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Magnetic-field and spin-orbit interaction in restricted geometries: Solvable models
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Properties of a two-dimensional degenerate gas of noninteracting electrons, subject to a perpen-
dicular magnetic field, are investigated by studying two solvable models. These models amount to
restricted geometries in the plane. The first reveals three types of oscillations (as a function of the
applied field) of thermodynamic quantities: de Haas-van Alphen (dHvA) oscillations, Aharonov-
Bohrn (AB) oscillations, and oscillations related to correlations among energy levels associated with
different Landau levels. In the second model the latter correlations are absent, and the third kind of
oscillations is manifested as nonperiodic fluctuations of the thermodynamic quantities at hand. Ac-
counting for spin-orbit (s.o.) interaction, it is found that the dHvA oscillations split into a sum of
"spin-up" and "spin-down" branches. The expressions for the AB oscillations acquire "universal"
s.o. reduction factors. Introducing a modification of the second model (which is treated using a
WKB approach), an enhanced s.o. coupling, and consequently a larger s.o. effect, is obtained. Both
the phenomena of quantum Hall effect and longitudinal conductance quantization are demonstrated
in the two models, with AB oscillations superimposed on the conductance plateaus.

I. INTRODUCTION

The behavior of a two-dimensional degenerate electron
gas in a perpendicular magnetic field has revealed many
interesting physical phenomena. In such a field the free-
electron eigenenergies cluster into Landau levels, and this
periodic quantization leads to features such as the de
Haas —van Alphen (dHvA) effect' and the quantized Hall
effect (QHE). The finite size of the system at hand is
crucial to the understanding of these phenomena.
Indeed, much effort was directed towards solutions of
finite-size systems subject to a magnetic field H. One may
write a formal solution in terms of hypergeometric func-
tions; in this case the energy levels are obtained numeri-
cally and it is rather difficult to gain physical insight as
to the way the spectrum is manifested in, e.g., thermo-
dynamic properties. Furthermore, certain ingredients,
e.g. , electron-electron correlations, are often neglected.
These also include spin-orbit (s.o.} interaction, propor-
tional to the gradient of the potential acting on the elec-
tron, which is usually ignored, though the gradient may
be rather large near the boundaries.

The magnetization of a finite-size system exhibits
dHvA oscillations as a function of 1/H, which result
from the interplay between the increase in the energy of
each Landau level and the increase in the degeneracy of
these levels as the magnetic field is increased. These os-
cillations correspond to periodic intersections of the Fer-
mi energy p by a Landau level. (A similar description
can be given for a system with a constant number of elec-

trons. ) It has been suggested ' that one should observe
Aharonov-Bohm (AB) oscillations, with a period

Po
——hc/e, as a function of the total fiux through the sys-

tem, superimposed on the dHvA oscillations. This result
is based upon a Wentzel-Kramers-Brillouin (WKB) ap-
proximation for a disc geometry, and numerical results
for certain disordered systems. When the magnetic flux
through the system is increased by Po, the degeneracy of
each Landau level is increased by unity as one edge state
merges into the bulk (or, alternatively, another edge state
crosses the Fermi energy. }

In this article we present two exactly solvable models
which yield simple spectra, easily amenable to the calcu-
lation of various physical quantities. To simulate the
boundaries, we introduce confining potentials and choose
parameters representative of mesoscopic samples. We
concentrate upon the effect of the boundaries on the or-
bital motion of the electron (and how this is manifested in
the energy spectrum}, disregarding Zeeman splitting.
Operating at zero temperature, we derive an exact ex-
pression for the grand partition function. This facilitates
calculations of various thermodynamic properties, in par-
ticular, the magnetization. We find that the magnetiza-
tion shows AB oscillations superimposed on the dHvA
ones. The explicit form of the magnetization allows us to
discuss correlations among different Landau levels and
how they affect the amplitude of the AB oscillations. We
derive the quantization of the longitudinal conductance '

and that of the Hall conductance in our constricted
geometry. We find AB oscillations superimposed on the
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standard Hall plateaus.
Adding the s.o. term to our Harniltonians, we are still

able to derive the spectra and the partition functions ex-
actly. Using those, we investigate the effects of s.o. in-
teraction upon the magnetization. This interaction leads
to additional features in the dHvA and AB effects. The
s.o. parameter in our model systems has to be chosen
rather small. This is a consequence of the fact that, in
these models, the confining potentials are parametrized
by a single quantity, which determines both the "width"
of the sample and the potential gradient near the bound-
ary. We therefore introduce in Sec. V a more "realistic"
confined geometry and analyze it using a WKB approxi-
mation. Within that approach, the value of the s.o. pa-
rameter turns out to be larger.

