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Total-energy band calculations using the local-spin-density approximation, the augmented-
spherical-wave method, and the fixed-spin-moment procedure are used to investigate the volume

dependence of the magnetic and electronic properties of 3d transition metals constrained to cubic
environments in one-atom or two-atom unit cells. The calculations cover a range of volumes span-

ning the nonmagnetic-ferromagnetic and the nonmagnetic-antiferromagnetic transitions. We find

antiferromagnetism in bcc vanadium at expanded volumes, show that bcc chromium has a first-

order transition from nonmagnetic to antiferromagnetic behavior at a 2% expanded lattice con-

stant, and find that previously reported antiferromagnetic solutions for bcc iron are unstable. Com-
ments are made on when antiferromagnetism occurs and on the many-atom ground states for
chromium and manganese.

I. INTRODUCTION

Although the volume dependence of transition-metal
ferromagnetism is easily calculated using first-principles
band theory, ' the calculation of the volume depen-
dence of antiferromagnetism is more subtle. Among the
3d transition metals, well-defined antiferromagnetic
ground states occur only for chromium and manganese,
although not in simple lattice structures. The known an-
tiferromagnetic character of the ground state of these ele-
ments has led to a number of total-energy band calcula-
tions ' that attempt to establish the existence and
properties of that state. These calculations have general-
ly involved simplifying constraints and unrealistic mag-
netic unit cells. Such calculations have also been report-
ed on bcc and fcc iron. "' ' However, the stability of
these various calculated antiferromagnetic states against
more complex spin arrangements or lattice distortions '
has not been adequately explored. We give examples of
the occurrence of instabilities in this work.

Total-energy band calculations for an antiferromagnet-
ic elemental system with cubic symmetry essentially re-
quire a spin-polarized calculation with at least a two-
atom magnetic unit cell such as a CsC1-type for the bcc
case and a CuAu-type for the fcc case. The two atoms
are conventionally constrained to have equal and oppo-
site local moments (thus excluding ferromagnetic and fer-
rimagnetic solutions), but the magnitude of the local mo-
ments is allowed to vary so as to minimize the total ener-

gy in a self-consistent scheme. The system is then con-
sidered to be antiferrornagnetic or nonmagnetic accord-
ing to whether the magnitude of the local moment is
found to be finite or zero. In the present work we use a
different and more flexible constraint that finds ferrornag-
netic and ferrimagnetic as well as antiferromagnetic
states.

Recently, we have applied a spin-polarized fixed-spin-
moment procedure' to ferromagnetic states using one-
atom cells to determine the total-energy E as a function
of constrained magnetic moment M for different volumes

V. The minima in calculated E(M)~ curves, which cor-
respond to zero-magnetic-field solutions, give the volume
dependence of the magnetic behavior of the system. A
minimum of M=O in a calculated energy versus moment
curve signifies a nonmagnetic state. A maximum at
M=O and a minimum at a finite M value implies an un-
stable nonmagnetic state and a stable ferromagnetic state
with a moment indicated by the minimum. Using this
procedure, we have shown ' that all transition metals un-
dergo a transition from nonmagnetic to ferromagnetic be-
havior with increasing volume. These magnetovolurne
transitions are generally second order for early and late
transition metals, but are first order or complicated mix-
tures of second order and first order for rnidtransition
metals. Note that conventional band calculations
(without fixed-spin-moment capabilities) have generally
not given an accurate description of these rnagnetovo-
lume transitions; they usually show gradual and continu-
ous increases in magnetic moment as the volume in-
creases rather than the sharp (sometimes discontinuous)
transitions found by our fixed-spin-moment procedure.

