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Hopping conductivity of the extended-hard-core cubic lattice gas
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The uniform cubic lattice gas with infinite repulsion between particles on nearest-neighbor sites is

considered. The conductivity is calculated in the stationary state in the presence of a uniform elec-
tric field. The necessary equilibrium averages are estimated within the Bethe-Peierls approxima-
tion. The correlation factor is derived, and numerical values are presented for concentrations below

the critical one. Comparison with Monte Carlo results of Murch shows good agreement.

I. INTRODUCTION

A remarkable interest in atomic motion in condensed
matter has been observed for the past 20 years, in connec-
tion with superionic conductors' and metal hydrides.
An essential aspect of transport in such highly defective
solids is the interaction between particles. While in-
clusion of nearest-neighbor (NN) interactions in the treat-
ment of hopping in lattice gases proves a simple enough
task, often with exact results, in one dimension, for
two- and especially for three-dimensional systems calcu-
lations become tedious and somehow discouraging. The
honeycomb lattice was intensively studied in connection
with P- and P"-alumina. ' A series of results was ob-
tained by Monte Carlo simulations.

In two previous papers we calculated the conductivity
of the square-lattice gas with infinite nearest-neighbor
(NN) repulsions (to be referred to hereafter as I) and the
honeycomb lattice gas with arbitrary NN repulsions. '

In the present paper we deal with the three-
dimensional version of the model in I, namely, in cubic
lattice in which the only interaction prevents simultane-
ous occupation of NN sites. A former study of the model
was made by Murch with computer experiments. " To
our knowledge, the only previous analytical approach to
NN interacting hopping in three dimensions was that of
Richards' who also considered the cubic lattice but with
a different type of repulsion. The difference was that the
interaction did not affect equilibrium properties but it
only restricted the possibility of jumping between sites.

In Sec. II we use the Bethe-Peierls approximation
(BPA) to calculate equilibrium correlation functions.
The chemical potential and the vacancy availability fac-
tor are obtained and compared with Monte Carlo results
of Ref. 11. The concentration dependence of some corre-
lators is also given.

In Sec. III we use a steady-state formalism devised by
Richards' (see also Refs. 9 and 10) to calculate the con-
ductivity in one degree of approximation beyond mean
field. This is done by a self-consistent calculation of the
two most important third-order dynamical correlation
functions. The other correlators are expressed in terms
of these two by a decoupling scheme which was success-
fully used in I. The correlation factor of the conductivity
is obtained and its concentration dependence is presented

along with the Monte Carlo results of Murch.
Some final remarks are given in Sec. IV.

II. STATIC CORRELATIONS

We consider a system of X identical particles on a cu-
bic lattice with X equivalent sites. The particles interact
with an infinite repulsion at NN distance. The
configurations of the system are described in terms of the
set of occupation numbers I n; I;, n; being 0 or 1 when the
site i is empty or occupied, respectively. In the equilibri-
um state without external fields, all average quantities are
translationally invariant. The mean value of n; is equal
to the concentration of particles,

N
(n, ),=c= (2.1)

where the subscript 0 indicates an equilibrium average.
The extended-hard-core interaction restricts the con-

centration values to the interval below 0.5. In fact, there
is a further limitation due to the appearance of an or-
dered state at concentrations above some critical value
which was estimated at c,„=0.213. ' Equation (2. 1) is
correct only up to c„. For higher concentrations,
translational invariance is broken, so that one of the two
sublattices made up of next-nearest-neighbor sites is pref-
erentially occupied. In the following, although we shall
do the calculations for the whole interval 0~c ~0.5, we
must say that only results up to c,„will be relevant. In
the ordered state, transport is drastically hindered, and in
fact it stops at a concentration higher than, but close to
c,„." Also, we did not aim at handling the additional
complications implied by describing the state above c„.

