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Energy spectrum anti the quantum Hall effect on the square lattice
with next-nearest-neighbor hopping
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We study the energy spectrum and the Hall effect of electrons on the square lattice with next-
nearest-neighbor (NNN) hopping as well as nearest-neighbor hopping. This lattice includes the tri-
angular lattice as a specia1 case. We study the system under general rational values of magnetic fiux

per unit cell t)l=p/ti. The structure of the secular equation is studied in detail, and the k depen-
dence of the energy is analytically obtained. In the absence of NNN hopping, the two bands at the
center touch for q even; thus the Hall conductance is not well defined at half-filling. An energy gap
opens there by introducing NNN hopping. When P= —', the NNN model coincides with the mean-

field Hamiltonian for the chiral spin state proposed by Wen, Wilczek, and Zee [Phys. Rev. B 39,
11413 (1989)]. At half-filling for q even, the Hall conductance is calculated from the Diophantine
equation and the E Pdiagra-m. We also explicitly calculate the Hall conductance for P= —,

' using the

wave function. We find that gaps close for other fillings at certain values of NNN hopping strength.
The quantized value of the Hall conductance changes once this phenomenon occurs.

I. INTRODUCTION

The problem of tight-binding electrons in two dimen-
sions under a magnetic field is an old one (see Refs. 1 —3
and references therein), and it shows extremely rich and
interesting behavior. The Hamiltonian is written

i9,H= —g t; c c;e "+H.c. ,()"''
where c, is the usual fermion operator at site i. The
phase factor 8;, = —8;, is defined on a link (i,j ). If we
identify 8; as (2tre/ch) I',. A dl, where A is a vector po-
tential of the magnetic field, the quantity

8,, = )ssAdl= f 8dS
around S

is the magnetic flux through the area S in units of the
magnetic flux quantum P och le. Without a magnetic
field, the spectrum of tight-binding electrons on a square
lattice with next-nearest (NN) hopping consists of a sin-
gle band. But, when a rational magnetic flux

theory of the t-J model. The connection between this
subject and the t-J model has also been studied numeri-
cally. ' '" Several groups studied the stability of the state
with respect to the magnetic field. ' ' If the number of
electrons per site v is Axed, the total energy of the elec-
trons has cusplike minima when the Fermi energy jumps
across a gap as a function of magnetic flux P, and it has
an absolute minimum when P=v, i.e., one flux quantum
per electron. This is an important and interesting result,
especially in relation to the flux state and its generaliza-
tion, such as the chiral spin state proposed by Wen,
Wilczek, and Zee. '

In this paper, we study the energy spectrum and the
Hall conductance of the square lattice with next-nearest-
neighbor (NNN) hopping as well as nearest-neighbor
hopping. This model includes the NN hopping model on
the triangular lattice as a special case. The spectrum of
the model with only NN hopping on the square lattice
has a degeneracy at the center when q is even, i.e., the

8,, =
plaquette

(n, m+1) ta (n+1,m+1)

(p and tl being mutually prime integers) is applied, the
spectrum split into q subbands. Thouless et ah. showed
that each subband carries an integral Hall conductance.
This is discussed by Avron et aI. using homotopy
theory. The integer has a topological origin. It is the
Chem number of a fiber bundle which is defined by the
wave functions on a two-torus: the reciprocal space
(magnetic Brillouin zone) of this problem.

Recently, there has been a renewal of interest in this
subject because this spectrum has been shown to have a
connection with the ground-state energy of a mean-field
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FIG. 1. The square lattice with NN hopping and NNN hop-
ping in the magnetic field.
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two central bands touch at E=0 (zero mode). ' ' At this
point the Hall conductance is not well defined. The
NNN hopping, however, breaks this degeneracy and we
obtain more insight into this degeneracy. We also find
that other gaps close at certain values of the strength of
NNN hopping. The quantized value of the Hall conduc-
tance changes once this phenomena occurs.

This model has another interesting relation to high-
temperature superconductivity in view of the chiral state

I

model of the Heisenberg magnet. ' In the mean-field
treatment of the chiral spin model, the Hamiltonian is
equivalent to our Hamiltonian.