II. CONFINING POTENTIAL: FIRSTKXAMPLE O=O O=i A =3 n=o

We consider an independent degenerate electron gas in
a two-dimensional system, subject to a radially symmetric
confining harmonic potential and a perpendicular mag-
netic field H. The Hamiltonian is

'2

FIG. 1. Energy levels for model I; cu, /co0=4. The levels
within each n are indexed by the quantum number m, cf. Eq.
(2.4b).

p
1 eA m+ copr

2m c 2
(2.1)

A being the vector potential. To relate the parameters of
our model to those of a realistic two-dimensional mesos-
copic sample of radius R, we choose the chemical poten-
tial p such that

E„,=(n + —,'+ —,
'

~l )A'a), —
—,'liiico, ,

n =0, 1,2, . . . , I =0,+1,+2, . . . .

This may be recast in the form

(2.4a)

p =
—,
' m cooR (2.2)

E„=(n + ,')Ace+—(m+—,')b„n, m =0, 1,2, . . . ,

Given R and p, coo is determined such that the potential
energy of the electron is equal to the Fermi energy. For
the strong magnetic fields discussed in this paper,&- I —10 T, co, = eH /me —10—"-10' 1/sec, and
A'co, —10 —10 eV. (Here we have used the free-
electron mass. In semiconductors, e.g.,
GaAs/Ali „Ga„As, this should be replaced by -0.1 m,
leading to fi~, —10 —10 eV.) Considering a small
number of Landau levels, p is of the order of 1 meV. For
our system to be mesoscopic (smaller than the phase
breaking length), R -10 cm is a reasonable choice,
which, by Eq. (2.2}, implies coo-10' 1/sec ((co,. Such a
model Hamiltonian has been sho~n to produce results
consistent with experiments on quantum dots.

The spectrum of (2.1) is well known. It is practically
that of a two-dimensional harmonic oscillator [cf. Eq.
(2.3) below]. To see this, it is convenient to choose the
gauge A= —,'&Xr and substitute %(r, 0)=P(r)e' for the
solutions of the Schrodinger equation. It follows that P
obeys the one-dimensional equation

a'
2m 2r r Br

(2.4b)

with co=(co, +co&)/2 and b, =Pi(co, —co2)/2. The spec-
trum for co, /coo=4 is depicted in Fig. 1. Each Landau
level [n in Eq. (2.4b)], degenerate in the absence of a
confining potential, splits into a ladder of equally spaced
(with spacing 5) sublevels (m). The confining potential
which varies smoothly in space removes the degeneracy
of the bulk Landau levels. By contrast, sharp boundary
conditions leave most of the bulk levels degenerate, lifting
the degeneracy of few states at the edges. From this
point of view all eigenstates in our case are edge states.

We now use the spectrum to calculate thermodynamic
properties of our model at T =0; these are derived from
the grand partition function

lng= g g ln(1+e " ), P—= I/k&T . (2.5)
n =0m =0

Employing the Poisson summation formula

g f (m)= g f f (x)e "'I' dx+ —,'f (0), (2.6)
m=0 p — oo

we find, in the T~0 (p~ ~ ) limit,

+— r ,' lficoq P =EP, ——(2.3)

0

lnQ =PE g —X„(X„+1)
p 2

with co, =co, +4coo and co2=co, (m2 is defined for later
convenience}. Equation (2.3) yields the discrete spectrum

oo

[cos(2~pX„)—1]
p

—] 27Tp
(2.7a)
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where X„—= [p —(n + —,')fico —
—,'b]/b, and no is the index

of the highest occupied Landau level, given by the largest
integer that satisfies X„~O. Equation (2.7a) may be fur-
ther simplified to

M/N

(t &)

0. 0

I

I

I I I I

I

I I I I

I

I I I i

I

I I I I

I

I I I I

0

lng = g (Z„+1)(2X„—Z„),
2 0

(2.7b) -0.2

where Z„ is the integer part of X„. Equation (2.7b) is
especially convenient for the case where Z„AX„ for all n,
i.e., no sublevel is exactly at the Fermi energy. Then, in
differentiating lng with respect to various physical pa-
rameters, one has to account only for the derivatives of
X„ in (2.7b) (no contributions froin derivatives of no or
Z„are to be accounted for). For exainple, in that case
the number of particles N is given by

-0.4

I I I I I I I I l I I I I I I I I I I I

1 15 2 25 3

(orb. units j

I I I I I I

3.5

n=0

np

N=ktiT = g (Z„+1),
p

(2.8)

FIG. 2. The magnetization (in units of pz) in model I as a
function of Ace, (in arbitrary units) for p = 5 and cop=0. 25.