We shall follow the steps in I for calculating the equi-
librium correlation functions. In a paper by Frobose and
Jackie' it was shown that the best analytical method for
this purpose is the BPA. In I we considered a 4 X4 clus-
ter on the square lattice, which was ideal for that system
since it incorporated all correlators necessary for the cal-
culation of conductivity. In three dimensions the same
property would be held by the 4 X4 X 3 cluster, but from
the first attempts to calculate its partition function the
task proved too cumbersome and so we had to be content
with the 3X3X3 cluster shown in Fig. 1. The central
site has the bulk fugacity z, while sites on the frontier
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have dift'erent fugacities z„z2,z3 in order to account for
the influence of the rest of the lattice.

In order to calculate the sum over states, we found that
the shortest way to count the configurations of particles
on the cluster begins by making a bisection as in Fig. 1.
All sites of the hexagonal section are of the same symme-
try, i.e., they have the same fugacity z2. We shall denote
by Sk, k =0, 1, . . . , 6, the sum over those states with k
particles on the hexagon. Sk is easy to compute since the
configurations on the two pyramids are independent.
With the short-hand notations

Zg

u =z1+1,
t =z3+1,

we have

(2.2)
21 22

S,=(u't'+3z, ut'+3z', t+z', )',
S, =6z, [u't'+z, (ut'+ ut + t)+z', (2t +1)+z,']',
S~ —3z~(P~, +2P~~+2P~3P~4),

S3=2z, (P3, +3P~~+6P33P34),

S4 = 3z z ( 3P» +2P33P34 )

S5
——6Z52P231

S =zP6 2 31

where

P» =ut'+z, (u +2t)+z', (t +2)+z', ,

P» =ut '+z, (ut + t +1)+z,'(t +2)+z', ,

P» =u't'+z, (ut + t +1)+z', (t +2)+z,',
P„=ut'+z, (ut'+2t)+z, '(2t +1)+z,',
P3, =z3+(z~+1)

P33 z3u +z, +(zz+1)

P34=t 1+(zz+1)—
The partition function of the cluster is given by

(2.3)

(2.4)

Rather than writing down Eqs. (2.6) explicitly and
solving them numerically, we observe that this is
equivalent to finding a minimum for the function

(zz ]zp z3 )
6 12 8 c

cl
(2.7)

A powerful minimization subroutine was used to deter-
mine the fugacities for several values of the concentra-
tion. In Ref. 11, Murch presented the Monte Carlo mea-
surements of the chemical potential divided by tempera-
ture, i.e.,

kT
(2.8)

For comparison, we illustrate the same quantity in Fig. 2.
So far, the 3 X 3 X 3 BPA seems good enough.

FIG. 1. The 3X3X3 cluster representing the lattice in the
Bethe-Peierls approximation. The values of the fugacity are in-
dicated. The hexagonal section necessary for the calculation of
Z, ~

is shown.

6

Z„., = gS».
k =-0

(2.5)

20-

The fugacities are calculated by imposing the same
value of the average occupation number on each site of
the cluster, i.e., by applying Eq. (2.1),
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FIG. 2. The chemical potential divided by temperature vs
concentration in the BPA compared with Monte Carlo results
of Murch.
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FIG. 3. The jump of a particle to a vacancy.
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This impression is strengthened after the examination
of the vacancy availability factor. In order to define it we
shall anticipate notations of Sec. III by introducing the
jurnp rate of a particle to an empty NN site. This jump is
allowed only if the vacancy is "available" from the point
of view of the interaction, i.e., if all its NN s are also
empty. Thus, the average rate for the jump in Fig. 3 is
given by

( W, o) = W(n, (1 no)(—1 no)(1—n2)(1 —n—, )(1 n4) ), —

(2.9)

FIG. 5. Two of the second-order equilibrium correlation
functions in the BPA.

