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Dynamics and phase transitions in solid ortho and para hydrogen
and deuterium from an ab initio potential
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Starting from an ab initio H&-H2 potential that contains anisotropic short-range and dispersion
terms, in addition to the quadrupole-quadrupole interactions, we have performed lattice-dynamics
calculations for the orientationally disordered hexagonal (hcp) and ordered cubic (Pa3) phases of
solid (ortho and para) hydrogen and deuterium. The method used is the time-dependent Hartree
(TDH) formalism, with the explicit inclusion of translation-rotation coupling. By an anharmonic
expansion of the potential through sixth order in the molecular displacements and the use of wave

functions for the translational vibrations that are suSciently flexible to adapt to this strong anhar-

monicity, we could avoid the usual (effective) Jastrow correction to the potential. The calculated
phonon and roton or libron frequencies are in fairly good agreement with infrared, Rarnan, and
neutron-scattering data, significantly better in general than the results from earlier (separate) pho-
non calculations and roton or libron calculations that have used empirical potentials. The transi-
tion pressure for ordering para-H2 or ortho-D2 appears to be dominated by the classical
quadrupole-quadrupole interactions. It is significantly affected by the increase of the rotational con-
stant and, especially, by the reduction of the quadrupole moment, which follows from a shortening
of the intramolecular bond. Translation-rotation coupling yields the observed mixing of phonons
and rotons at high pressure, but its effect on the transition pressure is minute. The remaining
discrepancy between the calculated and observed transition pressures must be caused by three-body
interactions and by correlations between the molecular motions that are beyond the TDH approxi-
mation.

I. INTRODUCTION

Although solid hydrogen is the simplest crystal from a
chemical point of view, it shows many phenomena that
make it interesting for experimental investigations and
theoretical studies. ' At extremely high pressures, es-
tirnated around 300 GPa, it will probably undergo a
transition from the molecular phase to an atomic and,
possibly, metallic phase. Such pressures are becoming
available to experimentalists in the near future. ' But,
even in the molecular phases, which are studied in this
paper, a number of problems still remain to be solved.
There is a large difference between the phase diagrams of
para-hydrogen (p-H2) and ortho-deuterium (o-D2) on the
one hand, and ortho-hydrogen (o-H2) and para-
deuterium (p-D2) on the other. Because of the weakly
anisotropic interactions and the large rotational constant,
the free rotor states of the molecules practically do not
mix at normal pressure. In p-H2 and o-D2 the ground
state has 1 =0 and the molecules have no preferred orien-
tation. Only at very high pressures the admixture of
higher-1 states caused by the anisotropic interactions is
suSciently large to induce a transition to an orientation-
ally ordered state. In o-D2 this transition has been found
at a pressure of 27.8 GPa, while in p-H2 it has still not
been observed for pressures up to 54 GPa. In o-H2 and
p-D2 the rotational ground state has 1=1 and the mole-
cules crystallize in an orientationally ordered Pa3 struc-
ture. Because the splitting between the three states with

l = I is small, there is an order-to-disorder transition al-
ready at very low temperature. The transition tempera-
ture found in o-H2 is 2.8 K and in p-D2 3.8 K.

It will be clear that the standard harmonic lattice dy-
namics method is not at all applicable to the rotations in
solid Hz and Dz. Also the translational vibrations are
strongly anharmonic because of the small mass of the
molecules. Previous calculations on the lattice dynamics
of p-H2 and o-D2 always treated the translational and ro-
tational vibrations separately. Klein and Koehler used
the self-consistent-phonon (SCP) method to calculate the
translational phonon frequencies of hydrogen and deu-
terium from an isotropic Lennard-Jones potential, while
Mertens and Biem used the random-phase approximation
(RPA). ' In both calculations the intermolecular poten-
tial was modified by a Jastrow correction to account for
the short-range correlation effects.

In the numerous calculations on the high-pressure or-
dering in p-H2 and o-Dz only the rotational motions of
the molecules are considered. The first attempts to pre-
dict a critical density for the phase transition were made
by Felsteiner and Friedman" and by England, Raich, and
Etters. ' These calculations used the mean-field approxi-
mation and gave densities that are considerably too small.
Lagendijk and Silvera included the effect of orientational
correlations by calculating the roton spectrum of p-H2
and o-D2 with the use of an electrostatic quadrupole-
quadrupole potential. ' Actually their roton Hamiltoni-
an is identical to the RPA Hamiltonian, and it has been
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shown' ' that the occurrence of soft rotons (i.e., zero or
imaginary RPA eigenfrequencies) indicates the lack of
stability of the mean-field solutions. They found that at
the phase transition one roton in the spectrum becomes
soft in a specific point of the Brillouin zone. But the cal-
culated critical density still is too low.