II. MODEL AND THE BASIC FORMULATION

We consider tight-binding electrons on a square lattice
in a magnetic field with NNN hopping as well as NN
hopping. The Hamiltonian is written

H = —t, g c„+, c„exp(i8„+, .„)tb g—c„+,c„exp(i8„+,.„)
n, m n, m

t, g—c„+, +,c„exp(i8„+,+, .„)t,'g —c„+ic„+iexp(t'8„+i.„+,)+H. c. (2.1)
n, m n, m

The lattice spacing is taken to be unity for simplicity. For a uniform magnetic field, we take a gauge shown in Fig. 1,
which gives flux P for each square and flux (t I2 for each triangle. When t,

' is set to zero, this lattice is topologically
equivalent to the triangular lattice. We rewrite the Hamiltonian by operator c(k) in the reciprocal space defined by

~nm 2 x y P i kx +
y x, y(2'�) o o

The result is

(2.2)

H= J dk„j dk H(k.),
(2m. )'

H(k)= t, e'""c—(k„,k )c(k„,k ) tbe'"~c (k—„,k~)c(k„+2m/, k~)

t, e ' " —c (k„,k )c(k„+2trg,k )
—t,'e ' " c (k„,k~)c(k„+2ng,k )+Hc.

(2.3)

(2.4)

We set k„=k„+2npj,and. define

c (k„,k )=c(k, +2rtgj, k ) .

The eigenstate g is given by

q

P(k, , k )= g u, (k„,k )c (k„,k )iO), (2.5)

(k i(k„+2m'+n$), —i(k +2npj +np)

ik= —e VB
J (2.8)

u, ~f„=g e ' ~"'u, ,
J

Note that (2.6) has a duality which is a generalization of
that for the NN model. ' ' The form of (2.6) is the same
under the change

B*,u, + Ajuj+Bju +, =Eu (j =l, . . . ,q), (2.6)

where (k„k) is defined in the magnetic Brillouin zone
0~k, ~2ir/q and O~k ~2m. . The Schrodinger equation
HP=EP gives

(k„,ky ) ~(k, k„),
( ta, tb ~ tg, i/ )~ ( tb, tQ, tg ~ tg )

(2.9)

ik jLet us introduce a unitary transformation u =e ' v,
then (2.6) becomes

where uo =u, u
&

= u +, , and A and B are given by det(L) EI ) =0, — (2.10)

Aj = 2t, cos(k„+2'—gj ), (2.7)
I

where

B*
1

iqk
VB e

Bi

A2 82

B2 A3 B3

Bq*

Bq-2

—iqkB*e

(2.11)
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q

2( —1)q 'Ree» II B
g=1

and (
—1)q 'IrIqI+. ,B is given m closed form as (see Appendix)

[q»l q
—r —1

q
b r r 1

iko
tbq '"(t, t,')"( —1)'+(—1)»+q(tqe +t'e

and I is the umt matrix. It is easy to see that the k» dependence of (2.10) is

(2.12)

From the duality and (2.12), (2.10) becomes

F(E)=f(k„,k ),
with

(2.13)

0
[q»] q

—r —1

f(k„,k )=2cos(qk„) tq+ g (
—1)'+

r r —1
tq

—2r(t ti )r

[e»j
+2cos(qk ) tbq+ g (

—1)" q
—r —1

r —1
q 2r(t ti )r

—2( —I)»+qItqcos[q(k„+k )]+t,'qcos[q(k„k)]—], (2.14)

where the function F(E) is a qth-order polynomial of E
which does not depend on (k„,k ) (see Fig. 2).

III. SPECTRUM AND THE HALL CONDUCTANCE

A. Spectrum

We can show from (2.13) that the spectrum consists of
q subbands and that these subbands do not lo no over ap.

Ince ~ . ~ is a Hermitian matrix, all the eigenvalues are
real. Thus, (2.13) has q real roots for a given value of
f(k, , k»). These q roots do not cross as f(k„,k ) is

varied because F(E) is independent of k„and k». This
implies that the subbands do not overlap. It can happen
that one has degenerate eigenvalues when f(k„,k ) is at
the maximum or the minimum. In this case, the two sub-
bands touch and the gap closes.