This was called the jump probability"' and also the
effective jump frequency factor' in previous papers. The
present name was chosen in analogy with I and Ref. 15.
In Fig. 4 we present the BPA values of t/', in comparison
with the Monte Carlo experimental results of Murch. "

We also present for illustration the normalized correla-
tion functions of two particles (Fig. 5) and of three parti-
cles (Fig. 6) which enter Eq. (2.10) and which are given by

where 8' is the jump rate for free particles. The factor
1 —no is unnecessary because no=0 whenever n, =1.
The brackets in Eq. (2.9) indicate an average in an arbi-
trary time-dependent or stationary ensemble. The vacan-
cy availability factor is an equilibrium quantity defined by

V= —(n, (1 no)(l no)(1 —n2)—(1—n3)(1 —n~))0 —.1

g„=&n, n, ) Ic',
g„=&n,n, )/c',

3
g, o4

= ( n, non 4 ) lc

g»4= (n &n3n4 ) Ic 3

(2.11a)

(2.11b)

(2.12a)

(2.12b)

(2.10)
At c=0.5, all averages of products of occupation num-

bers on sites of the same sublattice are equal to 0.5 and all

O

4- 10

&oe

)%
~ 06

~ 04

0.2

0.0
000 005 0.10 0 15 0.20 0 25 0.30 0.35

CONCEN TRATION

40

O

R 30
Zl

~~ 20

Q.
I

1.0

0.0 I I I

0.00 005 010 0 15 0 20 025 030 0.35
CONC EN TRA TION

FIG. 4. The vacancy availability factor vs concentration in
the BPA. The Monte Carlo results of Murch are shown for
comparison.

FIG. 6. Two of the third-order equilibrium correlation func-
tions in the BPA.
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other correlators vanish. Therefore, the normalized
correlators of Eqs. (2.11) and (2.12) approach the values 2
and 4 as c~0.5.

Wfo = Wio(1+6, ),
W(), = Wv, (1—6),

with

(3.1)

III. STATIONARY FLO%'

We shall use a steady-state formalism developed by
Richards for a one-dimensional system. ' The lattice is
considered at 1Xm Xn =X parallelepiped periodically
repeated to cover the whole space, so that a stationary
Aow is possible without sources of particles. The parti-
cles having the electrical charge e can jump to a NN site
with the jump rate given by Eq. (2.9). In the presence of
an electric field E parallel to bond 10 in Fig. 3, the
difference in energy between two NN sites in the direc-
tion of the field is eEa, a being the NN distance. Detailed
balance is satisfied by modifying the jump rates symme-
trically as follows:

eEa
2kT

(3.2)

+p ceU' eU=
NA 0 (3.3)

where U is the stationary Bow mean velocity of the parti-
cles in the field direction. As in I, due to the translational
invariance of steady-state correlators, the velocity is
given by

u =nN (& W'„& —
& W,', & ) . (3.4)

By using the labeling of sites as in Fig. 3, Eq. (3.4) be-
comes

where

Ucorr+ U oo (3 5)

Equations (3.1) are written only up to first order in F.
which is su%cient for the calculation of conductivity.
The higher-order terms in 6 will be systematically dis-
carded. If A=a denotes the volume per site, the charge
current density is given by

and

v„„=NW[&n, (1 nv)(—1 nv)(1 —n2)(1 —n—3)(1 n4) &
——

& no(1 n-, )(1—n, )(1 —n5)(—1 n6)(1 n—7) &—]

u„= 2NWE &n, (1 —nv)(1 nv)(—1 n)(—21 n3)(1 —n4—) &v=2NWbcV .

(3.6)

(3.7)

In Eq. (3.7), the average is taken in the equilibrium en-
semble, which is order zero in the field, due to the 6 pre-
factor. The quantity U „,which is seen to be proportional
to V, leads to the infinite frequency conductivity

Tea
QkT

(3.g)

v„„,=NW( 2«n, n 3n4»+4«n, nvn4»

The dynamical effects of the interaction, which make
the dc conductivity o. lower than o „are all contained in
the first term in Eq. (3.5), v„„.Due to the invariance of
the steady-state correlators under reAection with respect
to any plane containing the field direction, some terms in
Eq. (3.6) cancel and we get

So far, Eq. (3.5) together with Eqs. (3.7) and (3.9) are
exact formulas. However, approximations are needed for
the evaluation of the dynamic correlation functions in
Eq. (3.9). We shall apply the same method as in I. We
make the notation

5, =n, —c . (3.12)

+c y «S, S,S„»+&&a.S,S,S, » .

