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Incommensurate phase transitions and optical activity
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Recent experiments with the high-accuracy universal polarimeter method have revealed optical
activity of the incommensurate phases of A 28X4 crystals. The origin of this important
phenomenon is explained. A pure imaginary perturbation that takes place in the Hermitian dynarn-

ical matrix induces two circularly helical lattice waves. One of them is condensed in the same form
in the incommensurate phase. This is also the physical picture of the existence of the phason mode.
The symmetry of the crystal becomes D„, which permits optical activity. The theory is consistent
with the Lifshitz condition and with our experimental results.

I. INTRODUCTION

Optical activity (OA) is permitted to occur in a solid
that lacks an inversion center. Thus OA is primarily a
powerful tool for deciding the symmetry of a solid. Since
the symmetry consideration is specifically important for
elucidating the mechanism of the incotnmensurate (IC)
phase transitions, there was much interest in investigat-
ing whether the IC phases were optically active or not.
The HAUP (high-accuracy universal polaritneter) '

method opened the way for the first time to this study.
We measured the temperature dependence of gyrations
of A 2BX4 crystals: [N(CH3)4]2ZnC14, Rb2ZnC14,
(NH4)2SO4, and [N(CH3)4]2CuC14.

' Meekes and Janner
and Dijkatra and Janner were successful in Rb2ZnBr4
and [N(CH3)4]zZnC14. Thus the occurrence of OA of the
A2BX4-type ferroelectric and ferroelastic crystals have
been established by these workers by using the refined
HAUP method. '

However, it cannot be said that the origin of OA in the
IC state has been perfectly understood up to now.
Meekes and Janner and Dijkatra and Janner explained
the origin of OA on the basis of superspace symmetry
and proposed a method of predicting the observable ten-
sor components of various A2BX4 crystals. Their theory
stems essentially from an idea that the average structures
of the IC phases are centrosymmetrical but OA reflects
the point-group symmetry of the crystal region within the
optical wavelength used. Hardy, Katkanant, and
Edwardson' studied the crystal structure of IC phases
on the basis of molecular dynamics, and claimed the ex-
istence of helical structure of atoms. However, the real
origin for the formation of the helical structure was
elusive to us.

We" explained the importance of the study of OA of
the IC phase transitions from the viewpoint that OA
would provide us with irreplaceable knowledge for the
chirality of structure and the characteristic coupling na-
ture of the constituent atoms. We ' ascribed the origin
of IC phases to a characteristic dissymmetry which is
caused by the existence of the phason mode of the corn-
plex order parameter. However, our arguments were

qualitative. Since the problem has been so challenging,
we feel it necessary to explain our idea in more detail and
compare it with experiments. This is the purpose of this
paper.

II. STRUCTURE OF INCOMMENSURATE STATE

An essential nature of a crystal of being in the IC state
is that the condensed order parameter in the crystal has
its own wavelength but modulates an existing lattice
period unlimitedly within the specimen. In order that
such an IC structure could exist, the order parameter,
which was complex before the IC transition, still contin-
ues to be complex in the transformed IC phase. If the
wave number q, where the complex order parameter was
condensed, coincides with any one of the mesh of the
Brillouin zone, the wave number must become immedi-
ately zero (I point) in the new phase; accordingly the or-
der parameter becomes real at once.

Let a complex order parameter at wave number q be
defined as Q,

Q = A exp(i8 ),
where A is the modulus, and 8 the phase angle. Then
the free energy of this system can be expressed by using
this order parameter, ' allowing for the susceptibility to
vanish at the transition point T„

G=GD+a(T T )QqQ q+bQ»Q q—
G0+a(T T )Aq+bAq

It is important to note that 0 is not contained in this for-
mula of the free energy. The free energy does not depend
on Oq at all. This fact can be understood more clearly in
the following. It is well known that in the irreducible
representation of the general point q, a conjugate order
parameter Q' is degenerate by an additional symmetry of
the time reversal. Thus combining Qq with Q»', two-
dimensional real order parameters P& and P2 can be
defined as
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and (3)

—(Qq* —Q, } .
2

If the free energy is expressed in terms of these parame-
ters, it becomes

(c )

G=G +a(T T, )—(P2+P2)+b(P2+P2)2 (4)
FIG. 1. Orientation of the two-dimensional order parame-

ters. See text.

