K„)(K,'+Kg )],
Substituting this back in Eq. (41) gives the energy for a
single impurity

(46)

(ds & =1—(1—x )K,K,'K„/[K(K,'+K„)(K,'+Ks)] .

s= —,'(L, L—) K,'K /(K,'+K ) . (43)
The energy is given by

Because the springs have different lengths, the postfactor
in Eq. (43} comes from adding the two springs in series.
A general energy expression can be written down by sum-
ming over all the different types of impurities which, in
the spirit of the effective-medium theory, are assumed to
be noninteracting. This energy expression is minimized
with respect to L, and expressions derived for the lengths
and the energy. The details are the same as in Ref. 18
[see Eqs. (36) and (39)] and will not be repeated here.

The dimensionless length (d & is given by

s= ,'(K„—Ks)' x(1—x}(Ls L„—) F, ,

where

F, =K,K,'(K„Ks )' /[K(K,'+K„)(K,'+Ks )] .

We note that

Fg/F, =(Ks K„)/—(K„Ks)'

(47)

(4g)

(49)

&d & =((L &
—L'„)/(L L„)—

xKs /( K,'+Ks )

xK~/(K, '+Ks)+(1 —x )K„/(K,'+Kq )
(44)

(d & =x+x(1—x )Fz,

where

(45)

K,K,'(Ks —K„)
K(K,'+K„)(K,'+Ks )

which after some manipulation can be put into the form

gives a useful relation as it is independent of any of the
effective-medium parameters and exact, ' as can be
shown by the Feynman-Hellman theorem (5). Note that
Eqs. (44)—(47) are consistent with the exact general re-
sults (10).

The fluctuations cannot be easily calculated within
effective-medium theory. However, they can be obtained
through the back door, using the Feynman-Hellman
theorem Eq. (5), with p set equal to K„and Ks, respec-
tively. Using the effective medium Eq. (40) and
differentiating (47) with respect to Kz, we find after some
considerable algebra from (11)

x(1—x ) [(K„KsK,)/[K(K,'+K„) (K,'+Kg )] j

g /(1 —g )+[(K K& )(K Ks )]/[—(K,'+—K„)(K,'+K )]s
(50)

and a similar expression for ((ds —(ds & )~ & with A and B interchanged in Eq. (50). Using Eq. (50), the fiuctuations in
d can be found using Eq. (12),

x(1—x)[(KqKsK, )/[K(K,'+Kq )(K,'+Ks)]J /(1 —a*)
(d —d )2

a */(1 —a ')+ [(E—K„)(E Ks )]/[(K,'+K—„)(K,'+Ks )]
(51)

We note that in the limit K~ =K& =K, the exact results

( 18 ) —( 20) are recovered.
In Figs. 5 and 6 we compare the effective-medium re-

sults, shown by dashed lines, with the computer simula-

tions for Kz =2K& and K&=2K~. The overall agree-

ment is excellent, although not rigorously exact. Notice
that the average length (L & is sublinear in Fig. 5 and su-

perlinear in Fig. 6 as required by the exact result (10).
Some of the formalism in the present section can also

be applied to the correlated case if a* is relaced every-
where by a*(x). The interpretation of Eq. (39) must be
modified. Instead of applying a force F to the ends of a
single bond, it is necessary to apply this force to every A-

type bond. To avoid a net pressure on the body, forces
Fx/(1 —x ) mu—st also be applied to the ends of all the

8-type bonds. That is, identical forces are applied to the
complete set of the A bonds and another set to the 8

bonds. A generalized force constant K/a "(x) is obtained
by this procedure, where the conjugate generalized dis-
placement is the mean extension of the A-type bonds. If
the bonds are uncorrelated, the effects of the other bonds
of the same type being stretched cancels out, leading to
Eq. (39). If the bonds are correlated, this is no longer the
case and a' must be replaced by a "(x). Note that when
a single bond is stretched with forces F at either end, the
effective spring constant is the same as in a perfect tri-
angular net, as the order of the static distortion, and this
extra distortion can be interchanged because the system
is linear. These are subtle points that require some
thought. Figures 7 and 8 show similar results to Figs. 5

and 6, but with the correlations between bonds included.
Again the agreement between the effective-medium
theory and the simulations in Figs. 7 and 8 is very good.
We have not been able to develop a satisfactory expres-
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sion for the A and B Auctuations when both correlations
and different spring constants are present. Notice that
(d ) is weakly sensitive to the correlations here, unlike
when E„=E~. Also the lengths (d„) and (ds ) are no
longer linear in the composition x. We also note that the
computed value of Fd /F„ for all the cases where
K„WK~, agrees with the exact result in (49) to within
0.04% or better, thus giving another check on the accu-
racy of the simulations.