Aviram et al. ' ' used a variational Monte Carlo
method to find the orientational ground state of the crys-
tal. By the introduction of a Jastrow factor in the trial
wave function the critical density in 0-D2 could be repro-
duced very well. ' However, Sprik and Klein' point out
that the Jastrow function used by Aviram et al. does not
possess the correct symmetry and so these results must be
treated with caution. Sprik and Klein conclude that a
correct variational rotational wave function with Jastrow
factor, in combination with an electrostatic quadrupole-
quadrupole potential plus anisotropic exchange repul-
sions, cannot account for the observed critical density in
o-D2. They suggest that translation-rotation coupling
and the decrease of the intramolecular bond length might
play an important role. These effects are investigated in
this paper. Another (variational and diffusion) quantum
Monte Carlo study of the ground state in p-H2 has been
made by Ceperley and Alder, who treat the electrons
and the nuclei simultaneously. They estimate that orien-
tational ordering in p-H2 will occur at pressures around
100 GPa. Although they examined a number of crystal
structures, the molecular hcp lattice was not included.

Theoretical studies on 0-H2 and p-Dz are less
numerous. They mostly concern pure translational pho-
nons and pure rotational motions (librons), just as the
studies on p-H2 and 0-D2. Translation-rotation coupling
is only included in the very complete RPA calculations
on O-H2 and p-D2 by Mertens and Biem, ' who have used
an empirical anisotropic intermolecular potential.

In the lattice dynamics calculations presented in this
paper we have used an ab initio potential of Schafer and
Meyer, improved by Schafer and Kohler through a
multiproperty analysis. In addition to the quadrupole-
quadrupole interactions, this potential contains aniso-
tropic exchange and dispersion terms and it is represent-
ed by a spherical expansion. The potential anisotropy is
fully included in the lattice dynamics calculations, the
anharmonic expansion of the potential in the translation-
al displacements is truncated only after the sixth power.
We have first performed mean-field calculations on the
translational vibrations and rotations separately and next
we have introduced the correlation between the mean-
field excitations as well as the effects of translation-
rotation coupling by the time-dependent Hartree (TDH)
method. At T =0 K this method is identica1 to the RPA

method but, in contrast with the latter, it remains valid at
higher temperature, when the thermal energy becomes
comparable with the excitation energies of the system.
By the TDH method we could calculate the phonon and
roton dispersion curves for p-H2 and o-D2 and the pho-
non and libron dispersion curves for 0-H2 and p-D2. Also
the influence of the roton-phonon coupling on the high-
pressure phase transition in p-Hz and o-D2 was studied,
as we11 as the stability of the orientationally ordered
(Pa3) and disordered fcc and hcp phases in o-Hz and p-
D2.

II. THEORY

We consider a crystal that consists of molecules with
their centers of mass at the positions r =Rp+ Up where
R are the equilibrium positions and u the displace-
ments of the molecules p. The orientations of the mole-
cules are described by a set of polar angles co . The crys-
tal Hamiltonian is then given by

H=QT(u )+QL(ro )+—z'g g 4 (u~, co,u .,co~ ) .
P P P P+P

It contains the kinetic-energy terms for the translational
and rotational motions of the molecules and the inter-
molecular potential.

The translational and rotational mean-field Hamiltoni-
ans are given by

H (u )=T(u )+ g (4 (u, co,u~, co~ )) ' ' ',
P &P

(2a)

Hz(co~)=L(co )+ g (4 (u, ro, u~, co~ )) '
P +P

(2b)

K
where (X) ~ means the thermodynamic average of X
over the eigenstates of H with E = T or L. From these
equations it follows that the translational and rotational
Hamiltonians are coupled and we have to solve them in
an iterative way. The translational Hamiltonians are di-
agonalized in a basis of three-dimensional spherical
harmonic-oscillator functions. The basis for the molec-
ular rotations consists of tesseral harmonics (real com-
binations of spherical harmonics).