The band edges of energy bands are given by the k
points which give maximum or minimum values of
f k k» ) (see Fig. 2). An example f ( k, k ) is shown in

ig. . ( ote that the magnetic Brillouin zone is q times
y wn ln

larger in the k direction. ) We have calculated the ener-

gy band-flux diagram (E-P diagram) using this property.
The flux is taken as P=p/q, where q is the large prime
integer 307 and 1 ~p ~ 306. The E /diagram of -the NN

F(E)

2K 27r,(5, 5)

3E

FIG. 2. AAn example of determining the spectrum. ( /
and t =t =1 t =t'=0

b =, , = t,' —0.3. ) The two dashed lines represent the
maximum and minimum of f(k„,k»).

FIG. 3. f( k„,k ) for p /q = — and t, = tb = 1, t, = t,
' =0.3.

The me magnetic Brillouin zone is q times larger in the k~ direction
and f(k„k„)is periodic along this direction.
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5(c). Figures 5(a) and 5(c) are topologically different. For
example, the second gap at P= —,

' seen in Fig. 5(a) is not
seen in Fig. 5(c). There is a large gap which runs from
left to right in a downward slope in Fig. 5(a). However,
there are only two distinct subbands in Fig. 5(c). This
implies that some gaps close at a certain value of the
NNN hopping strength (t, =t,') between 0 and 1. We in-

vestigate this by the analytical expression (2.13) with
(2.14) which gives the band edges. In Fig. 8, we show the
band structure for (a) P= —,

' and (b) P= —„' as a function of
t, (=t,'). This shows that gaps close at several values of
t, . In fact, the zero mode of the NN model for q even is a
typical example of the gap closing. At this degenerate
point, the dispersion relation is linear

E(k) =+const~k —ko~+Eo

because F(E)=C(E Eo ) a—nd

f(ko, k )=C' k —
ko~

(3.1)

FIG. 4. The energy spectrum of the NN model for P=p /307
(t, =tb =1, t, =t, =0). Integers in the energy gaps are t„.

model is shown in Fig. 4 and those of the NNN model
are shown in Fig. 5. We set t, =th=1 and change t,
(=t,'): t, =0. 1 in Fig. 5(a), t, = —0. 1 in Fig. 5(b), and

t, =1 in Fig. 5(c). It is known that there are degenerate
zero modes if q is even in the NN model (see Fig. 4).
Near these points, the energy dispersion is linear in ~k~.

'

In Fig. 6, we show the energy dispersion for q =2. This
degeneracy is removed by introducing the NNN hopping
as shown by Wen, Wilczek, and Zee. ' In Fig. 7, we
show the energy dispersion for q=2 with t, =t,'=0.3.
This phenomenon is not a special case of q =2. We find
that these degeneracies are removed by introducing the
NNN hopping for general q (at least small q) in Figs. 5(a)
and 5(b).

The E /diagram of th-e NNN model has several sym-
metries. (i) The spectrum is same for P and —P because
the sign of the flux changes if we change the direction of
the magnetic field. This invariance is also easily seen
from the secular equation. (ii) The period of the diagram
with respect to P is 2 because the area of the fundamental
triangular is —, and the flux through the area is P/2. (iii)

If the sign of the NNN hopping is reversed, the energy is
inverted at E=O [see Figs. 5(a) and 5(b)]. (iv) It is
equivalent to increase P by one and to change the sign of
t, and t,' (see Fig. 1). Thus, the diagram is invariant, if
we change P to 1+/ and E to E from (iii). (v) T—he
spectrum of the 1 —

P system is obtained from that of the
P system by changing the sign of the energy from (i) and
(iv). By the properties (i)—(v), it is sufficient to calculate
the spectrum only for P from 0 to —,', which is —,

' of the
period.