P2=pgt=p sin8 .

Here P is the modulus of the order parameter, and 8
represents its orientation angle with respect to the coor-
dinate axes. Then (5) becomes

G =Go+a(T T, )P + [b—+c(P+P~)]P

Let 8 designate a coefficient of the P term,

8= b+c(p +$2) .

The condensed parameter in the ordered phase will be
oriented such that 8 is kept a positive minimum. The
orientation of the order parameter in the new phase can
be classified into three types.

(i} When c (0, but b+c &0. The ordered phase has
one of four domains, g&=+1, $2=0, or (2=+1, g, =0, as
depicted in Fig. 1(a).

(ii) When c &0, and 8 &0. There are four domains
with g& =+1/V2, (2=+1/V2, as shown in Fig. 1(b).

(iii) When c =0, and b & 0. This corresponds to Eq. (4).
The order parameter can occupy any orientation in the
space of P, and P2, as shown in Fig. 1(c).

The physical picture of type (iii) can be elucidated by
examining the fluctuations of the order parameter. The
fluctuation along the existing order parameter, i.e., longi-
tudinal susceptibility g&, is expressed as

1 T&T.a(T T, )
'—

1 T&T
2a(T, —T) '

It is diverged only in the vicinity of T, . On the other
hand, the fluctuation perpendicular to that direction,
transverse susceptibility g2, reads

b+c
7/2=

ac(T, —T)
(10)

In order to examine this free energy we must note that a
general form of the free energy of the two-dimensional
space can be written as

G=GO+a(T T, )(p—f+Pz)+b(P, +P2) +C(P, +Pf).
(5)

Let us introduce here orientation parameters (g„gz) with

0i+&z= 1

P i =Pg, =P cos8,

and

where co is a constant angular velocity. The integration
becomes

8(t,x ) =cot+80(x ), (12)

where 80 represents an integration constant. As the
Fourier transform of the condensed order parameter
takes an IC wave number, 80(x) will change unlimitedly
with respect to x. When the linear change is assumed
against x, (12) can be expressed as

O=mt+KX (13}

taking K as a constant. This is a direct result followed by
the condition that the condensed order parameter is com-
plex. This is the same as the consequence derived from
the Lifshitz condition. The Lifshitz term only em-
phasizes that the order parameter is spatially inhomo-
geneous within the crystal, viz. ,

(14)

The integration of this term leads to the same result as
(13).

Now let us investigate what (13) does mean. For the
sake of simplicity, assume that the order parameter takes
place below T, in the (100) plane perpendicular to the x

It is important that as c =0 it is always infinite at any
temperatures below T, . In other words, it costs no ener-

gy to rotate the order parameter below T, .
From the discussion above it can be understood that a

complex order parameter is condensed in the IC phase
accompanying the following two phenomena. (1} The
transverse susceptibility is infinite for all T T, . (2) The
modulus of the order parameter really comes into ex-
istence. In order that the order parameter is consistent
with the above conditions, it must rotate with a constant
angular velocity below T, . If condition (1} only is
fulfilled, the order parameter will not take place. Because
opposite rotations of it can occur with equal probability,
the resulting order parameters are canceled by each oth-
er. The Hamiltonian of the condensed phase has continu-
ous rotational symmetry in P, and P2. This is the
symmetrical condition of the IC state, which permits OA.

The orientation angle 8 can be taken as a function of
time t and position x. The above condition is expressed
as
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the well-known representation between 8 and x, but em-
phasizes the time change of the relation.