(3.13)

A correlator of n, 's can be expressed in terms of the devi-
ations 5, s. For illustration consider a four-particle one:

«...,...,»="y «fi, »+"y «~, ~, »

—4« n
& non 3n4 » + « n

& non unin4 » ),
(3.9)

By symmetry, we have for all i,j
«fi, »=«fi, fi, »=0. (3.14)

g= «n, nin4 » =
& n &n3n4 &

—
& non ~n7 &,

n«, n no4»= &n&non4& —&non, n&& .

(3.10)

(3.11)

where we have introduced the notation «f (n) » for a
symmetrized correlator which is the difference between
& f (n) & and its refiection with respect to the plane per-
pendicular to the field. We illustrate the notation with
the three-particle correlators of Eq. (3.9), denoted by g
and g,

g=«~, ~p, »,

g=«5, ~p, && .

(3.15)

(3.16)

The trivial approximation is to neglect all 5 correlators
which leads to o. -o. with no dynamical effect account-
ed for. The first nontrivial approximation is to keep only
the third-order 5 correlators which enter Eq. (3.9), for
which we can write the following exact formulas:
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In I, we kept only one third-order correlator, which
was the analog of g. The arguments presented there are
also suitable in three dimensions with the important
modification that there are now two correlators of the
same magnitude which have to be considered in calcula-
tions. Both involve sites of the same sublattice, and it
was argued in I that correlators with sites on both sublat-
tices are less important. Furthermore, g and g are of
essentially the same close-spacing and from this point of
view, also more important than other three-particle
correlators.

By keeping only g and g of all 5 correlators, the other
three-particle n correlators vanish and higher-order ones
can be expressed in terms of g and g. For illustration for
those in Eq. (3.9) we have

and so Eq. (3.9) becomes

u„,„=2XW( I —c) ( g+ 2g) . (3.19)

We are left with the task of evaluating g and g. We
start with the rate equation describing the time evolution
of ( n, n 3n~ ). The jumps which contribute to its decrease
are illustrated in Fig. 7, while its increase is achieved by
the reverse jumps. Thus we have

d—(, ) = —(2[W „(1+6,)+ W +2W -]
dt

+[W,6(1 b—)+2W, , ]n—3n4)

+ (2[ W„~(1 b, )+ W2t~+—2W4~]n tn3

+[W6, (1+6,)+2W-„]n3n4) . (3.20)

((n 1n5n3n4 )) =c (g+2g),

(( n, non on 3n4 )) =2c ((+ 2(),

(3.17)

(3.18)

The right-hand side (rhs) of Eq. (3.20) is now treated in
the same manner as the rhs of Eq. (3.4) and in the station-
ary state we get

0=2( n, n3[( W„4 W4—„)+(W2t4
—

W4q )+2( W~ —W~„-)]+n3n4[( W6, —W, 6)+2( W-„—Wtl )])
b, (2n 1n3( WA—4+ W4A ) n3n4( W61+ W16) )Q (3.21)

The first term of the rhs of Eq. (3.21) contains correlators of the (( )) type and they will be expressed in terms of g
and g through the 5 decomposition. The second term involves equilibrium correlators which are evaluated in the BPA.

A second equation is obtained in an analogous manner from the time-dependent (n, non~ ). The details of this will

be omitted.
By using the labeling of sites as in Fig. 7, the two coupled linear equations are

A „g+A|2(=8, ,

A21(+ A224 ~2

where

(3.22)

and

A „=—4(1 —c) —7(1—c) —c (5 —12c +2c ),
A, 2

=4c (1 —c) —4c (2 —2c —c ),
A2t=2c(1 —c) (1—3c+c ),
A22= —3c +4c (1—c) +2c (1—c) +4c(1—c) —9(1—c)

8, =5 W[ 2(n, n3n „(1 n4)(1 n4)(—1 nz—) )o+—2( n, n 3n4(1 n „)(1 —n„—)(1 —n2 )(1—nE—)(1 nF ))o-
—(n3n4n6(1 —n , )(1—n, ) )o —-( n, n, n4(1 n6)(1 n6)(1 n—~—)(1 nI )(1 nM—) )o]—, —