The spectrum for t, = tb = 1, t, = t,
' = 1 is shown in Fig.

near the degenerate points where C and C' are some con-
stants. For example, the second gap of the P= —,

' case
closes at t, =t,'=0.268 and the energy dispersion is
sho'wn in Fig. 9. The energy gap near E=1.5 closes at
(0,0), (0,2m/3), and (0,4n/3) in the magnetic Brillouin
zone [see also Fig. 8(a)]. The linear dispersions near these
degenerate points are explicitly shown. The filling is,
however, not half-filled when the Fermi energy is just at
this degenerate mode. If t, or t,' take a slightly different
value from the ones which cause degeneracies, the spec-
tra have small energy gaps.

B. Hall conductance

Next we consider the Hall conductance of the NNN
model. The contribution to the Hall conductance from a
single subband is given by ' '

2

. J 'dk„'j dk, [V„x&q(k)~V'„~q(k))],.

(3.2)

This formula has a subtle topological nature which is
essential in the quantization of the Hall conductance.
First one may naively wish to apply Stokes theorem to
(3.2) to obtain

O„y= . g, dk. (g(k)l~„lg(k)),

where gs dk is a line integral around the magnetic
MBZ

Brillouin zone (MBZ). The magnetic Brillouin zone is to-
pologically a two-torus and there is no boundary, that is
BM&z=0. Thus, we would have o. =0 in all cases. This
argument, however, is not correct. The integrand
(P(k) ~V'k~ P(k) ) is written by the phase of the wave func-
tion. Assigning a phase to a state is a subtle problem.
The essential point here is that the magnetic Brillouin
zone is topologically a two-torus and, in general, it is not
possible to define a global phase of a wave function on it.
The phase of the wave function gives a principal U(1)
bundle over the two-torus and (g(k)~V'„~g(k)) gives the
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connection. Now the expression (3.2) represents the
Chem number of the fiber bundle which is necessarily an
integer. Therefore, the Hall conductance is an integer in

units of e /h. A detailed account of this point can be
found in Ref. 6.

For the NN model, if the Fermi energy lies in the rth

gap from the bottom, the value of the Hall conductance,
namely the sum of the contributions from the subbands
which are below the Fermi energy, is given by (e /h )t„.'
Here t„is the solution of the Diophantine equation

(b)
5

(c)

FIG. 5. The energy spectrum of the NNN model for P=p/307. The parameters are {a) t. =tb=1, t, =t,'=0. 1; (b) t, =t„=1,
t,. = t,' = —0. 1; and (c) t„=tI, = 1, t, = t,' = 1. In (a) and (b) the integers in the energy gaps are t„.
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27K 27t
F 3)

(0,

( 3.0)

FIG. 9. Energy dispersion for p /q =
—,
' and t, = tb = 1,

t, =t,'=0.268. The magnetic Brillouin zone is three times

larger along the k~ direction, but the energy dispersion is

periodic along this direction. This shows that there are degen-
erated modes and near these points dispersion is linear similar
to the

2
case in the NN model. The integers in the energy gaps

are t„.

(b)

ing t„and s„change. We cannot determine (t„,s„)at a
special value of the Aux if the gap closes once. However,
the global structure of the E /diagram is -not changed
except near the degenerate point (where the gap closes)

by small change of the NNN hopping. If we make a
small enough change of the NNN hopping, the global

gap structure which determines the labeling (t„,s, } and
the Hall conductance does not change. If we increase the
NNN hopping and investigate the gap-closing
phenomenon and E-P diagram carefully, we can always
identify the (t„,s„)for all values of the NNN hopping.
For example, we investigate the P= —,

' system with

filling. In Figs. 10(a) and 10(b), we show the E Pdiagram-
for t, =t,'=0.2 and t, =t,'=0.3 The gap closes near

t, =t,' =0.268; however, we can assign (t„,s„);that is, the
Hall conductance is changed from —e /h to 2(e /h).
The discontinuity of the Hall conductance ht, is sup-

posed to be the integer times q from the Diophantine
equation since we expect that the condition

r =qs, +pt„=qs„'+pt„' (3.4)
FIG. 10. The energy spectrum of the NNN model for

P=p/307. The parameters are (a) t, =tb= 1, t, =t,'=0.2 and

(b) t, =tb =1, t, =t,'=0.3, which are slightly smaller or larger
than the value at which the second gap of P= —,