A straightforward generalization of our fixed-spin-
moment procedure to two-atom magnetic unit cells per-
mits the study of antiferromagnetic and ferrimagnetic as
well as ferromagnetic and nonmagnetic states. In this
generalization, the total moment M is fixed but the local
moments m, and mb of the two inequivalent atoms (with
the same atomic number) are allowed to vary so as to
minimize the total energy in a self-consistent iteration
scheme. ' For M=O, the system can now assume either a
nonmagnetic or an antiferromagnetic state. A minimum
at M=O implies stability with respect to variation of M,
while a local maximum implies instability. Thus, analysis
of calculated E(M) curves permits determination of mul-
tiple stable (and metastable) solutions at a given volume.
Using these procedures we have shown" the existence of
antiferromagnetic states in both manganese and iron con-
strained to an fcc (CuAu) lattice. In addition, we have
found evidence' for stable ferrimnannttc and antiferro-
magnetic states in bcc (CsCl) manganese. We find that
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stable antiferromagnetic (or ferrimagnetic) states seem to
occur only for systems that exhibit first-order or mixed
transitions when studied with a one-atom unit cell (fcc or
bcc) constraint. The gradual change represented by a
second-order transition is apparently energetically more
favored than the abrupt change represented by a first-
order transition. This observation of the occurrence of
antiferromagnetism when first-order ferromagnetic tran-
sitions occur provided the motivation to study antifer-
romagnetism in CsC1-type vanadium, chromium, and
iron. We have already shown that bcc vanadium ' and
chromium exhibit mixed or first-order nonmagnetic to
ferromagnetic transitions, and that bcc iron exhibits a
second-order transition.

II. RESULTS
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All of our results are based on the augmented-
spherical-wave method by Williams, Kubler, and
Gelatt, ' which assumes a sphericalized potential within
Wigner-Seitz spheres of radius rws. We use the local-

spin-density approximation as formulated by von Barth
and Hedin and modified by Janak' to account for ex-
change and correlation. All calculations are nonrelativis-
tic, utilize the fixed-spin-moment procedure, ' and are
done on a uniform mesh of 84 points in the irreducible
k-space wedge of the Brillouin zone of the two-atom cell.

A. Vanadium
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FIG. 1. Zero-field total energy and magnetic moment for bcc
vanadium showing nonmagnetic (NM), low-spin (LS), ferromag-
netic (FM), and antiferromagnetic (AF) branches. The refer-
ence energy Eo is the energy minimum for the nonmagnetic
state.

Previous total-energy band calculations on bcc vanadi-
um ' ' were done only for a one-atom per unit cell sys-
tern, and therefore did not consider possible antiferro-
magnetic solutions. In Fig. 1 we show the results of a
two-atom per unit cell CsC1 fixed-spin-moment calcula-
tion. We note that the equilibrium state is nonmagnetic
at rws-—2.78 a.u. and that the antiferromagnetic state is
energetically more favored than the nonmagnetic (NM),
the low-spin (LS), or the ferromagnetic (FM) state at ex-

panded volumes, in agreement with the above observa-
tion. In fact, the transition from the nonmagnetic state
to the preferred antiferrornagnetic state is second order
as shown on an expanded scale in Fig. 2 by the gradual
merging of the low spin and antiferromagnetic total-
energy curves and the continuous increase in the local an-
tiferromagnetic moments from zero to values approach-
ing the ferromagnetic moments for volumes above the
transition. This second-order transition occurs at
~ws=3 15 a.u. , just below rws=3-24, where we find a
one-atom per unit-cell transition from the nonmagnetic
to the ferromagnetic (low-spin) state.
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B. Chromium

Total-energy band calculations for chromium generally
simplify the model of the antiferromagnetic state by not-
ing that the incommensurate spin-density wave found ex-
perimentally is close to a bcc lattice with CsC1 magnetic
structure. Previous work ' ' ' has not, however, given
an accurate description of the transition from nonmag-
netic to antiferromagnetic behavior, and generally shows
a gradual and continuous increase in local moments as

FIG. 2. High-resolution zero-field total energy and magnetic
moment for vanadium showing details of the magnetovolume
transitions. The calculated total-energy and magnetic-moment
values for the one-atom bcc unit cell are indicated by open cir-
cles and + symbols, respectively; the valises for the two-atom
CsC1-type unit cell are indicated by solid circles and X symbols,
respectively. Note that the antiferromagnetic solutions are en-

ergetically more favorable than the low-spin (LS) solutions and
that the nonmagnetic-antiferromagnetic transition is second or-
der.
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FIG. 3. Zero-field total energy and magnetic moment for bcc
chromium showing nonmagnetic (NM), ferromagnetic (FM),
and antiferromagnetic (AF) branches. The reference energy Eo
is the energy minimum for the nonmagnetic state.