The intermolecular potential is written in the form of a
spherical expansion

l, l2 13

I ') =&&I (3)

Here r .=(R~ +u )
—(R +u ) and r is the unit vector along r~, . The functions C' (co) are Racah spherical har-

monics, the expression in large parentheses is a 3-j symbol ' and the summations run over l=Il, , lz, l, ) and
m= Im„mz, m, I. The expansion coefficients $&(r~p ) reflect explicitly the anisotropy of the intermolecular potential.
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In order to make this potential explicitly dependent also on the molecular displacements u and u ~ Briels er al. madep p
a Taylor expansion of the potential in both these displacements. Here, we derive the same expansion in a form that is
amenable to much faster calculation. First we expand the part of the potential that depends on the displacements as a
Taylor series in u =up Up,

(upp" V')

$((re. )C '
(rpp )=g, Pi(Rp )C '

(Rpp ) .
o a! (4)

We can evaluate this expression by means of the gradient formula in spherical tensor form

upp" Vitii(Rpp )C '
(Rp .)=u„p.+Hi k (Rp )Pi(Rpp. )( —1) ' g „C„'(upp }C„'(R ),

k
n n m3

1 1 2

where the oPerator Ai k (Rpp. ) is given by
3 1

I3
~i k (Rpp'} ( 1} bk, l —I

13 (213 —1)

2lq+ I

!3+1
+

dR
p Rpp

(13+1)(213+3 )

ki, l3+1
3

d
dR

(6)

Using this relation in Eq. (4) gives

k2
pi(rpp )C '

(rpp )=g g 'Wk k (R, ) g ( —1}
I 2

n, n2 m3

The coefficients 'W„' „' (R ) can be calculated with the following recursion relation:

j, 1 ki k2 k, 13
'Wk k (R )=(2ki+1)( —1) ' (R ) W' "(R )

I 2 pp Q Q Q J j l J2k2 pp J) J2 pp
J J 1 2

(8)

with

'Wk", k, (Rpp ) =&k, ,o&k, , i, &213+14(Rpp )

and the expression in curly braces being a 6-j coeScient.
Now we can split (u .) C„' (u .) in factors dependent on the molecular displacements u„and up (Ref. 28),

al min(k&+El, a2)

Qi 0~] 0 ~2 Ikl A~l P] P2

where a2 is given by a2= a —
a& and the coefBcients are

(a+k +1)!!(a—k )!!(2A, +1)(2ii. +1) ki ~i )i2

(a i+ A, , + 1)!!(a,—)i, , )!!(a2+A2+ 1)!!(a2—A2 )!!

Introducing this into Eq. (3) and Eq. (7), the intermolecular potential reads

4p (up, cop, u ., co )=g g(up) 'C„'(up)C ' (cop)X„„(Rpp )(up ) 'C„'(up )C '
(asap ),

2

where A stands for the set of indices I a, k,,p, I, m I and XA z is given by
1 2

k, A. , A2

n) p) p2

(10)

(12)

I, l~ 13 k, k~
X«(R„)=g g 'W„„' ' (R„,)gg( —1) '

13m3 . klk2 n& n2

I 3 k 2(R )g 1 2 I 1

1 ~1P 1 2~202
(13}

This expansion is considerably simpler than that given in Ref. 26 because there is only one recurrence relation needed

for the coefficients Wk k (Rpp, ), instead of two.
1 2

Knowing the single-molecule eigenstates for the translations and the rotations, we can calculate the collective excita-

tion energies of the crystal by using the time-dependent Hartree (TDH) method. This model is described in Refs. 26,

29, and 30; at zero temperature it is equivalent to the random-phase approximation. From the TDH method it follows

that the lattice frequencies are the eigenvalues of the TDH matrix.
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L P—4(q)
M( P4(q)

—P4(q)
—y+P@(q) (14)

The diagonal matrix g contains the mean-field excitation energies

(a) (b)
Xa, b, i, K;a', b', i', K' ~aa'~bb'fii'~KK'(Si, K ei, K ) &

(15)

where c, 'x is the mean-field energy of excitation level i2 of a molecule of sublattice i; K( = T or I.) labels the type of exci-
tation (translational or rotational). We choose s'i) s' ', so elements of y are always positive. The matrix P is also diag-
anal and contains the population differences of the mean-field states

Pa, b, i, K;a', b', i', K' fiaa'bib'fbi'fiKK'( i, K i, K ) ~

(a) (b)

with

exp( 13s,
'a—

xi ).
i, k

+exp( —Pe I'z' )

(16)

and P=(kT) . The matrix 4(q) describes the interactions between the mean-field states of different molecules

, b, ', ir; ', b', ',Q'(q) =gexP(iq R.)& 1(';,ir0' x"'I ( C'[p;~
~

'l i g, 'll

+~"& x XX&0';iaaf', x', I@'(o, )( -, ')&
' ' ' 'l0', '~4';g'&

C

(18)

III. COMPUTATIONAL ASPECTS

The angular and distance dependence of the inter-
molecular potential is given by Eq. (3), with the expan-
sion coefficients

Pi(R)=C&"exp( a&R biR )+C—i ""R-
+c R-+c R- +cI~ R- ~ . (19)

