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We studied the order-disorder transition in an Ising-type alloy on a fcc lattice with 383
stoichiometry with atomic exchanges due to two competing processes: thermally activated jumps
and ballistic jumps, as, for example, is the case under irradiation with high-energy particles. The
latter favor disordered configurations, while the former tend to restore a certain degree of order.
The state of order is described by a four-dimensional parameter, the occupation of the four simple

cubic sublattices into which the fcc lattice may be decomposed. In a mean-field approximation the
kinetic equations for the evolution of this order parameter can be found. For a stochastic descrip-
tion, the master equation for the probability of a given state of order is approximated using Kubo's
ansatz. The resulting partial differential equation is solved taking advantage of symmetry properties
of the order-parameter space. A dynamical-equilibrium phase diagram is constructed, and it is

shown that new phases, not found under thermal conditions, can be stabilized for a certain model

for the saddle-point energy of the thermal jumps.

I. INTRODUCTION

Nonequilibrium phase transitions, i.e., transitions be-
tween steady states of a dynamical system, rather than
between equilibrium states of a thermodynamical system,
are of interest in a large variety of fields. In materials sci-
ence, one example is given by radiation-induced phase
transitions. ' The latter occur when atoms are ejected
from their equilibrium position by nuclear collisions.
The configuration of the system results, in most simple
examples, from a competition between radiation-induced
disorder due to atomic jumps induced by nuclear col-
lisions ("ballistic jumps") and thermally activated reor-
dering due to the usual atomic jumps (thermal jumps of
point defects). One may say that the configuration space
of such systems is explored following two dynamics that
act in parallel: the usual thermal jumps, which favor the
occupancy of low-energy configurations, and the ballistic
jumps that occur irrespective of the value of the energy of
the configuration. Under the effect of ballistic jumps
only, the configuration space is explored as it would be at
infinite temperature. In previous works, we studied
the order-disorder transition on a rigid lattice for some
structures which could be described by a scalar order pa-
rameter: the steady-state probability of a given degree of
order in the system assumed to be spatially uniform could
be found as the solution of a simple master equation, built
in such a way as to reproduce the thermal equilibrium
probability in the absence of ballistic jumps. We treated
both the case of single-step processes (i.e., where pairs ex-
change between the sublattices one at a time) and mul-

tistep processes (i.e., where several pairs exchange at once
as is the case in collision cascades). In the latter case, the
master equation was approximated by a Fokker-Planck
equation.

The problem of handling crystallographic structures
with more than two Wyckoff positions, i.e., for which the
degree of order is described by more than one free param-
eter at a given overall concentration, remained open.
Here we address this question, starting with a relatively
simple case: The face-centered-cubic lattice with 383
stoichiometry. Indeed the fcc structure can be described
with four simple-cubic sublattices. Setting the composi-
tion of each sublattice gives the description of the sim-

plest superstructures (e.g. L lz and L 10). As before, we

restrict to spatially homogeneous systems; moreover,
here we handle only single-step processes, i.e., single
atomI'c pai'r exchanges between nearest-neighbor sites
driven both by thermal and ballistic jumps. This is an
idealization of high-energy electron irradiations. When
handling multidimensional order parameters, two
difficulties arise: (1) in the thermal case the Fokker-
Planck equation is a bad approximation of the master
equation, detailed balance of the latter does not guarantee
zero probability flux in the Fokker-Planck equation, and
(2) in the driven case (i.e., when ballistic jumps occur in

parallel to thermal jumps) detailed balance does not hold
any more. The above two problems can be overcome us-

ing a technique introduced by Kubo.
In the following we first recall the mean-field thermo-

dynamics of the thermal model, then introduce the kinet-
ic description of the model, compatible with the thermo-
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dynamics. The stochastic description is introduced in
Sec. IV as well as Kubo's ansatz. A nonlinear partial
differential equation results for the potential. We show in
Sec. V how the latter can be solved by taking advantage
of the symmetry properties of the order-parameter space.
The dynamical equilibrium phase diagram for AB3 com-
pounds is deduced and exhibits unexpected features.