In summary, we can state the following qualitative
conclusions.

(a) Vegard's law for the average length (d ) is obtained
if and only if K„=K&. Sublinear or superlinear behavior
is obtained if K~ & K~ or K~ (K~, respectively.

(b) The average lengths (d„) and (dz ) are linear in
the composition x, if and only if K„=K& and there are

no correlations.
(c) The strain energy E is an even function of the com-

position if and only if K~ =K&. The definition of length
that we have used in this paper is the average bond
length, which occurs naturally using our theoretical
framework. It is also the quantity that is measured in ex-
tended x-ray-absorption fine-structure (EXAFS) experi-
ments. However, other definitions of length are possi-
ble which may or may not be equivalent. Each case must
be examined carefully. Another natural definition of
length would be a macroscopic length, which can be ob-
tained from the square root of the total area. In the
present example, this is the sum of the areas of all the lo-
cal triangles of three bonds. If we consider a single equi-
lateral triangle, with sides of length L and area
A =&3L l4, then if the lengths of the three sides are
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FIG. 5. Showing (a) average lengths (d ), (d„), and (ds ),
(b) fluctuations in length, and (c) the energy in units of
K&(L& —L& ) for a random triangular net with K„=2K&. The
dashed lines show results from effective-medium theory and the
symbols represent simulation results. The length of the vertical
lines in (a) represents the width of the A and B peaks, calculated
as the root-mean-square value as in (b) and obtained from the
simulations.

FIG. 6. Showing ia) average lengths (d ), (d„), and (d~ ),
(b) fluctuations in length, and (c) the energy in units of
K„(L~—L„) for a random triangular net with K~=2K~. The
dashed lines show results from effective-medium theory and the
symbols represent simulation results. The length of the vertical
lines in (a) represents the width of the A and B peaks, calculated
as the root-mean-square value as in (b) and obtained from the
simulations.



ELASTIC PROPERTIES OF CENTRAL-FORCE NET%'ORKS. . .

changed by AL, , AL2, and EL3, the change in the area
6 A of the triangle is given to first order by

b, A =(L/1/12)(bL, +bL2+bL3) . (52)

Summing over all triangles, we see that the condition
(hL ) =0, which defines the mean undistorted triangular
lattice discussed in Sec. III, is equivalent to (b, A ) =0.
Thus all macroscopic length averages will be equivalent
to the mean bond length, and the two definitions of
length are the same. The above argument only applies if
the pure system is made up of equilateral triangles in two
dimensions. It does not apply to triangles that are not
equilateral, or to polygons with more than three sides.
For example, the area of a square can be changed while
keeping the lengths of all the sides fixed, so that an equa-
tion like (52) would not apply. When compared with our

simulations, we find that the two definitions of length do
indeed become equivalent as the length mismatch
(Ls L—„)/L„ tends to zero. The implications of these
arguments for three-dimensional structures requires fur-
ther thought. We note that a similar conclusion was
reached in bllayer and multilayer compounds, 18 19 where
the fact that all the displacements were uniaxial led to a
similar equivalence between the average bond length and
the macroscopic sample size.

VI. DISCUSSION

The nature of the disorder effect in the structure of
random alloys can be more completely understood from
the partial probability distribution functions of the
lengths for the 3- and 8-type bonds. The length proba-
bility distributions P(d), P(ds ), and P(d „)are defined by
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and

N

P(d)= —g 5(d —
d;, )

ij =1

moments to be written down

M„=((& —(&„))")=((&—(& ))"),
and it is shown' that

(56)

a
P(d }= g 6(d —d ), a=A B.

ij =1
(54)

so that the two distributions for the lengths of the A- and
B-type bonds are identical, when shifted horizontally and
rescaled vertically. The work in Ref. 19 also allows the

We plot the distribution functions P(d„) and P(d~ ), ob-
tained from the simulation data in Fig. 9. One sees that
both P(d„) and P(ds ) are approximately symmetric
around the average values (d„) and (ds ) in all cases.
A closer examination shows that the distributions are
never exactly symmetric except when the concentration
x =

—,
' and K„=K~. In Fig. 9(a), we have superimposed

Gaussians with the exactly known weights, centers, and
widths. Although the fits are good, especially in the
wings, the deviations are significant. The moment ratio
((hd ) )/((b, d ) ) =2.97+0.01, rather than the value
of 3 that would be obtained for a Gaussian. It may be
useful in practical applications, involving the analysis of
experimental data, to use a Gaussian line shape.