The first term represents the short-range interactions that
decay exponentially, the second term the multipole-
multipole interactions, and the last three terms the
dispersion interactions. In each of the terms we include
all anisotropic contributions up to l &, Iz =2 inclusive; the
only relevant multipole term is the quadrupole-
quadrupole ( I „l2,13 =2,2, 4) interaction. Schafer and
Kohler have tabulated every term in the spherical ex-
pansion on a grid of R points. The short-range parame-

where PI+' is the mean-field state corresponding with
c,

' z, q is the wave vector, n labels the unit cells, and E, is
the complement of K. At the mean-field level the transla-
tions and rotations were treated separately, but from Eq.
(18) it is clear that in the TDH matrix the rotations and
translations are coupled by matrix elements with K%K'.

If we calculate the lattice frequencies in this way the
frequencies of the acoustical phonons in the I point,
which correspond with uniform translations of the lat-
tice, are not exactly equal to zero. The correct transla-
tional invariance can be imposed on the TDH matrix.
This implies that we have to recalculate the translational
mean-field energies. If the difference between the recal-
culated and the original mean-field energies is small the
calculation is consistent.
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FIG. 1. Single-molecule potential in p-H2 {normal pressure
hcp phase) for displacements (u ) along the crystallographic a
direction. The dashed lines are Taylor expansions of this poten-
tial including all powers (u„) for a ~a,„. The arrows indicate
the equilibrium positions of the nearest neighbors.

ters in Eq. (19) were obtained by fitting exponential func-
tions to the short-range part of this intermolecular poten-
tial; the multipole and dispersion coefBcients are explicit-
ly given in Ref. 22.

Because of the relative weakness of the anisotropic in-

teractions in the crystal a small basis for the calculation
of the rotational mean-field states was sufficient. For p-

H2 and o-Dz we included tesseral harmonics up to
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TABLE I. Nearest-neighbor distance, lattice free energy, and root-mean-square displacement of the
molecules in p-H2 and o-D2 at normal pressure.

Calculated ( T =0 K}
Experiment (T=5 K)

R„„{nm)

0.3887
0.3789'

A (kJ/mol}

—0.56
—0 75'

(u')' ' (nm)

0.059
0.068

o-D&

'Reference 2.
Reference 33.

'Reference 32.

Calculated (T=O K)
Experiment (T=5 K}

0.3680
0.3605'

—0.99
—1.10'

0.045
0.050'

l,„=2and for 0-H2 and p-D2 up to l,„=3. Because of
the large anharmonicity in the translational motions the
number of basis functions in the calculation of the
translational states was much larger. Oscillator functions
up to n,„=4were taken into account, which results in a
basis of 35 functions. In these spherical harmonic oscilla-
tor functions there is a scaling parameter A which is used
to optimize the basis. In case of a harmonic Hamiltoni-
an we should use 3 =(Mcolfi)', with M being the
molecular mass and m the harmonic-oscillator frequency.
For the anharmonic Hamiltonian we chose

with c.'"—c.' ' being the first translational mean-field exci-
tation energy.

In the calculations at normal pressure the maximum
range of the intermolecular potential was set at 8.0 A; in
the hcp structure this corresponds with a lattice sum over
six shells (56 molecules), in the fcc structure with four
shells (54 molecules). For the higher pressures these lat-
tice sums were extended to a maximum of 86 molecules.

It is well known that the potential wells for the mole-
cules in solid hydrogen and deuterium are far from har-
monic. So if we want a good representation of the poten-
tial as a power series in the molecular displacements we
have to go beyond quadratic terms. In Fig. 1 the poten-

tial energy is given for a hydrogen molecule in the hcp
lattice as a function of the displacement, while all other
molecules were pinned to their equilibrium positions.
From this figure it is clear that the expansion of the po-
tential should not be truncated before the sixth-order
terms. It is also made obvious why the harmonic approx-
imation (a,„=2)fails for solid hydrogen. If the transla-
tional wave function of the molecule consists of a single
Gaussian, as assumed in the self-consistent phonon
method and in the RPA method of Mertens and Biem, '

a Jastrow correlation factor had to be introduced to cut
off the tail of this Gaussian. ' Thus, the overlap of the
wave functions of neighboring molecules is kept within
reasonable limits. In our case, the translational wave
functions are linear combinations of (up to) 35
harmonic-oscillator functions in which the tails can be
canceled out. The tails of the resulting wave functions
are indeed much smaller and thus a Jastrow function is
not needed.