' closes. The in-

tegers in the energy gaps are t„.

still holds when the degeneracy occurs, where (t„,s„)is
the label of the gap before the gap closes and (t„',s„'} is the
one after the gap-closing phenomenon occurs. We have
to notice that the t„' does not satisfy the condition



42 ENERGY SPECTRUM AND THE QUANTUM HALL EFFECT ON. . . 8289

~t„~~q/2. In the previous example shown in Fig. 10,
(3A} is

'%!fijy~. -' '.-

48~%'

=.. ", f &

~),yi 4(»

~! +t +] t„+t (3.5)

which is first discussed by Avron, Seiler, and Simon. In
the example discussed above, (3.5) is (

—2)+(1)=(1)
+( —2}.

2=(3)(1)+1(—1)=(3)(0)+(1)(2)

and t,'=2 is not smaller than —,'. The contribution for this

change ht„is brought about from the subband which is
just below the Fermi energy because the contributions
from the other subbands do not change. We assume that
before the gap closing, the band just below the gap con-
tributes t, to t, and the band just above would contribute
t„+,if the Fermi energy is above this band (that is,
t„=g," ( t; ) and these values are changed to t„and r„'+,
after the gap closing. In this case, the sum of the
t, + t, +, is unchanged because the gap just above the gap
which closes is stable and t, +, does not change. This im-

plies the conservation law

111
I I
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I I
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I 11 11
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0 ' 5 1.0
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FIG. 11. The energy spectrum of the triangular lattice for
P =p /307. The parameters are (a) t, = t~ = 1, t, = t,

' =0. 1 and
(b) t. =tb ——1, t, =t,'=1.

FICx. 12. The band structure of the triangular lattice as a
function of the NNN hopping t, (t,'=0) for (a) P= —,

' and (b)
I

4
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IV. TRIANGULAR LATTICE

If t,
' (or t, ) is set to zero, the lattice shown in Fig. 1 is

topologically equivalent to the triangular lattice. The
spectrum for the triangular lattice was studied by Claro
and %'annier and the Hall conductance was discussed
by Thouless.

From (2.13) and (2.14), the secular equation is given by
F (E)=f(k, , k ) with

f(ko, k ) =2tqcos(qk„)+2tgcos(qk )

—2( —1)('+qt, cos[q(k„+k )] . (4.1)

From (4. 1), we can determine the band edges of the spec-
trum. The E /diag-rams for q =307 are shown in Fig.
11(a) for t, = tb = 1, t, =0. 1 and in Fig. 11(b) for
t, = tb =1, t, =1. If t, is sufficiently small, the gaps in the

I

NN model do not close and one can assign (t„,s„)at each
gap by the Diophantine equation (3.3) and this gives the
Hall conductance. In Fig. 12, we show the behavior of
the band for (a) P= —,

' and (b) P= —,
' as a function of t, .

The topological structure of the E Pd-iagram changes
when we increase t, from 0 to 1. Gap-closing phenomena
occur and the Hall conductance changes in a similar
manner to the NNN model. However, we can assign the
Hall conductance for the t, =1 case by investigating the
E Pdia-gram in detail as performed in the last section.

V. EXPLICIT CALCULATION
OF THE HALL CONDUCTANCE FOR P =—'

We calculate the Hall conductance at half-filling for
with nonzero t, +t,' and t, )0. In this case, we

have a 2 X 2 matrix eigenvalue problem given by

a
H(k)

a
(S.l)

A(k) B(k)
B'(k) —A(k) (5.2)

A (k) = —2t, cos(k„),
B(k)=B()+B;

ik i(k„+|r/2), —i(k„+ r2r)/—ik —i(k„+rr+rr/2!, i(k„+rr+|r/2)

(5.3)

ik ik„,—k„~ 0 0 —ik —ik ~, ik„~ 0 0= —e '(tb+it, e " it,'e —") e—'(tb+it, e " it,'e ")—
2tbcos(k—

)
—i2[t,cos(k„+k )

—t,'cos(k„—k )] .