and the magnetization M by

M=k T""Q
aH

2pg g (Z„+1)[—,'b, lZ„+ I)—(n + —,')iiico],
~~] n=O

(2.9)

where pz ——eA/2mc. Note that the last result can be ob-
tained by summing dE„ /dH—over all occupied levels.
Equations (2.8) and (2.9) are correct only when X„PZ„.
As the inagnetic field (or some other external parameter)
is varied, a sublevel may cross the Fermi energy. Such a
crossing is accompanied by discontinuities in thermo-
dynamic quantities. Using Eq. (2.7a), we find that the
value of lng (and similarly of N and M) for an integer X„
(=j), lies half-way between the values for X„~j+ and

I

X„~j . We will return to these discontinuities below.
Figure 2 portrays the magnetization per particle as a
function of iiico, (in arbitrary units, since M depends only
on the ratios p/b, and A'co/b) for a small number of occu-
pied Landau levels and co, /coo-4 —16. The division of M
by N in Fig. 2 scales out the discontinuities in both M
and N, leaving out a rich oscillating structure. The
large-scale oscillations are those corresponding to the de
Haas- van Alphen effect. These occur whenever n o
changes (by unity) as the magnetic field is changed, and
are clearly evident in Fig. 2. However, the confining po-
tential leads to further, faster, oscillations, superimposed
on the dHvA ones. In the following we concentrate upon
the structure within a single dHvA oscillation, i.e., we as-
sume that no is constant. To this end we rewrite the
second (oscillating) term in Eq. (2.7a) as

pg c sIo(2 pi/rA)[p ,'6 —,'(—n 0—+1—)fico] Isi n[(n 0+1) iprftco/b, ]
(lnQ)„,= 222 sin( itp fico/6 )

(2.10)

Two types of oscillations (in addition to the dHvA os-
cillations. ) are evident in (2.10). The first is related to the
variation of p/b, by l. Using Eq. (2.2) and
b, -(ftcoo) /fico„we find p/b, -P/$0, where P is the flux
through the system of effective radius R, P=irHR . In
other words, a variation of p/6 by unity corresponds to a
variation of the flux by one flux quantum. These oscilla-
tions are of the Aharonov-Bohm type. Each period cor-
responds to one state per Landau level crossing the Fermi
energy. For a system of size —10 cm, the periodicity
of the AB oscillations is of the order of 10 G. The
discontinuity in the magnetization as a sublevel crosses
the Fermi energy is determined by the magnetization of
the states near this energy. It can be seen that it is largest
for states belonging to the lowest (n =0) and the highest
(n = no) Landau levels, and is of the order of
2p~p/Ace-2p~no. Thus, we expect these jumps to be
larger for smaller magnetic fields, as is indicated in Fig. 2.
Another behavior was obtained by Sivan and Imry, who

studied, in the WKB approximation, a diferent confining
potential, namely a finite two-dimensional system bound-
ed by infinite-potential walls. They obtained the magneti-
zation of an edge state given by R /lH, with
lH=QA'/mco„ i.e., a magnetization that increases with
increasing magnetic field. Our results, concurring with
those obtained by Sivan and Imry, indicate that the mag-
nitude of the AB oscillations depends on details of the
confining potential.

The second kind of oscillations appearing in Eq. (2.10)
is related to the variation of the factor Ace/6 by 1. For
strong magnetic fields, these oscillations are much slower
(by a factor no) than the AB ones. The appearance of
these oscillations can be attributed to the correlations be-
tween diferent Landau leuels, in contrast with the AB os-
cillations which involve each Landau level separately.
The energy difference between the bottom of the ladders
belonging to adjacent Landau levels is Ace. Thus, as
Ace/6 increases by one, an additional sublevel in the
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lower Landau level crosses (downward) the bottom of the
higher Landau levels; otherwise, the two ladders retain
the same interladder energy spacing. This means that the
energy difference between a state, say, in the lower Lan-
dau level and the one closest in energy in a higher one,
assumes nearly the same value as A'co/b, is increased by
unity, leading to the second kind of oscillations referred
to above. In the general case, the amplitude of these os-
cillations should be of order +no. The correlation be-
tween Landau levels in this model may lead to a coherent
AB effect, i.e., to a situation where sublevels in all Lan-
dau levels cross the Fermi energy simultaneously. This
happens whenever fico/b, assumes an integer value; in
that case, all (upper) sublevels of a given Landau level
coincide with those of the lower ladders. This effect is
manifested in Eq. (2.10), where an integer value of fico/b,
leads to a factor of no+1. The oscillations of the second
type are evidently a manifestation of the particular spec-
trum at hand. In more general models we expect these
oscillations to be replaced by a "noisy" signal.