%e have optimized the crystal structure by minimizing
the free energy at the mean-field level. In Table I the
nearest-neighbor distance, the lattice energy and the root
mean square of the translational displacements are given
at the optimum structure for the hcp lattices of p-H2 and
0-Dz. In both cases the optimized nearest-neighbor dis-
tance is somewhat too large and the root mean square of
the translations is slightly too small. This is caused by
the mean-field approximation. In the calculations of the

TABLE II. Phonon frequencies (in cm ') in the hcp phases at normal pressure.

Experiment
{T=42 and 5 K) This work

Calculated (T=O K)
SCP (Ref. 9) RPA (Ref. 10)

p-H2 E
B,g

37.8'
81.9d

45.4
96.8

40.5, 35.7'
1183 b 875c

48 4
110.5

o-D, 38.3'
81.6

39.0
86.1

38.2, 33.7'
108.3,b 80.4'

45.2
97.8

'Reference 32.
From the displacement-displacement correlation function (Aq ).

'Eigenvalues of the dynamical matrix (&ok ).
Reference 33.
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TABLE III. Roton frequencies (in cm ') in the hcp phases at normal pressure.

E

A ig
A l„

This work
(T=D K)

346.3
352.7
354.8
356.7
356.8
365.6

p-H2
Experiment (Ref. 35)

(T=2 K)

351.8
353.8

355.8

This work
(T=D K)

168.3
176.7
179.6
182.0
182.3
193.4

0-D,
Experiment (Ref. 35)

(T=2 K}

176.8
179.4

182.0

lattice frequencies we have used the optimized lattice pa-
rameters given in Table I. For the rotational constant of
hydrogen we have taken 8 =0.7065 kJ/mol =59.06
cm ' and for deuterium 8 =0.3570 kJ/mol =29.83
cm

IV. RESULTS

A. p-82 and o-D2

At zero temperature and normal pressure p-Hz and o-

D2 crystallize in the hcp structure (space group D6„}.
The rotational states of the molecules are free rotor states
with even / values. Because of the large rotational con-
stants of H2 and Dz the excitation energy (1=0~1=2)
for the rotational states is very large (=360 and 180
cm '}. Therefore, the coupling between the rotons and
phonons is negligible at normal pressures.

In Table II the calculated optical phonon frequencies
are compared with the experimental values ' and the
values calculated earlier by Klein and Koehler and by
Mertens and Biem. ' In both these earlier calculations a
Jastrow function was used to account for the short-range

correlation. In agreement with experiment it is
found that the phonon frequencies in p-H2 and 0-D2 are
almost the same, in spite of the mass difference. This in-
dicates that the effective potential in H2 is softer than in

D2, due to the averaging over the zero-point motions and
the resulting extension of the lattice. Klein and Koehler
have obtained lattice frequencies in two different
manners: from the poles of the displacement-
displacement correlation function (Qk) and from the ei-
genvalues of the dynamical matrix (cok }. It is generally
believed ' that in self-consistent phonon calculations
with the use of a Jastrow function the values Qk are more
realistic. Klein and Koehler find, however, that their co„
values agree considerably better with experiment. Table
II shows that our calculated phonon frequencies are not
as close to experiment as the cok values of Klein and
Koehler, but are substantially better than their Qk
values, and are also much better than the frequencies cal-
culated by Mertens and Biem. In Table III our calculat-
ed roton frequencies are compared with the roton fre-
quencies measured by Bhatnagar et al. in Raman ex-
periments. The agreement is perfect.

In Fig. 2 the calculated phonon dispersion curves for

200
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190

o
C
Ol

40

o 180

C0
C0

20

C0
o 170

0
F

160

FIG. 2. Phonon dispersion curves for o-D2 (normal pressure
hcp phase) calculated at T =0 K. The dots are neutron scatter-
ing data (Refs. 33 and 34) at T =4.2 and 5 K.

FIG. 3. Roton dispersion curves for o-D2 (normal pressure
hcp phase), calculated at T =0 K. The three dots at the I point
are Raman results (Ref. 35) at T =2 K.
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FIG. 4. p- V relation of p-Hz (hcp phase) calculated ab initio,
Eq. (20), and from (semi) empirical equations of state ( T =0 K).

FIG. 6. Roton dispersion curves for o-D2 (hcp phase) calcu-
lated at the transition pressure. Note the occurrence of a soft
roton at the M point.

o-D2 are compared with neutron-scattering data from
Nielsen and Mgller. ' The correspondence of the cal-
culated curves with the experimental ones is very good
and only for the higher frequencies the calculated curves
are slightly too high. The roton dispersion curves for o-

D2 are plotted in Fig. 3.
The phonon and roton dispersion curves for p-Hz

closely resemble those of o-D2 and are not given here.
The roton frequencies are twice as high as for o-D2, be-
cause of the factor of 2 in the rotational constants. For

500

the phonon frequencies of p-H2 the agreement with ex-
periment is somewhat less good than for o-D2, the calcu-
lated frequencies are about 15% too high. Still, this is
considerably better than the p-H2 frequencies computed
by Mertens and Biem, which were about 30% too high.