We have examined the random case with E„=I(z
more closely. A moment generating function can be writ-
ten down in a way that closely parallels that used for a
multilayer model of randomly intercalated compounds. '

In fact, all the results there apply also to this case with
suitable redefinitions. The final result is that

P(d„)=(1—x)Q(d„—(d„)),
P(d )= Q(&, —&d )),

Mz =x(1—x )Cz,

M3 =x(1—x }(2x—1)C3,

M~ —3M2 =x (1—x )[ I —6x(1 —x )]C4 .

(57)

The only difference here from the work in Ref. 19 is in
the constants C„. We find that C2 =—', in agreement with

Eq. (34), with a'(x ) =—,'. The quantities C„ for n & 3 can
be written down as multidimensional integrals in recipro-
cal space. We have not pursued this but rather focused
our attention on the concentration dependence x in the
moments (57). Note that the C„are pure numbers. We
have numerically obtained the moments and find that
they are well fitted with the functional forms in (57) with
C =0.012+0.001 and C4 =0.0010+0.0006. These num-
bers, especially C4, are quite noisy and could be improved
if more samples were averaged over. This intimate rela-
tion (55) between the A and B length distributions is not
present in the other two cases examined in Fig. 9, and so
it is killed when either K„WK~ or correlations are
present, as shown in Figs. 9(b) and 9(c). A careful exam-
ination of these figures shows that the B distribution is
wider in Fig. 9(b) and narrower in Fig. 9(c) than the A

component. This is most easily established by computing
the second moments.

The elastic moduli can also be computed for these net-
works by adding an appropriate incremental strain. '

Care must be taken as the elastic moduli are proportional
to the difference between two imprecisely known strain
energies. Nevertheless, we were able to obtain good re-
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suits as shown in Fig. 10 for the random case. The elastic
moduli in two dimensions are directly proportional to the
effective spring constant E. We take the elastic moduli to
be proportional to K, as determined by Eq. (40). Of
course when E~ =E&=I(, the elastic moduli are con-
stant and come from the exact solution. In Fig. 10 the
simulation results are compared with the exact results,
shown as solid lines, and the effective-medium results
shown as dashed lines. We have obtained simulation re-
sults for the correlated system that are fit equally as well
as in Fig. 10, if the appropriate a'(x) is used in determin-
ing E using Eq. (40). The overall agreement is excellent
in all cases, showing that the superposition principle for
displacements is indeed valid for both the random and
correlated cases. The elastic moduli do not depend upon
the length mismatch and are the same as for a similar sys-
tem with E„and Ez, but with all bond lengths equal.

We have examined the effect of increasing the length
difference Lz —L„. As long as the harmonic approxima-
tion is valid, we expect the results for the various lengths,
in the scaled variables d, to be unchanged. We have test-
ed this for the case when the spring constants are equal
and find that the harmonic approximation is valid up to
(L~o L„)/L—„=0.5, when "pleating", as shown in Fig.
11, first occurs. This happens catastrophically and is
defined by nearest-neighbor bonds crossing each other.
This can occur in these models because there is no short-
ranged repulsive force between sites. The transition to
the pleated state can be thought of as a tunneling between
two potential minima. As the length difference is in-
creased, the pleated state is stabilized. Notice that these

~
s ~

FIG. 11. Showing a piece of a pleated triangular network.
The short bonds are shown as dashes and the long bonds by
solid lines. The sample shown is the same as in Fig. 2 and has
equal numbers of short and long bonds. However, the natural
length of the long bonds is now double the natural length of the
short bonds. The two spring constants K„and K& are equal.

networks are constrained to remain in two dimensions. If
motion were to be allowed in the third dimension, "crum-
pling, " rather than pleating, would occur. The most re-
markable result is that the harmonic approximation ap-
pears to be valid, to within 3%, for all quantities comput-
ed (energy, mean lengths, and fluctuations), right up to
pleating, even though rather considerable length
differences are involved.

Our conclusions are probably more general than just
the present model and may be of use in gaining some
quick insights into experiments. For example, Mikkelsen
and Boyce have made detailed high-quality measure-
ments on semiconducting alloys like Ga, ,In As. From
analyzing the x-ray diffraction results they find Vegard's
law is closely obeyed for the mean bond length. From
EXAFS experiments, they also find that the GaAs and
A1As mean bond lengths are linear in the composition x.
Although the substitution of sites, rather than bonds, is
more complex, we are tempted to interpret their experi-
ments as evidence that the spring constants of GaAs and
InAs are the same and that the solid solution is complete-
ly random. Of course the actual situation is more com-
plex. It is not possible to describe GaAs and InAs with a
single spring constant.
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FIG. 10. Showing the bulk and shear moduli for randomly
distributed bonds. The open symbols are from computer simu-

lations, the solid lines are exact, and the dashed lines are from
effective-medium theory. The squares are for K„=K&=1, the
circles are for K„=2K& =2, and the triangles are for
K& =2K„=2. For each of the three cases, the shear modulus is
less than the bulk modulus. For a perfect triangular net, the
shear modulus is &3K/4 and the bulk modulus is &3K/2, with
K =K„or K& as appropriate.