The spectrum has another interesting effect resulting
from the correlation between different Landau levels.
One may consider the distribution of level spacings I5j
between successive sublevels [belonging, according to the
spectrum (2.4), to different Landau levels]. Were different
Landau levels uncorrelated (e.g., each level was still de-
scribed by a uniformly spaced ladder, but the shifts
among different ladders were uncorrelated), this distribu-
tion would be Poisson-like, peaked at 5=0. This, howev-
er, is not the case here. The distribution of I5I for the
spectrum (2.4), which may be regarded as that of two
one-dimensional harmonic oscillators with incommensu-
rate frequencies, has been studied in Ref. 10. It is sharply
peaked around a finite value of 5. For example, studying
this distribution for states near the Fermi energy, for the
characteristic values depicted in Fig. 2 (p=5, fico, =l,
and ficoo=0. 1, all in arbitrary units), we obtain the statis-
tics of 1255 such energy gaps. The values
5=0.963X10 and 5=0.954X10 occur 656 and 144

e BE„(
1 (2.11)

Differentiating (2.4a), we find that the edge current (i.e.,
the current with the coo=0 contribution subtracted) is
equal to +ehlh, where the plus (minus) sign corresponds
to positive (negative) l. Since the energy separation 6 be-
tween states with positive l is much smaller than Ace, the
energy separation between states with negative l, we ex-
pect that the states in an energy range hE will mainly
carry a positive current. If hE is smaller than %co, we can
ignore the negative-1 states and the overall current is

times, respectively, which account for -64% of the total
distribution. Thus, if an absorption experiment could
have been carried out on such a system, a sharp peak
would be observed at this value of 5. It should be noted
that the location of the peak of the distribution is very
sensitive to the magnetic field. In Fig. 3 we display its
dependence on Ace„ for coo=0.25, where only values of 6
that account for more than 50%%uo of the distribution are
depicted. For very small changes of the magnetic field,
the energy separation between nearest sublevels varies
linearly with the field. One expects it to oscillate, with a
period corresponding to the rate at which sublevels from
adjacent Landau levels cross each other. A simple calcu-
lation shows that this period (in fico, ) is equal to 5/2; this
result is evident in Fig. 3, where b =0.06. Due to the
dependence upon the magnetic field, this quasigap is not
manifested as oscillations in the thermodynamic func-
tions. This is to be contrasted with the AB effect, which
results from the constant gap b between adjacent sublev-
els in the same Landau level. In the latter, the gap
remains practically constant over many periods of the
AB oscillations.

So far we have discussed only thermodynamic quanti-
ties. We now turn to study a transport quantity, related
to the quantized Hall effect. The current carried by a
sublevel, characterized by n and t [see, e.g., Eq. (2.4a)], is
given by"

P P2P
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FIG. 3. The most frequent gap 6 (see text) as a function of
Ace, (both in arbitrary units). Only values of 5 which account
for more than half of the distribution are displayed.

FIG. 4. Quantization of the Hall conductance (displayed here
as a function of Ac@,). Aharonov-Bohm oscillations are superim-
posed on the Hall plateaus.
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given by

(2.12)

where the factor bE /b is the number of sublevels in each
Landau level in the energy range AE. The guiding
centers of the additional sublevels are located near r =R.
Therefore, occupying bE/b, extra sublevels (per Landau
level) may be viewed as raising the local Fermi level near
the edge (r =R) by b,E, i.e., applying transverse voltage
of bE/e. Hence, Eq. (2.12) leads to the usual quantiza-
tion of the Hall conductance

III. EFFECTS OF SPIN-ORBIT INTERACTIONS:
FIRST MODEL

In this section we study the effects of the s.o. interac-
tion due to boundaries upon thermodynamic quantities.
The s.o. interaction is obtained from Dirac s equation as
a first-order relativistic correction [O(U /c )] to the
Schrodinger equation

eA
V o". VVX p-

4m c C
I

(3.1)

where —,'Tier is the electron spin operator. With the har-
monic confining potential V(r) = ,' me@or, the Ha—miltoni-

an in the presence of the s.o. interaction takes the form
'2

p
1 eA m+ copr

2m c 2

H u=(no+1)e /h .

This quantized Hall effect in the pure sample is the start-
ing point of the discussion of the effect in disordered sys-
tern. " It should be noted, however, that in obtaining
(2.11) we have assumed a smooth density of states. Since
the Hall current I is proportional to the number of states
in the energy range bE, Eq. (2.11) suggests that AB oscil-
lations occur on top of the Hall steps. Indeed, in Fig. 4,
which displays the Hall current as a function of the mag-
netic field, AB oscillations are clearly observable.

IV. CONFINING POTENTIAL: SECOND EXAMPLE

To examine to what extent the results of the previous
model are sensitive to the particular choice of the
confining potential, we consider a second model confined
in the y direction by the potential

V(x,y) =
—,
' m cocy (4.1)

parameters, I is extremely small ( —10 ' ). However, as
discussed in the Introduction, this is related to the fact
that the present model is characterized by a single pa-
rameter. In Sec. V we present an alternative model,
which leads to much larger values of the s.o. parameter.
Thus, in the following we discuss the inAuence of the s.o.
interaction for arbitrary values of the s.o. parameter
(though still small compared to unity).