In order to predict the high-pressure phase transition
in p-H2 and to reproduce the observed transition pressure
for o-D2 we have calculated the lattice frequencies for
different lattice constants. The pressure for a certain lat-
tice constant was calculated from the Helmholtz free en-
ergy A at the mean-field level with the we11-known rela-
tion

450

400

BA
BV

(20)

350 =
E

300—
U

250—
Q

200

150

100

50

0 I I I I I I I I I I I I I I i I

1.0 2.0 3.0 4.0
v./v

I

I

I

I

I

I

I

I

I

I I

5.0 6.0

FIG. 5. Volume dependence of the Raman-active phonon
and roton frequencies in p-H2 (hcp phase) as calculated. The
corresponding experimental curves are given in Fig. 1 of Ref. 7.
The dashed line indicates the calculated transition volume and
Vo is the molar volume at zero pressure.

Thus, we have obtained the p-V curve completely ab ini-
tio. In Fig. 4 this p- V curve is compared with experimen-
tal and semiempirical equations of state. This figure
shows that our equation of state yields too high pressures,
which is probably due to the failure of the mean-field
model. In the following discussion we use the ab initio
equation of state, as well as an experimental one, to ob-
tain the pressure belonging to the calculated molar
volumes.

In Raman experiments Silvera and Wijngaarden '

measured the phonon and roton frequencies of p-H2 and
o-Dz as a function of the pressure. In Fig. 5 we present
our calculated Raman frequencies as a function of the
molar volume for p-H2. The experimental results are
given in Fig. 1 of Ref. 7. The correspondence is very
good; the molar volume at which the avoided crossing be-
tween the roton and the phonon takes place is exactly the
same as found in the experiment. In Fig. 1 of Ref. 7 we
observe that all three roton frequencies slightly increase
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TABLE IV. Volume and pressure of the orientational ordering transition in p-H2 and o-D2.

Model'
V,

(cm /mol)

Calculated

pr
(GPa)

pr
(Gpa)

Experiment (Ref. 7)

pi
(GPa)

p-H2 I
II
III
IV

4.35
4.44
4.26
3.98

60
64
76
99

42
39
44
55 &54

o-D2 I
II
III
IV

6.34
6.34
6.12
5.78

15
17
20
25

12
12
13
16 27.8

Model I: including rotons only. Model II: including rotons, phonons, and rotation-translation cou-
pling. Model III: as II, corrected for H, bond-length shortening, effect on the rotational constant 8
only. Model IV: as III, effect on the rotational constant B and on the quadrupole moment Q.
Obtained from V, via ab initio equation of state, Eq. (20).
Obtained from V, via empirical equation of state (Ref. 36).

when the pressure is raised. This is probably due to the
shortening of the intramolecular bond length, which
leads to an increase of the rotational constant. In our
calculations we have not included this effect so far, so the
calculated roton frequencies do not show the overall raise
with increasing pressure. We return to this point in the
discussion of the phase transition pressure.

In order to calculate the volume at which the phase
transition takes place we can compare the mean-field free
energies of the disordered (hcp) phase and the ordered
(Pa3) phase. Another way of observing a phase transi-
tion is by looking for the occurrence of soft lattice modes,
throughout the Brillouin zone. It proves to be dificult to
predict the transition volume by comparing the free ener-
gies, because of the extremely small differences in free en-

ergy between the two phases. The transition volume is
therefore calculated by looking for a soft mode. In Fig. 6
the roton dispersion curves of 0-D2 are given at the tran-
sition volume V, =6.34 cm /mol. Only the rotational ex-
citations of the molecules were considered in this calcula-
tion. The figure shows that at the M point in the Bril-
louin zone a roton becomes soft, which indicates that

there is a phase transition involving the orientations of
the molecules.

The order parameter ( Co ' ), which is a measure for
the degree of localization of the molecules, shows an
abrupt change at this phase transition. In the hcp phase,
where the order parameter is defined as (C~~') with

respect to the crystallographic c axis, the molecules are
orientationally delocalized and the order parameter is
very small ( = 5 X 10 ). In agreement with experi-
ment, ' it is not equal to zero, however. So, the ground
state of the molecules in the disordered phase has nearly
I =0, but there is very small admixture of the state with
I, m =2,0. In the high-pressure fcc phase (Co ') is
defined with respect to the [111] axis. Just above the
phase transition it is equal to 0.3 and with increasing
pressure there is a further rise of this order parameter.