III. FORMATION OF HELICAL STRUCTURE

FIG. 2. Helical structure of the complex order parameter in
an incommensurate phase.

axis. The schematic representation of the condition (13)
is depicted in Fig. 2. 8 rotates with a constant angular
velocity at each point, but with phases depending linearly
on x; e.g., a phase difference 58=~(xz —x, ) appearing
between two points x& and x2 in the figure. Then it will
be seen that the trajectory of a constant 8 value at time t
forms a helix as indicated by the bold line in the figure.
This figure conforms to a symmetry of D„, one of the
dissymrnetric classes which permit OA. This physical
picture of (13), viz. , the rotation of the helical trajectory
of 8, is the phason mode. It has become evident that the
excitation of the phason mode in the IC states enhances
the symmetry of the crystal as high as D „,which forbids
the translational symmetry of the crystal. This is one of
the characteristic features of the IC phase. The phason
cannot be condensed at any temperature below T, as long
as the crystal is in the IC state because the condensation
of the phason means the stopping of the rotational
motion and the disappearance of the mode itself. The
loss of this mode immediately transforms the existing or-
der parameter into a real one. It is necessary to note that
the same physical picture can be visualized by using
another expression. The rotational motion of the helix is
equivalent to the translational motion of the helix with a
constant velocity along the x axis. Figure 3 represents

It was described qualitatively in Sec. II that a complex
order parameter appears in a helical form in the con-
densed IC phase. Here we investigate the reason why
and how the complex order parameter can be frozen in
an IC point in the Brillouin zone by taking a simple mod-
el. Assume that a lattice wave, say, of a transverse-
acoustic mode, propagates along the x direction. The
wave number is taken at a general point q in the Brillouin
zone, and the two orthogonal components of an eigenvec-
tor of the dynamical matrix are designated as g and g .
As q is a general point, the symmetry of q permits the
Lifshitz term to exist in the free energy.

An eigenvalue of the eigenstate of the dynamical ma-
trix is designated as a, where another conjugate state is
degenerate by the symmetry of time reversal. Here we
define both waves as 1 and 2, and let a decrease linearly
with T and vanish at T, at a rational point qo. In order
that this condition is guaranteed, a must increase qua-
dratically with respect to the wave number,

a=a(T T, )+b(q——qo) (15)

Here b must be positive and rejects the strength of corre-
lation among atoms in the crystal. The ordinary mean-
field theory, where the Landau theory belongs, corre-
sponds to the case where b becomes infinite.

Here it is important to remember that there can exist
an internal perturbation which changes the dynamical
matrix. It is the occurrence of an antisymmetrical part of
the Hermitian dynamical matrix of the crystal. This
phenomenon is represented in the free energy as the oc-
currence of coupling of the existing eigenmodes. The free
energy of the system can be expressed as

G =Go+ a( g g +g g" ) +o (q )ri g + cr (q )ri& gq, (16)

where o(q) represents a complex coefficient. From this
free energy,

G =co gq=av]q+o(q)(q,
Bri&

(17)

BG =co g =a/ +cr*(q)g (18)

t3
t2 where co means eigenfrequency. Equations (17) and (18)

represent an eigenvalue problem

and

(a —co )g +o.(q)gq=co g~ (19)

o*(q)g +(a —co )g =co g

Here o(q ) is expressed by using a coupling constant o (x)
between two atoms separated by a vector x,

FIG. 3. Spatial variation of the phase mode 0 at regular time
intervals.

o.(q)= go(x )exp(iqx) . (21)
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As x is a small quantity, it can be expanded as

o(q)= gcr(x)+ ger(x)iqx . (22)
2

As q is a general point, an inversion center does not exist
along the x axis, or cr(x) has the symmetry of a vector,
i.e., o.( —x ) = —o (x). This is one of the conditions that
the Lifshitz term must be invariant under the symmetry
operations of the crystal. Then (21) becomes

o(q)=iqI

where

r= pa(x)x .