The grand partition function is given again by Eq.
(2.7), with the appropriate redefinitions of co and b„and
where an additional sum over the spin directions is im-
plied. To linear order, the s.o. interaction does not affect
the amplitude of the various terms in lng, and conse-
quently, in all thermodynamic quantities. Two interest-
ing effects of the s.o. interaction are worth mentioning.
First, through the dependence of n p on o„one may ob-
serve a splitting of the dHvA oscillations which are
prominent mainly near the maxima of the magnetization
(see Fig. 2). In Fig. 5 we display this splitting for the
overestimated value of I =20%. Second, the s.o. cou-
pling may also affect the AB oscillations. Expanding in
the s.o. correction to 5 in the denominator of the argu-
ment of the cosine in (2.7a) leads to a multiplicative fac-
tor, given by cos(2mP rP/%coo). Due to the factor P/firoo,
this term may still lead to a significant correction, even
for small values of the s.o. coupling. Interestingly, this
term is independent of the magnetic field and multiplies
the AB oscillating term in all thermodynamic quantities.
Thus, in some sense it may be considered "universal. "
This result is very similar to the universal multiplicative
reduction factors, obtained in Ref. 12, due to s.o. scatter-
ing in disordered systems.

+ cr, m copr p—2

4m c
eA

C
(3.2)

0.00 I I I I I I I

I

I I I I

-0.O2

(~)
Using the gauge A= —,'H X r and substituting, for each cr,
direction,

%(r, 8;o, )=P(r; o, )e"

it follows that P satisfies the one-dimensional Schrodinger
equation (2.3), with

(3.3a)

(3.3b)

where I, which characterizes the magnitude of the s.o.
interaction, is defined by I =%cup/mc . The energy levels
for each value of o, (o, =+1) are given by (2.4) with the
modified values of co, and co2. For the above values of the

—0. 04

-0.06

-0.OS

—0.10

I

1.35
I I I I I I I

1.45 1.5
I I I I I I

1.4

&~~ (orb units )

FIG. 5. The splitting of the magnetization peak (model I) in
the presence of the s.o. interaction (compare with Fig. 2).
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%(x,y ) =(t (y )e

It then follows that P(y) satisfies a one-dimensional
Schrodinger equation with an effective harmonic poten-
tial

coo( iiik„) m
(4.2)

with co =co, +coo and yi =co,A'k„/mco . Here
k„=2irl/L„, l being an integer. The eigenenergies are
given by

E„i= ( n + ,' )iiico+ b,I— (4.3)

where b, =(h /2mL„)coo/co =Docoo/co — Using H. —1—
10 T and L —10 cm, we have Ace-10 —10 eV and
5—10 ' —10 eV « %co. The energy levels for

I

with periodic boundary conditions in the x direction,

%(x+L„,y)=%(x,y) .

Again, ~o, characterizing the confining potential, is
chosen such that particles with potential energy near the
Fermi energy JM experience an effective width L,
p= —,'cooL . As in Sec. II, coo-10 ' 1/sec simulates

reasonable (L —10 cm} systems. Self-consistent nu-

merical studies' indicate that the potential (4.1) may
faithfully describe the effective potential of quasi-one-
dimensional (1D) systems with a magnetic field (mainly
when a small number of Landau levels are occupied).
This potential was also used by Xie and Das-Sarrna' and
by Kirczenow' to study transport in such quasi-1D sys-
tems.

We follow the procedure described in detail in the pre-
vious sections to obtain the spectrum, thermodynamic
properties, and the current. Assuming the gauge
A= —Hyx, we substitute for the wave function the form

I.=O K1=3 n=4

FIG. 6. Energy levels for model II for co, /ma=4 and
co, /Do = 10.

X„cos(2irpX„)

~2p 2
(4.4)

with X„=I[@—(n+ —,')%co]/b, ]'~ and no is the maximal

n such that )Lc
—(n +—, )iiico is still positive. The magneti-

zation M is obtained by differentiating with respect to the
magnetic field

co /coo:4 are shown in Fig. 6.
The grand partition function of this model is calculated

exactly by employing the Poisson summation formula.
We find (in the T~0 limit)

sin( 2irpX„)
lnQ=2b, g —X„-'+ g

n=0 =1 2~ p

2 sin( 2irpX„)M= g —(n+ ,')fico' 2X„+ g—
n=0 Kp

sin(2irpX„) 2X„cos(2irX„)
+b, ' ——X„+g

7Tp 7Tp

2X„sin( 2irpX„)
(4.5a)

where the primes indicate derivatives with respect to the
magnetic field

2pg
(4.5b}

2pg co .
2A

15co co
(4.5c)

no

M= g (2Z„+1) (n + —,')Aco—'—
n=0

no

Z„(Z„+1)
Ql

3

For noninteger X„, (4.5a) can be recast in the simpler
form

Ql
M„=—(n + —,')fico'2Z„— (2Z„+1}Z„, (4.7)