We have also calculated the transition volume with the
inclusion of both rotations and translations. Again, we
find a soft roton at the M point in the Brillouin zone, but
it proved that the rotation-translation coupling has little
inhuence on the transition volume. In Table IV we have
given the calculated transition volumes for both p-H2 and

TABLE V. Phonon frequencies (in cm ') in the Pa 3 phases at normal pressure.

Experiment (Ref. 40)
(T=1.3 K)

Calculation (T=0 K)
This work RPA (Ref. 10)

o-H2 T.

T.

62.2

80.0
93.0

67.9
68.0
70.1

97.0

78.9
79.1

82.9
115.4

p-Dq T.
E„
A„
T.

57.4

74.5
85

59.5
59.7
61.3
86.1

70.3
70.5
73.7

103.2
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TABLE VI. Libron frequencies (in cm ') in the Pa 3 phases at normal pressure.

Experiment (Ref. 41)
(T=1.16 K)

Calculated {T=O K)
This work RPA (Ref. 10)

o-H2 Eg
Tg

Tg

6.5
8.2

11.3

7.7
10.3
16.2

9.3
12.5
21.0

p-02 Eg
Tg

9.0
11.2
15.4

10.7
14.1

21.9

12.5
16.9
27.8

5
RNN B (21)

Here, Q is the molecular quadrupole moment and 8 is the
rotational constant. It is justified to use this relation be-

o-D2 when calculated with only rotational excitations and
with both rotational and translational excitations. The
pressures given in Table IV are calculated using the equa-
tion of state obtained from the ab initio mean-field free
energy, as well as from an empirical equation of state.
This table shows that for 0-D2, and most probably also
for p-H2, the calculated transition pressures are too low
compared with experiment.

From Fig. 1 of Ref. 7 it is clear that the approximation
of the rotational constant being the same over the whole
pressure range does not hold. Therefore, we have to con-
sider the change in rotational constant as suggested by
Sprik and Klein. ' We did this by estimating the rota-
tional constant from the frequency shift of the rotons in
the Raman spectra and using the following relation de-
rived by Lagendijk and Silvera' to determine the
nearest-neighbor distance at the phase transition:

cause the most relevant anisotropic interaction, the
l„l2,13=2,2, 4 term, is dominated by the quadrupole-
quadrupole interaction (with contributions of 98% and
99.5 lo at the phase transitions of p-H2 and o-D2, respec-
tively). From relation (21) we can calculate the influence
of the rotational constant on the nearest-neighbor dis-
tance and thus on the molar volume of the phase transi-
tion. The corrected transition volumes are also given in
Table IV.

The change of the intramolecular bond length not only
affects the rotational constant of the molecules but also
their quadrupole moment. We can estimate the change
in the quadrupole moment from calculations by Poll and
Wolniewicz. In Table IV the transition volumes are
also given when calculated with the corrected rotational
constant and quadrupole moment. It is clear that the
effect of the change in quadrupole moment is larger than
the effect of the change in rotational constant and that
both corrections are certainly not negligible. For 0-D2
the transition pressure calculated in this way corresponds

100—
HCP

80

E
60

40

-0.40
0
E

—0.42

—0.44

FCC

ordered

20

—0.4$ 2.0 4.0 6.0 8.0 1 0.0

FIG. 7. Phonon and libron dispersion curves for o-H2 (Pa3
phase) calculated at T =0 K.

FIG. 8. Helmholtz free energy of the hcp and fcc phases of
o-H2 from mean-field calculations. The arrows indicate the dis-
ordering temperatures
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very well to the transition pressure found in experiments,
if we use the ab initio equation of state. This is probably
fortuitous because we have to keep in mind that the pres-
sure calculated from Eq. (20) is too high. Therefore, we
have also estimated the pressures with the equation of
state of Ref. 36 and we find, then, that the transition
pressures are still substantially too low.

B. o-H& and p-D2

In contrast with the excitations in p-Hz and o-Dz, the
phonons and librons in o-Hz and p-Dz are close together
in energy and mixing between these excitations can occur
at normal pressure. At very low temperature o-Hz and
p-Dz crystallize in the cubic Pa 3-phase (space group Tz ).
In Table V the calculated phonon frequences of o-H2 and
p-D2 are compared with far-infrared measurements of
Hardy et al. ' and with earlier calculations by Mertens
and Biem. ' The calculated phonon frequencies are gen-
erally in good agreement with the experimental ones,
somewhat better than those of Mertens and Biem. In the
far-infrared measurements only three optical phonon fre-
quencies were found, while group theoretical considera-
tions yield four infrared-active phonon modes. From
both our calculations and those of Mertens and Biem it is
clear that the splitting between the T„and the E„pho-
non is indeed very small. However, the splitting between
the A„phonon frequency and the T„and F.„ frequencies,
which is mainly caused by the quadrupole-quadrupole in-
teractions, is much smaller in both calculations (it is only
2 —3 cm ) than in the experiments (where it is 17.8 and
17.1 cm ' for 0-H2 and p-D2, respectively).