The energies are

E(k) =E+(k)

=+[A '(k)+B'(k)]'"
2 I

=+2t, cos (k, )+ —cos (k )+ —cos(k„+k ) ——cos(k„—k~)
a a a

2 1/2

(5.4)

(5.5)

where B'(k) is real and is defined by

B(k)=B'(k)exp[i((k)], (5.6)

a (k) —sin8(k)
b'(k) cos8(k) (S.g)

where the phase factor g(k) is chosen to be 0 at
k =k =0. In this section, we take a magnetic Brillouin
zone as —m. /2(k m/2 and O~k ~2m. See Fig. 13.

For a half-filled case, the lower band (E ) is filled. To
get the wave function, we need to choose a phase conven-
tion. It does not matter if we choose a different conven-
tion at each k point and it is related to the local (k-
dependent) gauge freedom. Here we calculate (r„by
two different gauges: a is always real and b is always real.

First we take a gauge where a is always real. Let us set

b =b'exp[ —ig(k)],
and the wave function, which gives the energy E, is
written

where 8(k) is chosen as

cos 28(k) = A(k)
[A'(k)+B'(k)]'" '

sin 28(k) =- B'(k)
[A (k)+B' (k)]'/

(5.9)

2 a(k)
0& = g f sg dk'[a*(k)&b*(k)]Vk b(k)h 2m'

l

(5.10)

If we calculate a.y by dividing the magnetic Brillouin
zone to several patches 5;, the expression for 0 is
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k
2It

—ib'(k) V„g(k) .

In regions I—IV, b'(k) 's take constant values:

b'(k) =
—,'(I), —,'(II),0(III),0(IV),

(5.11)

(5.12)

so we can factor out the b'(k) from the integrand in
(5.10) and it is sufficient to investigate the change of g(k).
In region I,

B(k)= —2t&cos(k )+i 2( t, + t,')sin(k )

and we have

f dk V(,g(k) = —2m. sgn[t b(t, +t,')] .

In region II,

B(k)= 2tb—cos(k )
—i2(t, +t,')sin(k )

and we have

f dk Vkg(k)= 2n. sgn—[tb(t, +t,')] .

(5.13)

(5.14)

2

The contributions from regions III and IV are zero in this
gauge because the weight b'(k) is zero at III and IV.
From (5.10)—(5.14), the Hall conductance in this gauge is

2

cr„~= . ( —i)( —,')I2( —2 tr)sg n[t b(t, +t,')] I&(& t~

h 2m

FIG. 13. The path of the integration for calculating 0.,~ in

the magnetic Brillouin zone for P= —,'.
2

sgn[tb(t, +t,')] .

This result is consistent with that of Sec. III.
In another gauge where b is always real, we set

(5.15)

As a result, it is necessary to include the following four
integrals shown in Fig. 13. The solid circles at III and IV
are points where B(k) or B'(k) is zero and a phase of
B(k),g(k) is not defined. The solid squares are the
highest-energy points where the degeneracy takes place if
I;, +t,' is zero. The contribution from I and II is due to
the fiber-bundle character of the problem; that is, these
two lines are equivalent in the magnetic Brillouin zone
but the phases are not defined by a global convention.
This is more easily seen by dividing the magnetic Bril-
louin zone by two patches, which are separated by lines
k„=—m. /2, 0 and tr/2. The integrand of (5.10) is written

a =a'exp[i((k)] .

The wave function is

(5.16)

a'(k)
b(k)

—sin8(k)
cosO(k) (5.17)

ia'(k) Vqg(k) . (5.18)

a'(k) is also constant at each region I—IV and takes the
following values:

where the definition of 8(k) is the same as the previous
case, that is (5.9). The integrand of (5.10) is written as

I,
'a)

—2tb —i 2[t +2tb+i 2[tc tcl

+i 2[t +t ] —i 2 [tc+tc]
—I 2[tc+tc] +i 2[t

+2tb+i 2[t —t' ] —2 tb-i 2 [ tc- t'c ]

FIG. 14. Function g(k) near (a) III and (h) IV.
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a'(k) =
—,'(I), —,'(lI), l(III), 1(IV) . (5.19)