I

where Z„ is the integral part of Xn. In this case, the
number of electrons in each Landau (n) level is 2Z„+ l.
Again, Eq. (4.6) may be obtained alternatively by sum-
ming the magnetizations of each level —BE„&/BH over all
occupied levels states since, for a noninteger X„, the
number of occupied levels does not change with the field
(i.e., it is considered as constant when differentiating with
respect to the field). For an integer X„, i.e., when a sub-
level in the nth Landau level crosses the Fermi energy,
the contribution of this level to the magnetization can be
read from (4.5a) to be

n=0
Mn, (4.6) exactly midway between the values of M„ in (4.6) for
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(2Z„—1) and for (2Z„+1) electrons in the nth Landau
level, respectively.

For each Landau level, states with 1-0 lie in the
center of the sample, while those with the maximal value
of I, I-Z„, lie near the boundary (defined by the Fermi
energy). The magnetization of a bulk state (i.e., 1-0) is
of the order of 2ps(n +—,

' ), while that of an edge state is

—2ps [2(n + ,' )fico —p]/f—ico .

The latter is the order of magnitude of the jumps in the
magnetization as a state crosses the Fermi level [cf. Eq.
(4.7)]. It is seen that the contribution of the edge states is
larger for the lowest and highest Landau levels. For
those levels the magnetization due to boundary states is
p/he@-no times larger than that of a bulk (1-0) state.
This result is similar to the one obtained for the magneti-
zation of the edge states in the previous model. The mag-
netization per particle, for typical values of the parame-
ters, is shown in Fig. 7. Comparing to Fig. 2, it is seen
that the finite width of the sample in the x direction leads
to an asymmetry between the decrease and increase of the
magnetization. This is to be expected since, in the ex-
treme case, namely, rigid boundary conditions in both
directions, M is monotonically decreasing (with discon-
tinuous jumps) as H is increasing, similar to the standard
dHvA oscillations.

The AB oscillations are also evident in Fig. 7. Their
period, from Eq. (4.5a), corresponds to a change of
X„-(P/6)'~ by unity. Using P —

—,'mLiaioz and the
definition of b, following Eq. (4.3), we again find the
period P/Po, where P=HL, L . In this model, the sub-
levels in different Landau levels do not cross the Fermi
energy coherently. Thus, in this case, the overall ampli-
tude of the "noise" added to the dHvA oscillations [see
discussion of the second kind of oscillations following Eq.
(2.10)] will be of the order of +no times that of the con-
tribution of a single level.

Taking into account s.o. interaction due to the boun-
daries, one adds to the potential (4.1) the term

V, , = o.,mao y Ak +—Hy (4.8)

I(nI) — P Ak +
X

(4.9a)

A straightforward calculation leads to

CO
I(nl) eh 0

mL2 ~2
X

(4.9b)

We see that in the presence of a magnetic field, it is the
confinement in the y direction that accounts for a current
in the x direction. This, indeed, will vanish when cop 0.
(Without a magnetic field the current is independent of
coo). One may imagine' that the states with positive k„
(and I) carry currents which originate from a reservoir in
the far negative-x region, while those with negative k,
originate from a corresponding reservoir in the positive-x
direction. If one assigns different chemical potentials to
these two reservoirs, p, and pz, then a net current will

Aow in the system

The Hamiltonian can still be analytically diagonalized,
leading, for each value of a„ to the same type of eigenen-
ergies as in (4.3), but with modified frequency co,

AO)p—CO +COp+0
2

COpCO

2mc

6 is unaltered to first order in the s.o. coupling strength.
We see that the modifications due to the s.o. interaction
are of the same order and of the same kind as those dis-
cussed in detail in Sec. III and consequently lead to simi-
lar effects.

As mentioned above, the present model, defined by Eq.
(4.1), may be used to investigate transport properties in
quasi-1D systems. ' ' To this end we calculate the
current I„("",carried by the state O'„I along the x direc-
tion,

(4.10)

M/N

() &)

0.4—
I I I

I

I I I I

I

I I I I
I

I I I I

I

I I I I

I

I I I I

where 1; is the integral part of

x; =
I [p,; (n+ —,

' )f—ico]/b, I
'

0.2—

—0 4—
I I I I l I I I I I I I I I t I

1.5 2 2. 5

5 40& (orb unit s )

I I I I I I I I I I

3 3.5 4

FIG. 7. The magnetization in model II as a function of fi~,
(in arbitrary units) for p =5, co0 =0.1, and D0 =0.1.