are given as solution of
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II. THE MODEL —THERMODYNAMICS

The simplest ordered structures of a binary alloy on
the fcc-lattice of composition AB3, i.e., L12 and L lo, can
be described by the average A occupation of the simple
cubic sublattices, into which the fcc-lattice can be decom-
posed (see Fig. 1). Using the vector X of concentrations
x; of A atoms on sublattice i,

III. KINETIC DESCRIPTION

The stable thermodynamic states can be regarded as
well as the infinite-time solutions of an equivalent kinetic
model. Such a kinetic description facilitates the exten-
sion to externally driven systems like radiation-induced
disordering. To construct a kinetic model, we suppose as
elementary step the exchange of an A atom on sublattice
i with a B atom on sublattice k, i.e., a change

i=1, . . . , 4

(0 is the number of sites per sublattice), as four-
dimensional order parameter, the free energy in a Bragg-
Williams approximation reads

and

1
x ~x +k k

(5)

F(X)=F0—QkTQ f(x, ),

f(x)=2 x —[x lnx+(1 —x)ln(1 —x)],kT

in vector notation

X~X+e;„(e;q)J
=—(51J —

5;J ) .=1 (6)
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where U; is the contribution on an ij pair to the ordering
energy.

The stable or metastable states, the minima of F under
the constraint

x;=1

Then the kinetic equations can be written as

a—x;= g [w(X~X +e ;I) w(X~—X+Ek)] .
k=1

w(X~x+ek, ) is the rate of transitions from X to
X+e;k, that is the number of AB exchanges between
sublattices i and k per unit time, divided by the number
of sites per sublattice Q. Under the same assumptions as
made for the thermodynamic model, i.e., mean-field-

approximation and bond counting, we can construct the
w(X~X+@;k) as the product of the rate of atomic ex-

changes between sublattices i and k, I,k(X), multiplied

by the probability to find an A atom on sublattice i and a
nearest-neighbor B atom on sublattice k: in mean-field
approximation

zw(X~X+ek; ) =—x, (1—xk )I;k(X),

where z = 12 is the coordination number of the fcc lattice,
z/3 is the number of links between one site on sublattice i
and the next-neighbor sites on sublattice k.

The thermal jump frequency I 'ik is proportional to the
exponential of the energy necessary to lift an A and a 8
atom into the saddle-point position, divided by kT:

I,'„"(X)=Iexp — E, (X)1

kT

FIG. 1. Unit cell of the fcc lattice showing the four sublat-
tices and the exchange of two neighboring atoms through the
"saddle-point window" formed by four atoms.

For the activation barrier E„wetake the following mod-
el: E, is the energy required to remove an A atom from
sublattice i and a B atom from sublattice k and to lift
them to the saddle-point position; the latter includes a
constant term Eo and a "chemical contribution" estimat-
ed by counting the bonds between the atom at the saddle
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point and the four atoms surrounding the saddle point
(cf. Fig. 1):

E, (X)=—co(x; —xk )+2t00(1 —x; —xk )+2E0 (10)

with

0 (VAA UAA ) (UBB VBB )

where U,
&

denotes the binding energy of an atom of type i
in the saddle point with one of type j in the lattice.

According to the model, the parameter ~p is thus relat-
ed to the difference in activation energies for self-diffusion
in each pure material, A, respectively, 8. As can be seen
in Eq. (8), w(X~X+e;k) factorizes into two functions
w, (x;) and w2(xk). As a consequence, the steady-state
solutions of (7) are easily found:

as well as visual inspection of liow charts of Eq. (7) show
the following: for values cop 0, only two steady states
are possible, one corresponding to the disordered, the
other to the 1.12-ordered structure, and for negative
values of ~p we find a range of yp values with a more
complicated behavior —'at given yp and increasing tem-
perature, the system is first disordered, then orders in an