[see Fig. 14(a)] and we have

f dk Vzg(k)=2m. sgn[tb(t, +t,')] .
III

(5.20}

Near region IV, we can set k„=5xand k~ =m. /2+5y for
5x, 5y &&1. Then

B(k)=+2tb5y+i2[(t, +t,')5x+(t, t,')5y—]

[see Fig. 14(b)] and we have

f dk %kg(k)=2m. sgn[t~(t, +t,')] .
Iv

Then the Hall conductance is calculated as

2

0 y= (i( —,')I2( —2a)sgn[t((t, +t,')] ]() ))(
h 2m'

(5.21)

+ i ( 1 ) [ 2(+2n }sgn [tb ( t, + t,' }] ] (&«,v ()

2

sg [ntb(t, +t, )] . (5.22)

Thus, we obtained the same result from the two different
gauges.

VI. SUMMARY AND DISCUSSIONS

We studied the energy spectrum and the Hall effect of
two-dimensional electrons on the square lattice with
next-nearest-neighbor hopping. In Sec. II, the structure
of the secular equation was studied in detail and the k (in
the magnetic Brillouin zone) dependence of the energy is
analytically obtained. In Sec. III, we numerically studied
the spectrum of the NNN model. Using the results of
Sec. II, the exact band edges were obtained. The NNN
model includes a mean-field Hamiltonian of the chiral
spin state proposed by Wen, Wilczek, and Zee (WWZ). '

In our notation, the chiral spin state corresponds to P =
—,
'

at half-filling (r=q/2). In the nearest-neighbor model,
there are degenerate zero modes for even q. ' ' At the
zero modes, we have two solutions t, =+q/2 of the
Diophantine equation and we cannot decide the quan-
tized Hall conductance uniquely. In fact, this point is a
topological singularity on the two-dimensional energy
dispersion. Since the two bands are degenerate, we do
not have regular manifolds there. This degeneracy is re-
moved for general even q by introducing NNN hopping.
We observed this by numerical calculations (at least for
small integer q and p =1). The Hall conductance of the
NNN model is studied in relation to the NN model when
the Fermi energy is in an energy gap. The symmetry of
the E /diagram was cons-idered. The Hall conductance
for even q flux near half-filling can be determined by the
E /diagram. By the gl-obal structure of the E Pdiagram, -

we can assign the Hall conductance using the rigid topo-

We can use results for I and II (5.13) and (5.14}and it is
necessary to calculate a contribution from regions III and
IV.

Near region III, we can set k =6x and ky 3'/2+5y
for 5x, 5y (&1. Then

B(k)= 2r,—5, —i2[(r, +r,')5x+(r, r,')—5y]

logical property of the Hall conductance. With NNN
hopping, a gap-closing phenomenon occurs; that is, there
are degeneracies at certain values of the NNN hopping.
A typical example is P= —,

' with the t, =t,'=0 case. At
the general NNN hopping where the gap-closing
phenomenon happens, the energy dispersion is linear in
the k space. If the NNN hopping is just away from the
gap-closing value, there is a small energy gap near edges
of the energy bands. The P= —,

' case discovered by WWZ
is not a special case and such a situation always happens
when the gap-closing phenomenon happens at finite
values of NNN hopping strength.

The triangular lattice is a special case of the NNN
model and we analytically obtained the k dependence of
the energy. We have investigated the system by changing
one of the three independent transfers. The degeneracies
in the NN model with q even is also removed and the
gap-closing phenomenon also happens. The qualitative
properties are similar to the NNN model.

In Sec. V, we calculate the Hall conductance of the
NNN model for P= —,

' explicitly. The fiber-bundle char-

acter of the phase of the wave function in the magnetic
Brillouin zone is explicitly demonstrated. We have to
divide the magnetic Brillouin zone into two pieces to cal-
culate the Hall conductance. The mismatch at the
boundary of the pieces and the vortexlike singularities
give contributions to the Hall conductance. We show
calculations using two different gauges. The results are
consistent with the numerical treatment of Sec. III.