the volume increases. In Fig. 3, we present our fixed-
spin-moment results for this system. The calculated re-
sults in the range from rws=2. 6 to rws=3. 0 a.u. are
shown on an expanded scale in Fig. 4. Note that the anti-
ferromagnetic solutions are energetically more favored
for rws & 2.72 a.u. , and that the transition from the non-
magnetic to the antiferromagnetic state is sharp and first
order as indicated by the discontinuity in slope at the
junction of the nonmagnetic and antiferromagnetic ener-

gy curves and the discontinuous jump of the antiferro-
magnetic local moments (AF). The equilibrium (zero-
pressure) state for this constrained system is nonmagnetic
with a lattice constant about 2% below the transition.
This result is inconsistent with that of Chen et al. ,

' who
find an antiferromagnetic equilibrium ground state.

A critical comparison of our fixed-spin-moment results
for chromium with previous work shows important
differences. In a two-atom cell conventional spin-
polarized band calculation in which the local moments
are constrained to be equal and opposite but with floating
magnitudes, Kubler finds the equilibrium solution to be
antiferromagnetic at rws-—2.65 a.u. with an energy =4
mRy below his nonmagnetic results. This work does not
present the volume dependence of the energy and local
moment, and does not show our first-order magnetovo-
lume transition. We see from Fig. 4 that our fixed-spin-
moment antiferromagnetic solutions do not extend below
rws=2. 72 a.u. , where the local moments are +1.18JM&

and where the energy is =4 mRy above our nonmagnetic
equilibrium solution at rws =2.65 a.u. Skriver also used
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FIG. 4. High-resolution zero-field total energy and magnetic
moment for chromium showing details of the magnetovolume
transition. The calculated total-energy and magnetic-moment
values for the one-atom bcc unit cell are indicated by open cir-
cles and + symbols, respectively; the values for the two-atom
CsCl-type unit cell are indicated by solid circles and X symbols,
respectively. Note that the antiferromagnetic solutions are en-

ergetically more favorable than the nonmagnetic solutions at
r~s & =2.72 a.u. , and that the nonmagnetic-antiferromagnetic
transition is first order. The arrow at r~&=2.68 a.u. corre-
sponds to the experimental lattice constant.

conventional spin-polarized band calculations with con-
strained equal and opposite local moments to study the
volume dependence of the pressure ( dE/dV) and—local
moments of bcc chromium in a two-atom cell constraint
and found zero pressure at =2.65 a.u. , in agreement with
our results. He concludes that a lattice constant increase
of a few percent would bring his calculated equilibrium
properties into agreement with experiment. However, his
work shows the local moments increasing smoothly from
zero with increasing volume. The transition from non-
magnetic to antiferromagnetic behavior is therefore gra-
dual and inconsistent with the critical behavior derived
from our fixed-spin-moment calculations. In a recent
two-atom cell bcc chromium calculation by Chen
et al. ,

' the equilibrium volume was found at rws ——2.61
a.u. The volume dependence of the local moments is in
general agreement with Skriver's results and shows no
evidence of our sharp first-order nonmagnetic-to-
antiferromagnetic transition. We believe that the antifer-
romagnetic solutions below our transition volume
(rws =2.72) reported by Kubler, Skriver, and Chen et al.
are unstable solutions and are a consequence of the equal
and opposite local-moment constraint used.