(23)

(24)

0

I
I

I
1

I

I

I

I

I

I

I stands for the strength of coupling among atoms.
Then a secular equation for the above equations becomes FIG. 4. Splitting of a degenerate mode into two branches, co&

and co2 with exaggeration.
a —co iq I

p =0.—iq I a —a)
(25)

and (27),
Two solutions for the eigenfrequencies can be obtained,

co&
= a(T T, )

—I —
qo

—I /4b (32)

and

co, (q ) =a —I q =a( T T, )
—I q—+b(q —qo) (26)

co&= (aT T, )+I q—o I /4b .— (33)

co22(q) =a+ I q =a( T T, )+ I q—+b(q —qo) (27)

Thus it is shown that the degenerate 1 and 2 modes
resonate with each other by the effect of a pure imaginary
perturbation, and lift to two branches of co, and co&. The
wave numbers of the minimum frequencies for each
branch can be deduced by a condition of
a~', /aq =a~,'/aq =0,

and

q) =qo+I /2b (28)

q2=qo —I /2b . (29)

The dispersion of N& and co& with respect to q are depicted
exaggeratively in Fig. 4, where q& and q2 points are
symmetrically disposed with respect to qo. It must be
noted that the ratio I /b has no relation with the crystal-
line period along the x axis. Accordingly, q& and q2 will
never coincide with any points in the mesh of the Bril-
louin zone. This is the reason why q, and q2 correspond
to IC points in the Brillouin zone.

When (26) is substituted into (19),

'r)» /g» = i . — (3O)

pig =i, (31)

and A.2=2m. /q2.
The minimum frequencies of the two branches can be

obtained by substituting the values of q& and qz into (26)

Therefore the 1 wave is a compound wave of g» and g»,
forming a circular right-handed helix with the axis paral-
lel to the x axis. The wavelength or the pitch of this helix
is A, &=2m. /q&. The similar structure of a circular left-
handed helix is constructed for the 2 wave, where

co, is always smaller than co& by 2I qo, and consequent-
ly the 1 wave can be condensed earlier than the 2 wave
when T is decreased. The transition temperature T; from
the normal to the IC phase can be deduced from the con-

ition of N& =0

I I
T; =T, +—qo+a ' 4ab

(34)

To reveal a quantitative relation between crystal struc-
ture and optical activity was long an important problem

Two circular helical waves fluctuate above T; with an
opposite sense of rotation, but with zero mean amplitudes
of ( ~ Q» ~ ) and ( ~ g» ~

). Below T, , one helical wave, say

1 wave, is condensed with a nonzero amplitude. Howev-
er, the fluctuation of the phason still continues to be
infinite at any temperatures below T;. This is the physi-
cal state of the present model and the same as that al-
ready shown in Fig. 2.

The physical state of this system will change in the
lower temperature region as depicted in the following.
The magnitude of the amplitude mode and, accordingly,
the radius of the helix will be increased with decreasing
temperature. However, the pitch and the translational
velocity of the helix are kept constant. Anisotropy ener-

gy of the crystal gradually becomes prevailing, and the
helical structure begins to be collapsed. The pitch of the
helix is elongated, and commensurate crystalline parts
called domains come to exist, where phasons have com-
pletely vanished. Such a change of the state in the lower
temperature region was also confirmed by our optical ac-
tivity measurements as will be described later.

IV. ORIGIN OF OPTICAL ACTIVITY
IN INCOMMENSURATE PHASES
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of physics and crystallography. ' Although much pro-
gress has been made by Glazer' recently, it is still left in-
complete due mainly to the lack of the correct knowledge
of crystal structures and extreme deficiency of the data of
optical activity. However, we believe that a helical struc-
ture can produce OA as was elegantly shown by Wood. '

Here, for the sake of completeness of this paper, we ex-
plain brieAy how our helical structure of the IC phase can
cause OA.