In view of the chiral state model, this NNN model has
an interesting property. The chiral spin state is proposed
for the model of the Heisenberg antiferromagnet in two
dimensions. This model is approximately obtained by a
second-order perturbation as to U/t (Coulomb interac-
tion) of the usual Hubbard model. In the chiral spin
state, there is no movable carrier. The energy to make an
electron hop is infinity (order of U) in the chiral spin
state (in the insulator this cost is the order of the energy
gap) and the hopping process is prohibited. The Hall
current is dissipationless and the Hall conductance of in-
sulator, where the Fermi energy is in the band gap, is
nonzero and takes a quantized value. In contrast, the
Hall conductance of the chiral spin state is exactly zero
due to the absence of carriers as noted by WWZ by a
different argument, that is, there is no zero-field Hall
effect in the chiral spin state. In a simple mean-field
treatment of the chiral state, the mean-field Hamiltonian
is the same as our NNN model. However, the effect of
the constraint, that is, there is only one electron on each
site, is not included in it. In this sense, we do not expect
the Hall conductance of the NNN model is that of the
zero-field Hall effect in the chiral spin state.

At last, we want to interpret the gap-closing
phenomenon discussed in Sec. III in the mean-field treat-
ment of the chiral spin state. The simplest case is the
small NNN hopping model with P= —,'. The chiral spin

state, that is, small t, and t,' with p/q being —, is not a

unique case, whose dispersion relation is approximately
described by the Dirac equation. Similar situations al-

ways happen when a gap closes. The filling is generally
different from half-filling and the corresponding flux is
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not —,'. If we extend the discussion of WWZ to a non-

half-filled case, we can get a similar Chem-Simons gauge
theory at a certain value of the NNN hopping where the
gap closes. If we integrate out a fermion degree of free-
dom, we get an effective Chem-Simons Lagrangian by the
standard procedure. ' The coefficient of the Chern-
Simons term, which is relevant to the statistics of the par-
ticles which couples to the virtual gauge field, is given by
the Hall conductance of our NNN model. If we follow
the argument of WWZ, the statistics of the quasiparticles
is not always half-fermion and depends on the conditions
at which the degeneracy occurs; that is, depends on the
filling and the NNN hopping (strength of the mean field).

q

1 )q
—) TT g — TT ( t + t e i ( 2m pj +a ) + t & —i ( 2 n pj +a )

)
j=l j=l

(A 1)

a=k„+mP . (A2)

It is easy to show

2+ i(2mgj+a) —i(2ngj +a)
)

q

j=1
=x2 +(yz) —x y e' —x z e 'q . (A3)
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If we identify

tb=x +yz, t, = —xy, t, = —xz,2 I

and set

(A4)

APPENDIX X=x, etcY=yz =
X (A5)

We want to calculate the right-hand side of (Al) becomes

—[X + Y —
(
—t, ) e " —

(
—t,')qe " ]=—(X +Y )+( —1)j'+ (t, e "+t,' e ") .iq(

hatt)

k„) —iq( ntt)+ k„) + iqk, —'qk
(A6)

In the following we write Xq+ Yq with

a =X+Y=tb

The quantity in the large bracket is written in a closed
form (it can be proven by induction),

b—=XY=t, t,' .

X and Y are given by a and b by

(A7)

[q&2] q k

2kk=r

q
—r —1

2q
—2r —)

r —1

2q ' (r=O) .
(A10)

X
,' [a+(a 4—b)' ],— (Ag) As a result, we get the close form for Xq+ Y as

and Xq+ Y is written by a binomial expansion
T

1 [q~27 qXq+ Yq — y 2aq 2k(a2 4b)k
2q 2k

[q~2] q
—r —1

Xq+ Yq=aq+ g — aq "b "( —1)" . (Al 1)r —1r=l

Combining (A 1), (A6), and (Al 1), we get the result

[q/2] k q
a q

—2rb r22r( 1 )r

k 0
2k r

[q~2] q
—r —1

( —1)' 'g B, = t'—
j= 1 r =1

[q~2] q k

2k
q

—2rb r22r( 1 )r
'"(t, t,')"( —1)"

+( —1)i'+q(t,qe + t,'qe ") .
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