In Table VI the calculated libron frequencies are given
together with the results of the calculations performed by
Mertens and Biem and experimental frequencies from
Raman measurements of Hardy et al. The calculated
libron frequencies are all somewhat too high, but consid-
erably better than those of Mertens and Biem.

In Fig. 7 the phonon and libron dispersion curves for
o-Hz are plotted for the X and R directions in the Bril-
louin zone. The librons, which all have low frequencies
(=17 cm '), only mix with the acoustical phonons near
the I point. The librons show little dispersion. Most of
the phonon branches are split due to the quadrupole-
quadrupole interaction. The phonon and libron disper-
sion curves ofp-D2 are not given here, because they close-
ly resemble those of o-H2.

Finally, we have considered the phase transition from
the ordered cubic Pa 3 phase to the orientationally disor-
dered hcp phase in o-H2 and p-D2. The disordering tern-
peratures and the free energies of both phases have been
calculated by the mean-field method and displayed in Fig.
8. It is well known' that the mean-field approximation
predicts disordering temperatures ( T =7.5 and 6 K for
the fcc and hcp phases, respectively) which are consider-
ably too high. The preferential stability of the fcc lattice
for the ordered phase and the hcp lattice for the disor-
dered phase is nicely illustrated by Fig. 8, but the calcu-

lated transition temperature, T =6. 1 K, is too high by a
factor of 2 (experimentally T =2.8 K for o-H2).

V. CONCLUSIONS

From the agreement between the results of the lattice
dynamics calculations and the experimental data we can
conclude that the ab initio potential of Schafer and Meyer
is a good representation of the anisotropic Hz-H2 interac-
tion. By construction, this potential is a pure pair poten-
tial, which does not include any effective three-body in-

teractions, as some of the empirical potentials. ' In
contrast with other lattice dynamics calculations on solid
hydrogen ' which replace the real potential by an
effective one including a Jastrow correction, we have used
the bare intermolecular potential. Thus, we avoid the
truncated cluster expansion ' of the Jastrow factor in the
many-particle wave function which has to be made in or-
der to arrive at the effective pair potential. ' We have
shown that this is realistic if the wave functions chosen
for the translational vibrations of the molecules are
sufficiently flexible, so that they can adapt to the strong
anharmonicity of the potential (and thus avoid having
long overlapping tails). The anharmonic expansion of the
intermolecular potential in the molecular displacements
had to be continued through sixth-order terms. At the
mean-field level the correlation between the motions of
the molecules is neglected and, therefore, the repulsion is
still somewhat overestimated. This can be concluded
from the root mean square of the translational displace-
ments which is too small, from the optimized lattice pa-
rameter which is too large, and from the calculated equa-
tion of state which predicts too high pressures.

At the TDH level the correlation is partly restored.
The calculated phonon frequencies for both the hexago-
nal and the cubic phases are in good agreement with the
experimentally observed frequencies, considerably better
than the frequencies calculated by Mertens and Biem'
and the frequencies obtained from the displacement-
displacement correlation function by Klein and Koehler. 9

Only the large observed splitting between the A„-phonon
peak and the lower peak in the Pa 3 spectrum of o-H2 and

p-Dz cannot be explained. The roton frequency splittings
in the hexagonal phases match the experiments perfectly.
The libron frequencies in the cubic phases are slightly too
large; this is probably due to the strong correlation be-
tween the librational motions of the molecules that can-
not be fully taken into account at the TDH level. Still,
the results are better than those calculated by Mertens
and Biem'

In our calculations on the high-pressure phase transi-
tion in p-Hz and o-Dz it is demonstrated that the in-
clusion of rotation-translation coupling has only a small
influence on the transition volume. The shortening of the
intramolecular bond length, which changes the quadru-
pole moment and the rotational constant, cannot be
neglected in attempts to predict the correct transition
pressures and volumes. But these effects cannot fully ac-
count for the high value of the experimental transition
pressure. We conclude that mainly three-body interac-
tions and, to some extent, the correlation between the
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molecular motions beyond the TDH model, must be re-
sponsible for the remaining discrepancy.
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