Let us consider that a group of atoms within a pitch of
the helix forms a molecule. The molecule contains vari-
ous kinds of electrons. But we confine our attention sim-

ply to a specific one of electrons that are restored to the
molecule with a characteristic frequency cop, and ignore
other electrons. Assume that the number of such elec-
trons in a molecule is n, and X molecules are contained in
a unit volume. Electric field E=E exp(idiot —k r), with a
frequency ~ and wave number k, is applied to this molec-
ular system. In the first step, we disregard the helical
structure and assume that the electric field is homogene-
ous over the molecule. Then the equation of motion of
any electron along the x axis is given as

..S

''A
Y

(b)

FIG. 5. Schematic demonstration for origin of optical activi-
ty. See text.

rd'x, BEy
m +co&@ = —e E„+c

dt2 Bz

BE,

By
(38)

lowest and highest parts of the helix, the electrons will be
affected by the net force along the x direction by E . The
same condition holds for E, when BE,/By =0. Instead of
Eq. (35), the equation of motion of an electron becomes

dx
m +a)(p = eE„=eE—„exp( icot)—,

dt
(35) P„=[e Nn Im(coo —co )][E„+c(VXE)„]. (39)

where c is a constant. Then, induced P„ is expressed as

where x is the displacement of the electron, and m and e
represent its mass and electric charge, respectively. The
displacement can be solved as

The present result can be rewritten into a general form.
When the motion of the electrons are confined to a heli-
cal path, induced polarization can be expressed as

x = eE„lm(co—o—co ) . (36) P=e(pE+e(gVXE, (40)

The x component of the induced polarization is given

P„= eNnx=e X—nE jm(coo —co ) . (37)

where ep is the dielectric constant of the vacuum, x the
polarizability, and g is a characteristic constant. Accord-
ingly, the electric displacement D is written as

Now we take the effect of the helical structure into ac-
count. Assume that the electrons are forced to move
only along the helical path. A right-handed helix depict-
ed in Fig. 5(a) indicates this limiting path of the electrons.
It is essential that under this condition the electrons re-
ceive electric force along the x axis not only from the E„
component but also from the E and E, components,
when the electric field E(E„E,E, ) is applied. To be
more precise, an electron located at the lowest position A
of the helix in the figure feels the electric force along the
positive x direction by E, while another electron at the
highest position B feels the electric force in the opposite
direction by the same field. As a result, the net force will
not originate along the x direction by E . If E changes
linearly with respect to the z direction within a molecule,
as depicted in Fig. 5(b), where ~E~~ is the largest in the

D =EpE+P =EE+ l EpG X8
Here G is expressed by

G=Gs,

(41)

(42)

V. EXPERIMENTAL RESULTS
OF A 2BX4-TYPE CRYSTALS

We revealed OA of the IC phases of four crystals be-
longing to A2BX4-type crystals as was described before.
In Table I, the relevant crystallographic axes and ob-

where s is a unit vector of the wave normal, and G is the
gyration. It is readily understood' that if the material
equation of (40) holds in a crystal it becomes optically ac-
tive.

TABLE I. Crystal orientation and gyration of 328X4 crystals.

Substances

[N(CH, )4],ZnC14

[N(CH, )4],CuC14

Rb~ZnC14

{NH4)28eF4

Ferroelectric
axis

Incommensurate
axis

g (X10 )

(at 4 C below Ti)

0.08 (g»)
36 (g»)

4.0 (g»)
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FIG. 6. Gyration surfaces of IC phases of A&BX4 crystals.
FIG. 8. Modes of temperature dependences of gyration. See

text.

served gyrations of these crystals are shown. The orien-
tation of the gyration surfaces of these crystals, with
respect to IC and ferroelectric axes, is schematically de-
picted in Fig. 6 where dotted and bold axes represent IC
and polarization axes, respectively. Figure 6(a)
represents a gyration surface of the crystals, where g23
was measured; [N(CH3)4]zZnC14, RbzZnC14, and
RbzZrBr4 being contained in this case. Figure 6(b) indi-
cates the case where the g» component was measured,
(NH4)zBeF~ being the example. Figure 6(c) depicts the
case where gz3 was measured, [N(CH3)4]zCuC1~ being the
example, but becoming ferroelastic in the commensurate
phase.

In the cases of Figs. 6(a) and 6(b), the gyration surfaces
of the IC phases are the same as those in the low-
temperature C2„phases, where the crystal becomes fer-
roelectric. This means that the perturbation which per-
mits optical activity in the IC states is so small that the
symmetry of the physical properties conforms to that of
the low-temperature form. Even in the case of Fig. 6(c)
the gyration surface is quite similar to the two cases, al-
though the low-temperature form is not ferroelectric and
optically inactive.