Cut plane

w)(x) ) w)(x2) w((x4)
~ ~ ~

w2(x ) ) w2(x2 ) w2(x4)

which, taking the logarithm, is equivalent to (4).
In the presence of forced exchanges, e.g., ballistic

jumps under irradiation, the total jump frequency be-
comes the sum of the thermal and the athermal frequen-
cies, if those processes act independently:

ggXq =X2

X)
X2

I .$(X)=I ."(X)+I (12)

where the ballistic jurnp frequency does not depend on
the state of order of the alloy. To take into account the
radiation-enhanced thermal mobility (resulting from
radiation-sustained point-defect supersaturation), we set,
following Ref. 8,

'= "=:"' 2k'T =y"xP:r, r, '" (13) h h S 'R ~A3

where I p" denotes the enhanced-thermal-jump rate under
radiation due to vacancy supersaturation, E„the vacan-

cy migration energy, thus obtaining a temperature-
independent quantity yp to measure the external forcing.
Inserting the above expressions into (8), we obtain, as
final expression for the transition rates,

w(X ~X+e;„)=—I'ox;( I —xl, )
z

ggXq-X2

~ 4 il

(c)

2'
X 'exp — (x, —xk)

COp+ (1—x; —xk) +y
~ X3

(14)

where we absorbed a factor exp (2E0/kT) in I 0.
The deterministic equations of motion (7) yield, with

expression (14), the kinetics of evolution of the system
under nonequilibrium conditions. The attractors of this
motion are stable or metastable nonequilibrium steady
states, the repellors are unstable states, "so if there is a
single attractor we know the stable phase of the alloy.

Numerical integration for a range of parameter values

FIG. 2. Two-dimensional cross section of the flow field of the
kinetic equation (7) for coo= —0.5', @0=10 (the length of the
arrows is arbitrary). (a) geometry of the cut plane in the three-
dimensional order-parameter space [the fourth dimension re-
sults from the constraint Eq. 131]. One variant of the structures
of type L12 and L10 lies on straight lines in this plane. (b) flow

field for T=0.365T, showing the stability of the L12 phase. (c)
flow field for T=0.370T, showing the stability of the L 1o

phase. The points corresponding to the different structures are
marked with the following symbols: ~, disorder; &, L 1„6,
Ll*;I,L1.
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E~- 2E0 ))

p&0

bility of the corresponding solution: a knowledge of the
steady-state probability of X,P(X) is required. For
thermal systems P ( X ) is

P(X)=—exp
1 F(X)
Z kT (15)

p(0

FIG. 3. Schematic plot of the order-parameter dependence of
the saddle-point energy E, for positive and negative values of
the saddle-point parameter coo {dashed line, L lo solid line, L12).

antiordered L12 structure (that means preferential occu-
pation of three sublattices, depletion of the fourth,
xi =xz=x3 & —„', x4 (—,'}, in the following sometimes
denoted L 1z, then switches to an L 10 structure
(x, =x~ & —,', x3=x~ (—,'), and finally to the true L 1~

structure (x, =xz =x, (—,', x~ & —,
' ). For still higher tem-

peratures the systems transform directly back to disorder.
As an example for this behavior, the flow chart of Eq. (7)
for two different temperatures is shown in Fig. (2). For
the numerical calculations, the vacancy migration energy
E, was set to the typical value E, =1 eV, the equilibri-
um critical teinperature of the L lz phase (which scales co)
to T, =1000 K.

Qualitatively, the influence of the saddle-point parame-
ter can be understood as follows: from (14) we see that,
for L lz-type ordering (x, =x2 =x3=5/3, x4=1 —5), the
activation energy for jumps enhancing this type of order
lowers with 5~0 for coo&0, whereas it rises for coo&0
(see Fig. 3). That means that transitions enhancing the
order become less favorable with the rising degree of or-
der in the case of ~o &0. For the L12 structure, this be-
havior is inversed since the jumps decreasing the L 12 or-
der increase the L lz order.

The L 10 structure (x, =xz= —,
' —5, x3=x4=5) does

not show this dependence, but generally, the kinetic is
enhanced by negative values of coo. So under nonequili-
brium conditions, even thermodynamically unfavorable
structures may be stabilized just by their kinetic behav-
ior.