APPENDIX A

In this appendix we describe how correlations are in-
troduced between the bonds. Most of the ways of doing
this lead to situations that do not permit an analytic
determination of a '(x), for which all the pair-correlation
functions must be known. The most obvious way to
proceed would have been to use an Ising model. How-
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ever, the pair-correlation functions are only known local-

ly and along certain principal directions for the triangu-
lar network. Also a sum over all these pair-correlation
functions would have had to be performed numerically
out to all distances, in order to calculate a*(x). All
statistical-mechanics models suffer from this same objec-
tion. In the work on correlated multilayers, ' correla-
tions were included in the direction perpendicular to the
layers by using a one-dimensional Ising model for which
all the two- and three-spin correlation functions are
known. This form is suSciently simple that the sums
necessary for a '(x ) can be done in closed form.

Faced with this situation, and wishing to investigate
the effects of correlations, we modified an approach first
suggested by Kirkpatrick, and later used for an elastic
network problem by Garboczi. A random number r, is
associated with each site i, and 0&r, &1. The nearest-
neighbor bond variables, o; =+1, are then chosen ac-
cording to some algorithm involving only the two ran-
dom variables r, and r, associated with the sites at the
ends of that bond. Here 0.; = —1 signifies an A-type
bond that occurs with probability 1 —x, and 0.; = —1

signifies a B-type bond that occurs with probability x.
This leads to positive correlations (clustering) between
nearest-neighbor bonds, and no correlations between
more distant bonds. This situation is somewhat counter-
intuitive but nevertheless correct.

In order to reproduce the single-defect behavior
correctly, we use the following algorithm:

if r, &p and r &p then 0, =1,
if r; )p and r )p then cr, = —1,

otherwise 0.; =1 with probability c .

(A 1)

Here c is a free parameter and p is directly related to the
concentration x. By dividing up the (r;, rJ) space into
sectors, it is easy to show that

(cr; & =2x —1=(2p —1)+2p(1—p )(2c —1) . (A2)

The pair correlations between nearest-neighbor bonds
can be found by dividing the expanded space (r;, rJ, rk)
into sectors. We find that
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FIG. 12. Showing the correlation function ( cr „o, I)—(o „)(o,k ) as a function of the concentration x for nearest-
neighbor bonds, from the model described in Appendix A.

and are symmetric under the interchange x~1—x as
shown in Fig. 12. Note that the above formalism applies
to any network in any dimension. In the triangular net,
each bond is correlated with the 10 surrounding bonds
that share a common vertex. For small x or 1 —x, (A6)
becomes

(o.„o,„&—(o,, &(o,„&=2[4x(1—x)/3] ~ . (A7)

Although this correlation does vanish more rapidly than
x to reproduce the single-defect limit, it unfortunately
does not vanish as x as the correct behavior in any
reasonable structural model should. This is an inherent
deficiency in the model that cannot be corrected by any
simple modification of the algorithm (Al). Nevertheless,
we have found the use of this model to be extremely in-
structive. At x =

—,', the pair correlations (A6) are max-

imum and given by

(A8)

This corresponds to an attraction between like bonds. In
a bipartite lattice it would be possible to change the sign
of these correlations by introducing a sign change on
every other bond. This is not possible in the triangular
net because of the presence of triangles.

(A3)

x=p (3—2p), (A4)

and p is seen to be a parameter that is determined by the
concentration x. Note that (A4) can be rewritten

x(1—x ) = [3+4p(1—p ) ][p(1—p )] (A5)

which shows that p(1 —p ) is a function of x(1—x ). The
pair correlations (A3) become

;J, ) —(;,)( J„&=16[p(1—p)]' (A6)

In order that the pair correlations vanish more rapidly
than x at small x, we choose c=p. The original algo-
rithm of Kirkpatrick does not have this desirable
feature. Hence we have from (A2),

APPENDIX B

We give details of the parameters used in the computer
simulations. We have used the relaxation method. ' All
calculations were carried out on triangular networks with
periodic boundary conditions and with L„=1.0 and
L&=1.01, except in Sec. VI where the effect of larger
length differences was investigated. For K&WKs, the
networks were 30 by 34 bond lengths in size, while for
K~ =K~ we used larger 40 by 46 networks to better test
the exact theory. Averages were taken over ten indepen-
dent configurations, except for the length distribution
data when K~ =K& at x =0.3 in Fig. 9 where 30 in-
dependent configurations were used. These same param-
eters were used for both the random and the correlated
cases. Approximately 75 h of CYBER 205 time was con-
sumed for this project.
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