the right-hand side (rhs) of Eq. (4.10) is obtained when
the difference between 1, and X, is neglected. The chemi-
cal potential difference and the current are both in the x
direction. Equation (4.10)—in the particular case of zero
magnetic field —is a manifestation of the quantization of
the conductance in constricted ballistic systems. ' Such
a quantization holds, in this model, even when a magnet-
ic field is turned on. It is interesting to note that the role
of independent channels is played here by the harmonic
levels, i.e., the quantum number n, which, in the presence
of a magnetic field, denotes the Landau levels. In other
words, the number of independent channels is the num-
ber of occupied harmonic levels. This interplay between
magnetic and electric depopulation of subbands was



8358 YIGAL MEIR, O. ENTIN-WOHLMAN, AND YUVAL GEFEN 42

indeed observed. ' We note that the quantization (4.10)
persists even in the absence of a magnetic field (where
now the number of channels will be given by the number
of the harmonic-oscillator states below the Fermi energy).
This is in contrast with Ref. 15, but in accordance with
the interpretation presented in Ref. 17. When the
difference between l, and X, is taken into account, AB os-
cillations appear on top of the quantization (4.10), simi-

larly to the AB oscillations exhibited in Fig. 4.
In order to study the Hall effect in this system, it is

convenient to write (4.9) as

1(nl)
X (4.1 1)

It is interesting to note that if one defines BE„&/—By& as
an "effective" electric force acting on the electron at state
(I(„(, then Eq. (4.11), apart from a small finite-size correc-
tion, yields a "classical" Hall effect for this state. If one
applies a chemical potential difference in the y direction,
then the current in the x direction is given by

0 no+1
y 1(nl) 0 f dy 1(nl)

&(y()

where these two characteristics are expected to be in-

dependent. One may expect that, since the s.o. interac-
tion is proportional to the potential gradient, increasing
the gradient, while keeping the system size unchanged,
may lead to a stronger s.o. interaction. This cannot be
achieved in the context of the models discussed so far.
We thus introduce another model defined by the
confining potential

0, 0 y L
V( )='

a(y L)—, L &y, (5.1)

with V(y)= V( —y) and periodic boundary conditions
[~p(x,y) =%(x +L„,y }]in the x direction. We carry out a
WKB calculation of the energy levels of this two-
dimensional model. Choosing the gauge A=( —Hy, 0,0)
and substituting

V,(r(y) =
—,'mao, (y —y() + V(y)

(I((x,y;o, ) =P(y;o, )e

with k„=2m I /L„, one obtains a one-dimensional
Schrodinger equation for t((y(;cr, ), with the effective po-
tential

=(no+ I )—hp,e
(4.12} +B(~y~ L)C, —(o, )haik„a, (5.2}

where b, (y& ) =y( —
y( ( and we have used (4.11) to obtain

the last equality in (4.12). We note from (4.11) that a po-
tential difference in the y direction induces a current in
the x direction only in the presence of a magnetic field, in
agreement with the interpretation of (4.12) as the quan-
tized Hall effect (in ordered systems). This effect can be
measured provided that the coupling between opposite
edge states, which carry currents of opposite directions,
is neglected. Again we expect AB oscillations to be su-
perirnposed on these steps.

V. SPIN-ORBIT INTERACTION
IN WKB APPROXIMATION

In the previous sections we have presented an exact
calculation of the grand partition function for two
confining potentials in the presence of the s.o. interaction
due to the boundaries. For parameters appropriate for
mesoscopic samples we concluded that the modifications
due to this interaction were rather small. While being ex-
actly solvable, these confining potentials are governed by
a single parameter, coo, that determines both the width of
the sample and the potential gradient near the boundary
(i.e., at E-p). This is in contrast with real systems,

j c2
(n + —,

' )m. = —f +2m [E —V,(r(y)]dy,
1

(5.3)

where c, and cz are the classical turning points, i.e., the
values of y where the integrand vanishes. For a bulk
state [i.e., ~yI ~

& L +2E/%co,—lH, with

lH —=+&/(m~, )], ,V((yr)= ,'mao, (y —
y—() in the entire

range of integration. Then c, and c2 are given by

ci z y(+ "((/(2E/fico, )lH, (5.4)

and (5.3) yields E„(= (n + —,
' )%co„ the infinite system solu-

tions. For an edge state, either c, or cz are determined
by the boundary of the system. For example, for an edge
state near the right-hand side of the system, the quantiza-
tion condition (5.2) becomes

where y(= —irik„/mco, and C, , =o,R/4m c, arising
from the s.o. interaction due to the boundaries in the y
direction. Here 8(y) is the Heavyside function. In ob-
taining (5.2) we have neglected e A/c compared to p in
the s.o. interaction term, which is justified in the range of
magnetic fields considered in this paper. The Bohr-
Sommerfeld quantization condition for the energy levels
is given by

L Cp

(n + —()m= —f '
I 2m [E —.