Previous band calculations on bcc chromium have
found higher values of the bulk modulus, 8 than experi-
ment. Kiibler, Skriver, and Chen et al. ' find 8=2130,
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2360, and 2650 kbar, respectively, where the experimen-
tal value ' is =1920 kbar. Figure 4 shows that although
the antiferromagnetic curve terminates above the
minimum in the nonmagnetic curve, the former has a
much lower curvature than the latter. As can be seen,
the curvature, and the corresponding bulk modulus, is a
function of res. Our antiferromagnetic calculations yield
8=1140 kbar at res =2.72 a.u. , but an extrapolation to
the equilibrium radius of 2.65 a.u. gives 8=1770 kbar.
The bulk modulus derived from our nonmagnetic curve
at r~s =2.65 a.u. is 2540 kbar. Thus if an antiferromag-
netic spin arrangement in a many-atom cell becomes the
equilibrium state, as experiment indicates, it will prob-
ably yield a bulk modulus close to our extrapolated value
of 1770 kbar, in reasonable agreement with experiment.
The high values found in previous calculations probably
arise from a failure to separate clearly the nonmagnetic
and antiferromagnetic states, leading to a mixture that is
influenced by the higher bulk modulus implied by the
nonmagnetic states.

We note that band calculations on bcc chromium, in-

cluding those reported in this work (except for Kubler's
calculations, which do not show the volume dependence),
do not give the observed local magnetic moment. Howev-
er, from Fig. 4, an extrapolation of our local moments to
res=2. 65 a.u. , yields reasonable agreement. Although
Chen et al. conclude that their disagreement is due to a
failure of the local-density approximation used in all of
these total-energy band calculations, we suggest it may be
due to the two-atom cell constraint as will be discussed
below.

III. DISCUSSION

specific value, and the calculations now determine the
minimum total energy under this moment constraint. By
varying this constraint, we now determine the entire
E(M) curve and identify all the local minima as solutions
that are stable with respect to moment variations.

In order to find possible antiferromagnetic solutions,
we consider a unit cell that can accommodate an antipar-
allel spin arrangement, and study antiferromagnetism in
bcc metallic elements by considering a two-atom CsC1-

type cell. This is the first step in a variation of the size of
the unit cell. Since the two atoms are allowed to be ine-
quivalent, this variation can lead to new solutions. In
fact, increasing the size (i.e., the atom count) of the unit
cell can have a number of consequences. For example, a
two-atom cell can yield a minimum-energy solution that
is the same as that of a one-atom cell, in which case the
one-atom cell solution is stable or metastable relative to
the change from a one-atom to two-atom cell. However
the one-atom solution can have an energy maximum with
respect to a two-atom solution and hence be unstable. In
the two-atom cell case, a minimum at M=0 with

m, =mb =0 corresponds to a stable nonmagnetic state, a
minimum at M=O with m, = —mb@0 corresponds to a
stable antiferromagnetic state, while a maximum at M=0
corresponds to an unstable nonmagnetic or antiferromag-
netic state. In this latter case, E(M) will display a
minimum at a finite M value corresponding to a stable
ferromagnetic or ferrimagnetic state depending upon
whether m, =m„or m, Am~, respectively.

We illustrate these general comments on the stability
of solutions with three specific examples of constraint
variation. In Fig. 5 we show a set of solutions for vanadi-
um constrained to a one-atom bcc unit cell and to a two-

All total-energy band calculations are subject to im-

plied constraints such as volume, lattice type, moment,
cell size (cell atom count), etc. In conventional non-spin-
polarized calculations, the lattice type and volume are
constrained to specific values by specifying the unit cell
and the lattice parameter. In this case, the moment is im-

plicitly constrained to be zero by the non-spin-polarized
treatment. The self-consistent calculations determine the
minimum energy for the system subject to the imposed
constraints. By varying the volume constraint and
finding the minimum in the resulting total-energy curve,
we determine the equilibrium volume, or the solution
that is stable with respect to volume variations (but that
is still subject to all of the other constraints). Conven-
tional spin-polarized calculations allow the moment (no
longer constrained to be zero) to Iloat. The self-
consistent calculations then determine the moment re-
quired to minimize the total energy. In cases where there
are two (or more) local minima at different moment
values, conventional spin-polarized calculations can con-
verge only with difficulty, or can "accidentally" converge
on either solution.