B2 =hW[ 2t, n, non„(1 —n4)(1 nz ) ) o+2(n &non—~(1 —nz )(1 nz )(1—n2—)(1—nz)(1 nz) )o-
—(n-n4n6(1 —n, )(1 n7) )o —( n, non4(1 n6)(1—n6)(1—n~ )(1——nI )(1 nM ) )o] . ——

(3.23)

(3.24)

(3.25)

TABLE I. Results for dimensionless quantities j/b, and (/b, .

& X IO'

&xIO-
b

0.05

—0.0271

—0.0338

0.10

—0.2424

—0.3035

0.15

—0.8265

—1.0601

0.20

—1.7255

—2.7664

0.25

—2.5007

—8.2728
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FIG. 8. The correlation factor of the conductivity vs concen-
tration compared with the Monte Carlo results of Murch.

Ucorr (1 c) (g+2g)
cVb

(3.28)

FIG. 7. Jumps contributing to the decrease of the time-
dependent correlator ( n, n, n, ).

The values obtained for f are illustrated in Fig. 8. A
satisfactory agreement with the Monte Carlo results of
Murch" is found. We note again that only results up to
c,„=0.213 are relevant, as mentioned in Sec. I.

(llIn3n4nAnA1l2)Q(n4nAn+n2nEnF)Q

(n4nAnAnl )Q
(3.26)

Now it is only a rnatter of patience and computer time
before we get numerical values for g and g. Some results
for the dimensionless quantities g/6 and g/6 are
presented in Table I.

It is seen that the two correlators are indeed of the
same order of magnitude, that they have negative values,
and that g, which is more close-spaced, has larger abso-
lute values.

The correlation factor of the conductivity, defined by

(3.27)

is now readily expressed as follows:

The calculation of 8, and 82 in the BPA involves one
further approximation concerning those correlators
which involve sites situated farther apart than in the
3 X 3 X 3 cube. These are evaluated by a factorization for-
mula suitably chosen so that it retains most of the infor-
mation about the configuration of sites in the initial
cor relator.

This is done as follows: a cluster which does not enter
the 3 X 3 X 3 cube is considered as a reunion of two clus-
ters which do have this property. The two smaller
configurations are chosen so that their intersection is
maximal with the same restriction of going in the BPA
cube. We shall illustrate this with an eight-particle corre-
lator in Eq. (3.24):

( 1l I 1l 3 1l 41l A
1l A 1l 2 1lE1lF )Q

IV. SUMMARY AND CONCLUSIONS

A study of the extended-hard-core cubic-lattice gas
was presented. The main purpose of the paper was the
calculation of the correlation factor of the conductivity.
A steady-state approach due to Richards' was used to
obtain a formula for the dc conductivity which involves
static as well as dynamic correlators. The evaluation of
these correlation functions was possible only by using
three types of approximations, one for the steady-state
averages and two for the equilibrium ones.

As in I, we pushed the calculation of conductivity one
step beyond the trivial approximation ~-cr . The no-
velty of the three-dimensional case was the necessity of
keeping not one but two third-order dynamic correlators,
g and g, defined by Eqs. (3.10) and (3.11), judged to be of
the same order of magnitude, which was confirmed by the
results. By neglecting all 5 correlators except g and g and
by expressing all n correlators in terms of these two, the
correlation factor was obtained in terms of static aver-
ages.

The two approximations used for the evaluation of
equilibrium correlators were the BPA and the factoriza-
tion scheme illustrated by Eq. (3.26). The 3 X 3 X 3 clus-
ter used for carrying out the BPA recipe seems to be the
largest cluster for which calculations are reasonably feasi-
ble. The results obtained within this approximation were
judged by comparing them with the Monte Carlo experi-
ments on two quantities: the chemical potential divided
by temperature and the vacancy availability factor. The
verdict was favorable, which can also be said about the
final results on the correlation factor in spite of the men-
tioned three successive approximations.
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