—,(mco, (y —
y&) ]I

'~ dy+ —f I 2m [E—(mco, (y —
y&) ——a(y —a) —C, , haik„a]I '~ dy,

l y

(5.5)

where ci is given by (5.4) and c2 is the value of y where
the second integrand vanishes. Carrying out the integrals
in (5.5), we obtain a transcendental equation for the ener-
gy levels. The first integral gives

I, = [cos '(z() —z((1 —z( )' ],
Ah)

(5.6)

with z(=Q(rico, /2E (y( L)/lH. In the case—of infinite
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walls at y =+L, I, would be the complete answer ' ' '
(note that, in that case, c2 =L~)

Assuming steep boundaries (alH » fico, ), we now dis-

cuss the zi «1 case. [The case (1—zi) «1 is not realis-
tic here for when (yi L—)/lH » 1, the effective potential
is dominated by cc(yi L—), which, in turn, leads to
zi «1.] We expand the two integrals in (5.5) to first or-
der in zi, fico, /alH, and C, , A'k„a/E, to find

2 Ado

E„i=2(n + ,' )f—ice, 1+—3zi +—4(n + —,
' )

alH

C, , A'k„
+

2+n +-,'

(5.7)

(A similar result, without the s.o. interaction, was ob-
tained in Ref. 5.) Some consequences of Eq. (5.7) con-
cerning the s.o. interaction are worth mentioning. The
relative energy shift due to the s.o. interaction does not
depend on a in this approximation. This is related to the
fact that, as the potential gradient increases, the range
over which it affects the wave function decreases at the
same rate, leading to an energy shift independent of the
potential gradient. We also note that, using the definition
of C, , following Eq. (5.2) and noting that, for the edge
states under consideration Ak„= m co,L, the magnitude
of the s.o. splitting takes the form [(fico, /mc )(L /1H )].
Comparing to the estimates of the s.o. splitting obtained
in the previous sections, we find the following: (a) The
s.o. splitting is proportional to A'co, /mc2 (compared to
%coo/mc in the previous models), which is at least 1 or 2
orders of magnitude larger. (b) The factor L /IH leads to
further enhancement of the s.o. term (for example, for
H-10 T and L —10 cm, L /IH —100). (c) The split-
ting increases as H due to the appearance of lH in the
denominator. Thus, although the effect is rather small
for the present set of parameters (of the order of
10 —10 ), it may still be measured when higher mag-
netic fields and larger (ballistic) systems become available.

VI. DISCUSSION

We have examined two types of confining potentials
which may simulate small, finite-size, mesoscopic sys-
tems. In both cases, the confining potential lifts the de-
generacy of the Landau levels and consequently leads to
an oscillatory behavior as a function of the magnetic field
superimposed upon the dHvA oscillations. This is mani-

fested in the magnetization per particle (Figs. 2 and 7)
and should be observed in other thermodynamic proper-
ties as well.

Turning to transport quantities, we have found that the
Landau levels play the role of the "independent chan-
nels" in the Landauer picture. ' This was obtained for
the longitudinal as well as for the transverse conductivity.
Moreover, AB oscillations appear on top of the quantized
conductance steps (see, e.g., Fig.4).

Both confining potentials yield qualitatively similar re-
sults, though the statistical properties of the energy spec-
tra are quite different. Some features of these models
may be shared by clean, mesoscopic samples. The effect
of static disorder, including magnetic impurities, is left
for a future study.

We have concluded that the detailed form of the
confining potential appears to be rather irrelevant, as far
as thermodynamic and transport properties are con-
cerned. These depend upon a restricted number of ener-

gy levels around the Fermi energy, and hence are rather
insensitive to the global details of the energy spectrum.
The results may therefore be relevant to experiments in
such ballistic constricted geometries.

Particular attention was paid to the effect of s.o. in-
teraction due to the boundaries. It is found that, due to
the s.o. coupling, the oscillating terms in the thermo-
dynamic quantities are multiplied by a factor which de-
pends upon the parameters of the system and is indepen-
dent of the magnetic field. This result is amenable to ex-
perimental verification. Admittedly, the s.o. coupling is
rather small for the examples considered. However, its
effect on various thermodynamic quantities that exhibit
oscillations with the magnetic field is "universal, "' and
hence may be detected in experiments. Also, one expects
splitting, due to the s.o. coupling, in the dHvA oscilla-
tions, which may also be detected in experiments. Zee-
man splitting is represented by an additional term in the
Hamiltonian. Since it does not connect spin-up and
spin-down electrons, it only gives rise to trivial degenera-
cy lifting of the spectrum. This conclusion has to be re-
vised, of course, when static scattering potential is intro-
duced.
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