Another important feature of the numerical investiga-
tion of equation (7) is that neither the tetragonal
(x, =x~Wx3&x4) nor the orthorhombic
(x,&x2%x3&xz) phases have been found to be steady
states. Also not found, while possible in principle, were
attractors more complicated than simple nodes, e.g. limit
cycles.

IV. STABILITY OF COMPETING PHASES

Whenever the kinetic equations exhibit more than one
locally stable steady-state solution (first order transition),
the above model gives no means to assess the relative sta-

P(X, t —)w(X —+X')] . (16)

X' represents the states accessible from X and the transi-
tion rates between X and X' are 0 times those given by
Eq. (14).

However, even for the stationary case

P*(X,r—) =0,
ai (17)

a solution of (16) can only be found for special cases, in
particular if the condition of detailed balance

P*(X')w(X'~X) =P'(X)w(X~X') (18)

is fulfilled. For nonthermal systems (18) is usually not
true but is nevertheless guaranteed for one-dimensional
order parameters with single-step kinetics. ' This prop-
erty was used in Ref. 3. If (18) is not fulfilled, a common
procedure is to transform (16) into a Fokker-Planck equa-
tion by expanding both P(X+@,t} and w(X+e~X)
about P(X) and w(X~X+e) in powers of e, which is
proportional to an inverse power of the system size 0,
(Kramers-Moyal expansion)' and truncating after the
quadratic term. This technique has several shortcomings:
already in the one-dimensional case, where the exact
solution of (16) is known, the solution of the Fokker-
Planck equation for large but finite system sizes does not
converge to the exact solution (see the Appendix). In the
multidimensional case, already under purely thermal con-
ditions examples can be found where the Fokker-Planck
equation does not fulfill the condition of zero-probability
Aux, which is the counterpart of the condition of detailed
balance in the master equation. '

The origin for this difficulty stems from the fact that
the asymptotic form of P(X) should be

P{X)~ expflg{X)

with an intensive quantity cp. ""' This implies that,
in the expansion

(K

P(X+@)= g, (e.V)"P(X),
o n! (20)

each term in the sum contains a contribution of order

where Z denotes the configuration sum.
For nonequilibrium systems, the counterpart to the

free energy F(X) is a priori not known but can be com-
puted if P(X) is known: P(X}can indeed by found from
a microscopic model. If we assume, as in Sec. III, that
the system is Markovian, i.e., does not possess any
memory effects, the probability P(X, t) to find a certain
configuration X at time t is given as solution of the fol-
lowing master equation:

—P(X, t ) =Qg [P(X', t )w(X' —&X)
a
Bt

'
x'
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—qr(X, t ) =g w(X~X+e) I exp[(e V)tp] —1],a
c}t

(21)

where e runs over all possible transitions.
With the definition (6) for the e in our case, Eq. (21) be-

comes, for the stationary case,

0= g w, „(X)1 —exp
Bg el+

Bx; Bxi
(22)

6(Q ) so that the series does not converge.
Instead of the Fokker-Planck approach, we will use a

method proposed by Kubo et ajt. and generalized by
Suzuki, ' which avoids the above problems. Expanding
y(X+@) in Eq. (19) and inserting this in the master equa-
tion (16) yields Kubo's equation for y:

Both can be regarded as intersections of two hyperplanes
of type x, =x& and the hyperplane given by the con-
straint (3}. Since the four sublattices are strictly
equivalent, these hyperplanes are symmetry planes of the
order-parameter space and thus also symmetry planes of
gr(X): the directional derivatives of y perpendicular to
these hyperplanes must vanish.

A. The L1& structure

One variant of the L lz structure is located on the in-
tersection of the hyperplanes x~ =x3 x3 x4,
x ] +x p +x 3 +x 4 1 . Choosing an orthogonal coordinate
transformation

where we introduced the abbreviation

w;k(X)=w(X~X+e;I, ) .

V. SOLUTION OF KUBO'S EQUATION

(23)

X'= A (X—b)

with

(26)

In general, Eq. (22) being a nonlinear partial
differential equation seems hard to solve. Nevertheless,
in special cases symmetry considerations allow us to
reduce it to an ordinary differential equation.