The temperature dependences of gyration tensors
of these crystals are shown in Fig. 7: in 7(a)
[N(CH3)4]zZnC14, in 7(b) RbzZnC14, in 7(c) (NH4)zBeF4,
and in 7(d) [N(CH3)~]zCuC1~. Each gyration tensor in-

creases with decreasing temperature. This clearly reflects
the increase of the amplitude mode (

~ Q~ ~
). With a fur-

q&

ther decrease of temperature, the anisotropy term be-
comes predominant. Then the crystal texture changes as

briefly depicted before; segregation into multisoliton re-
gions called discommensurations and domains takes
place. The domains are the region where the eigenstates
of the symmetrical dynamical matrix are condensed and,
accordingly, the order parameters are real. In other
words, the phase mode does not exist in the domains, and
they must be optically inactive on a basis of our reason-
ing. This fact has really been demonstrated in
[N(CH3}~]zCuC1~. However, it must be noticed that the
domains can be optically active through the electrogyra-
tion effect when they are ferroelectric.

We classified the temperature dependences of gyration
of the IC phase into three types under a principle based
on our theory. We avoid overlapped descriptions here
and only show the schematic representation of the results
in Fig. 8. It is clear that all the results shown in
Fig. 7 can be perfectly classified into any modes of
Fig. 8; [N(CH3)4]zCuC14 into 8(a), RbzZnC14 and
[N(CH3)&]zZnC1~ into 8(b), and (NH~)zSO~ into 8(c). This
fact also indicates that our interpretation of the origin of
OA of the IC phases is correct.

VI. DISCUSSIONS

60-
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Q

-3-

{N(CHQ 2znClg
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-1% &00 -95 -90 -85
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0
Tc TI
.I . s . ~ . I . I . i i i, i . I
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Teir~atue (Y.)

(d)

We have revealed through experimental and theoreti-
cal study of OA that the origin of the IC phase transition
can be ascribed to a perturbation of the antisymmetrical
part of the Hermitian dynamical matrix. It must be not-
ed that the antisymmetrical part is nothing but the
Lifshitz term, which appears in the free energy expanded
in the real space. However, the present theory which was
developed in the Fourier space depicts the outstanding
feature of the structure and dynamics of the IC state.

According to our theory, gyration is closely connected
with the helical structure of the IC state. Therefore, OA
has become a more useful tool than for merely detecting
the symmetry in the study of the IC phase transitions. If
the pitch of a helix is small, relevant electrons are obliged
to make a larger number of revolutions in traveling a
given distance along the x axis, and the resultant effect of
the y and z components of the electric force is greater
than when the pitch is large. Thus the gyration G will be
expressed in general

FIG. 7. Temperature dependences of gyration tensors of
some A2BX4 crystals.

lG=C—,
d ' (43}
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TABLE II. Critical exponents of A2BX4 crystals.

Substances

[N(CH, )4]2ZnC14

[N(CH, )4],CnC14

RbqZnC14

(NH4), BeF4

Critical exponents P

0.42
0.44
0.43
0.47

where I represents the distance from an atom consisting
of the amplitude mode to the helix axis, d is the pitch of
the helix, and C is a constant. To be more specific refer-
ring to the present case, it becomes

G=C(~Q ~)(q +I /b). (44)

There appears a possibility that the measurements of the
OA provide us with the knowledge of a factor of I /b,
which plays a major role for the transformation into the
IC state. However, for obtaining this factor, the ampli-
tude mode must be properly evaluated at first. We found
that the temperature dependences of (~Q ~) of the four

g[

crystals are followed to almost the same scaling law, as
can be seen in Table II, where the observed critical ex-
ponents of the crystals are shown. We are making way
for evaluating the absolute value of this quantity. At any
rate, the work of OA for the study of IC phase transitions
is only a clue. However, this work will be promising and
the x-ray work incorporated with OA analysis will be
useful.
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