Our fixed-spin-moment procedure was developed pri-
marily to avoid the above mentioned convergence
difficulties and the accidental convergence in systems
with multiple solutions. In our case, the total moment is
no longer allowed to float; it is fixed or constrained to a
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FIG. 5. Energy vs moment curves for bcc vanadium at
res=3.40 a.u. , with one-atom cell and two-atom cell con-
straints. The "stable" low-spin (LS) one-atom cell solution is

metastable when a two-atom cell is considered. The local anti-
ferromagnetic moments at M=O for the two-atom cell, mAF,
are +2.42JMB. The decrease in slope at M =2p~ in both calcula-
tions indicates the precursor of a high-spin ferromagnetic solu-

tion.
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4

atom CsC1 unit cell at a volume corresponding to
rws=3. 40 a.u. as a function of the constrained moment
M. The one-atom cell solutions show the local energy
minima at =0.7pz, which we have previously
identified ' as a low-spin (LS) solution. The two-atom
cell calculation displays a local minimum at M=O with
=11 mRy lower energy corresponding to an antiferro-
magnetic solution with local moments of =+2.42pz.
The two curves merge smoothly at M =1.8pz and show
evidence of the precursor of the high-spin ferromagnetic
solution by the decrease in slope at =2p, ~. In Fig. 6 we
show similar behavior for chromium at rws=3. 30 a.u. ,
except that the one-atom cell solutions now show two lo-
cal energy minima at M=O and at M =4.25@~ that can
be identified as the "metastable" and "stable" solutions
labeled NM and FM. However, the two-atom cell calcu-
lation displays a lower-energy minimum labeled AF that
corresponds to an antiferromagnetic solution at M=O
with local moments of +3.86@~. The local moments be-
come equal and parallel when the curve merges with the
one-atom cell curve. Thus, by removing the one-atom
cell constraint, we find the original "stable" FM solution
is, in fact, metastable with respect to the antiferromag-
netic solution. Conventional non-spin-polarized calcula-
tions would only find our NM solution, conventional
spin-polarized calculations would only find our FM solu-
tion, and conventional antiferromagnetic calculations
(two-atom cell) would only yield our AF solution. Our
fixed-spin-moment procedure displays all solutions and
provides information on their stability by introducing a
controlled magnetic-moment constraint.

In Fig. 7 we give another example of constraint varia-
tion that shows different behavior as M is varied. Here
we show the results for iron constrained to a one-atom
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FIG. 6. Energy vs moment curves for bcc chromium at
~+&=3.30 a.u. , with one-atom cell and two-atom cell con-
straints. The "stable" nonmagnetic (NM) and ferromagnetic
(FM) one-atom cell solutions are metastable when a two-atom
cell is considered. The local antiferromagnetic moments at
M=O for the two-atom cell, mA&, are +3.86pz.
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bcc unit cell and to a two-atom CsC1 unit cell. The
minimum in the one-atom cell curve shows the existence
of the stable ferromagnetic solution at M=2. 34p~ la-

beled FM. The maximum at M=O in this same curve
identifies an unstable nonmagnetic solution labeled NM.
Note that the two-atom cell curve at M=O has a local
maximum with a lower energy and that this curve merges
smoothly with the one-atom cell curve. The two-atom
curve exhibits an unstable antiferromagnetic solution
with local moments of =+1.75pz labeled AF. At the
point where the two curves merge, the local moments in
the two-atom cell become equal and parallel and have the
same values as the one-atom cell. This unstable antiferro-
magnetic solution was also found by Kiibler, ' who con-
sidered it to be metastable.