As shown in Sec. III, the stable steady-state solutions
correspond either to the disordered Llz or L10 struc-
tures, which can all be described by a one-dimensional or-
der parameter. Their corresponding points in the four-
dimensional order-parameter space lie on an axis of par-
ticularly high syrnrnetry: for L lz these are lines of type

1

v'2

1

v'6

1

v'2

1

v'6
2

v'6

1 1 1

2&3 2&3 2&3

1b=—
7 4 1

(27}

Xl J ~

2

X=—'[(1 1 1 1)—A( —3, 1, 1, 1)], —
—,
' ~A, ~1

and for L10

XL) .
0

X=—,'[(1,1, 1, 1)—p(1, 1, —1, —1)], —1 ~ p ~ 1 .

(24)

all derivatives of y(X) except B|p/Bx ~ vanish on this line.
Inserting this in Kubo's equation, (22) simplifies to

0=w, z(X') exp —1
2 BgD

&3 Ox,
'

+ w~, (X') exp — — —1
2 Bg

&3 ax,'

(25) with the solution

x $ Opxp Opx 3 Opx4 =
—,
' f ln

Np] x ] Oyx p Oyx 3 Oyx 4

N)px)OyxpOyx30yx4

2
: dg'

ln.
0

(1—g')'
Pl

(1+3/'} 1+ exp
3 kT 2Q)

g'+ (1—g')

2', ~0
exp g' — (1—g') +}kT 2~

-dg . (29)

As shown in the Appendix, this result is identical up to terms of order 6(Q ') to that obtained by direct solution of the
one-dimensional master equation.
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B. The J lo structure

The L lp-type structures are located on lines x, =x2, x3 =x4, x&+xz+x3+x4=1. Choosing as rotation matrix in

(26),

l

2

1

v'2

1

2

1

v'2

1

2

1

v'2
1

2

1

2

1

2

(30)

we find for (22)

Bc@'0=w, 3(X') exp —1 = w» (X') exp-
X4

Bcp

Bx4
(31)

with the solution

yr, (x', =O, x&=0,x3=0,x4= —,'g)= —,
' J ln

w»(x'& =O, x2 =O, x 3 =O, x~ = —'g')

(1—g') 1—
3

exp

ln
2

p Pl
(1+f ) 1+ exp

3
co, ~o

dg' . (32)

VI. RESULTS

Figure 4 shows an example for the stochastic potential
p(X) calculated along the L12 and L lo axes for a nega-
tive saddle-point parameter coo (coo= —0.5') and an in-
termediate value for the irradiation parameter yp= 10
For temperatures T&0.364T„the disordered state is
most stable, at about 0.364T, the L12 phase emerges first
as metastable then as a stable phase. Then it is passed by
the L lp structure at about T=0.367T„which itself be-
comes metastable with respect to the true L 12 structure
at 0.380T, . Figure 5 shows the phase diagram, i.e., the
regime of stability of the respective phases in the (T, yo)
plane for several values of ~p. As predicted by the deter-
ministic description, positive values of cop do not change
qualitatively the phase diagram, whereas negative values
lead to a more complex behavior with new phases be-
tween disorder and the thermodynamically stable L12
phase. These new phases are only found at the low-
temperature side around the transition regime, and they
are more pronounced for lower values of cop.

VII. DISCUSSION AND CONCLUSIONS

The above model shows that, under nonequilibrium
conditions, i.e., ballistic jumps acting in parallel with the
thermal atomic motion, the phase diagram may change
drastically. Phases which, under equilibrium conditions,

belong to much higher 3 concentration can be stabilized.
This behavior is similar to that observed in Ni4Mo, '
where a phase, which is metastable under thermal condi-
tions, can be stabilized by radiation. In Refs. 3 and 4 the
inAuence of cascades, i.e., the simultaneous exchange of
more than one pair of atoms, is also discussed, and it is
shown that, since the difference in stability of the respec-
tive phases is small, the phase diagram may change con-
siderably. Similar effects are to be expected in the
present case and deserve further study.

Though in Refs. 3 and 4 the phase diagram for cascade
sizes greater than one was calculated with the Fokker-
Planck approximation, it turns out that the numerical re-
sults of a treatment with Kubo's equation differ only very
slightly from the former. '

More important changes are to be expected if one
departs from the 383 stoichiometry. Already in the
thermal case, a tetragonal phase (sometimes called L')
with x, =x&&3%4 is found. This phase must be de-
scribed with a two-dimensional order parameter and it is
not located on a symmetry axis, so that Kubo's equation
cannot be reduced to an ordinary difterential equation.
However, at least in the thermal case, the transition be-
tween the L lp and the L ' phase is of second order. If this
still holds under nonequilibriurn conditions, the transi-
tion can be detected from the curvature of y at the ex-
tremum on the L 1p axis in the direction perpendicular to
this axis. The curvature of y can be found by
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differentiating (22). The order of the transition can be de-
duced from the Aow chart of the deterministic model.
More general cases, where the steady-state structures
would not correspond to any symmetry element, cannot
be excluded: a full numerical solution of Kubo's equation
would then be unavoidable. Even in the simple cases
here, several unexpected features have been revealed: the
sensitivity of the phase diagram to the model for the
saddle-point energy, the stabilization of strongly non-
stoichiometric phases, and the possible occurrence of
reentrant regions in the phase diagram.
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FIG. 4. The stochastic potential y for the Llp structure
{solid line) and the L12 structure (dashed line) for up= —0.5',
7'o= 10, plotted against the order parameter g, showing the
stability of the different phases. Both y and g are dimensionless
quantities. (a) y: T=0.363T„only the disordered phase is
stable; p: T=0.364T„the 1.12 phase emerges; a: T=O 365T„.
the L 1& phase becomes more stable than the disordered one. (b)
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T=0.368T„the L lp phase becomes the most stable, the L12
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an enlargement of the transition regime. (d) Mp= —1.0co, the in-

set shows an enlargement of the end of the L lp and the L 1, ex-

istence regime with the reentrant portion of the L12 phase.
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and

w (g)= —W(N~N 1—) .0
The corresponding Fokker-Planck (FP) equation, ob-
tained by a truncation of the Kramers-Moyal expansion,
reads

0=— PFr (g)[w+(g) —w (g)]

APPENDIX: COMPARISON OF MASTER EQUATION,
FOKKER-PLANCK EQUATION

AND KUBO'S EQUATION
IN THE ONK-DIMENSIONAL CASK with the solution

P»(g)[w+(g)+w (g)] (A5)

With X the number of A atoms on sublattice 1, the
one-dimensional master equation (ME) reads, under
steady-state conditions,
—P(N)[ W(N ~N + 1)+W(N +N —1)]—

+P(N+1) W(N+1~N)

+P(N —1)W(N —1~N ) =0 . (Al)

FP( f( W (f) W (g)
, =exp2Q

«4 w+(g')+w (P)
P

4

(A6)

For reflecting boundary conditions, the detailed balance
holds even for the nonthermal system

P (N) W(N ~N + 1)=P(N + 1)W(N +1~N), (A2)

so iteration yields

Kubo's equation reads

+O=w (g) exp — —1 +w (g) exp —1
fee 0'sc

t)g

ME(N) ' W(i +i +—1)=n W(i+ 1 ~i )
P

W(i i +1)
W(i+ 1~i )

=expQ f ln dg'+6(Q '), (A3)
l/4 w (g')

with the solution

so

~.(~)=f », dr+~. (-.'),w+(g')
1/4 w (f)

Pit(k) ( u+( ')
. =expQ f ln dg' .

1/4 w (g')0P
4

(A7)

(A8)

(A9)

where we put

0

As expected, (A9) coincides with (A3) up to terms of or-
der 8(Q ), whereas (A6) coincides with (A3) only in the
region where

w+(g) =—W(N ~N+ 1)
1

0 (A4)

)w+ —w f «1,
i.e., in the vicinity of the extrema of P.

(A10)
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