The various solutions described above change with
changes in the volume constraint. Nonmagnetic solu-
tions generally first become metastable and then become
unstable with increasing volume. This behavior is illus-
trated in Fig. 3, where we show that for bcc chromium
the nonmagnetic solutions terminate at rws=3. 44 a.u. ,

while the ferromagnetic solutions begin at res —-3.13 a.u.
In the one-atom cell calculation the nonmagnetic solu-
tions are stable up to 3.13 a.u. , metastable from 3.13 to
3.44 a.u. , and unstable above 3.44 a.u. The ferromagnetic
one-atom cell solutions are stable above rws -—3.13 a.u.
When the one-atom cell constraint is relaxed by consider-
ing a two-atom cell, antiferromagnetic solutions appear
with lower energies for rws & =2.72 a.u. The one-atom
cell NM solutions for rw& & =2.72 a.u. and the one-atom
cell FM solutions above res —-3.13 are now identified as
metastable. The first-order transition from
nonmagnetic-to-ferromagnetic behavior implied by the
one-atom cell constraint is therefore a transition between

FIG. 7. Energy vs moment curves for bcc iron rs=2. 70
a.u. , with one-atom cell and two-atom cell constraints. The
nonmagnetic (NM) one-atom cell and antiferromagnetic (AF)
two-atom cell solutions are unstable. The local antiferromag-

netic moments at M=O for the unstable two-atom cell AF solu-

tion, m&z, are +1.75@&.



8366 V. L. MORUZZI AND P. M. MARCUS 42

metastable states.
Notice that the unusual first or-der transition from

nonmagnetic-to-antiferromagnetic behavior for bec
chromium at rws-—2.72 a.u. suggests that lower-energy
solutions and different transitions may exist by further re-
ducing the cell size constraint from a two-atom cell to a
many-atom cell, just as the first-order transition from
nonmagnetic-to-ferromagnetic behavior discussed above
was altered by going from a one-atom cell to a two-atom
cell constraint. A many-atom cell with elaborate moment
configurations may even describe the equilibrium state of
the system, i.e., the solution that is stable with respect to
the volume constraint. We note that the two-atom cell
antiferromagnetic branch begins at a rws value that is
only 2% above the value corresponding to the equilibri-
um nonmagnetic volume. The incommensurate spin-
density wave found experimentally is actually close to a
20-atom cell description. A similar reduction of energy
in a many-atom cell may plausibly be expected in bcc
manganese, where we found' evidence, based on two-
atom cell calculations, of a first-order transition from
nonmagnetic-to-fer rim agnetic solutions; a many-atom
cell is in fact found experimentally.

In all of the fixed-spin-moment calculations described
in the present work, we have implicitly constrained the
local moments to be colinear. As discussed above, the
two-atom cell antiferromagnetic solutions shown explicit-
ly in Figs. 5-7 only exist at M=O. A nonzero M in our
calculations still requires antiparallel or parallel (colinear)
local moments. Deviation from the antiferromagnetic
M=O solution involves local moments of unequal magni-

tude. However, Kubler et a/. have shown that this co-
linear moment constraint can also be removed and that
solutions involving tetrahedral and triangular spin ar-
rangements can be found.

Finally, we mention that still another constraint that
can be varied is the constraint to a cubic cell. For exam-
ple, by allowing for tetragonal distortions of the fcc
(CuAu) two-atom cell, more favorable lower-energy anti-
ferromagnetic solutions can be found. Oguchi and Free-
man find such a distortion for fcc manganese. Many-
atom magnetic cells of a bcc or fcc lattice may, in addi-
tion to elaborate moment configurations, also be expected
to show relaxations of atomic positions from the basic
structure. Thus the systematic variation of constraints in
total-energy calculations can lead to a great variety of
stable and metastable structures even in the elements.

In conclusion, unlike Chen et al. ,
' we find no reason

to question the accuracy of the local-spin-density approx-
imation in calculating lattice constants, magnetic mo-
ments, and bulk moduli of both ferromagnetic and anti-
ferromagnetic states in these systems. We survey the oc-
currence of ferromagnetism and antiferromagnetism in
all of the 3d transition metals and observe that antifer-
romagnetism seems to occur only when a transition to
ferromagnetic behavior is first order. Total-energy calcu-
lations over selected but reasonable volume ranges yield
no evidence for stable or metastable antiferromagnetic
solutions for scandium, titanium, iron, cobalt and nickel
in the bcc form, nor for scandium, titanium, vanadium,
chromium, and nickel in the fcc form.
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