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We present a field-theoretic description of the crossover in the critical statics of uniaxial dipolar
ferromagnets. Within a generalized minimal subtraction scheme we are able to describe the cross-

over from Ising behavior with nonclassical exponents to asymptotic uniaxial dipolar behavior,
which is characterized by classical exponents with logarithmic corrections. The results are dis-

cussed in terms of flow diagrams and effective exponents and are compared with experiments on

LiTbF4.

I. INTRODUCTION

The influence of the dipole-dipole interaction on the
critical statics of isotropic and uniaxial ferromagnets is
quite different. Whereas for isotropic ferromagnets the
the dipolar interaction leads only to a slight modification
of the critical exponents, it was discovered by Larkin and
Khmelnitskii' that unaxial dipolar ferromagnets show
classical behavior with logarithmic corrections in three
dimensions. The asymptotic behavior of this system was
also studied by means of renormalization-group (RG)
theory, ' which revealed that the one-loop calculation
agrees with the asymptotic results of Ref. 1.

The existence of logarithmic corrections near the tran-
sition temperature T, was verified experimentally for a
number of uniaxial ferromagnetic substances GdC13, '

LiTbF4, ' Dy(C&H5SO4)3 9Hz0, ' "and TbF3. ' How-

ever, these experiments were performed in regions of the
reduced temperature, where departures from the asymp-
totic behavior are expected and are observed indeed. If
the susceptibility is analyzed in terms of an effective criti-
cal exponent, a pronounced maximum is found. '

As in the case of isotropic dipolar ferromagnets, ' ' it
is therefore of interest to investigate the crossover from
Ising behavior, which is dominated by the exchange in-
teraction, to the asymptotic uniaxial dipolar behavior,
which is characterized by classical exponents with loga-
rithmic corrections. First attempts to explore this prob-
lem were made in Refs. 20 and 21. In Ref. 20, matching
techniques are used to study the crossover from Ising to
classical behavior. Since no attempt is made to include
the logarithmic corrections, the relevance of this ap-
proach for the crossover in uniaxial dipolar ferromagnets
may be questioned. In Ref. 21, the asymptotic results
from Refs. 2 and 3 are used in order to fit the flow of the
coupling constants to the experimental data. It is found
that the flow of the coupling constant obtained from
fitting different quantities (susceptibility, specific heat,
magnetization) gives compatible results. This, however,
does not solve the actual problem since none of these
quantities is computed and no theoretical explanation for
the flow is given. Moreover, the underlying starting

Harniltonian does not even apply in the isotropic region.
In this paper we study the crossover from a critical be-

havior, dominated by the exchange interaction, to the
asymptotic uniaxial dipolar behavior by a generalized
minimal subtraction scheme similar to Refs. 19 and 23.
This field-theoretic method allows the calculation of the
complete flow of the coupling constants and parameters
from the Ising fixed point to the uniaxial dipolar fixed
point. Herewith, the main obstacle to a
renormalization-group treatment is surmounted, namely,
the differing upper critical dimensionalities of the isotro-
pic and uniaxial dipolar fixed points, four and three, re-
spectively. We interpret the experiments mentioned
above by a crossover from mean field via Ising critical to
asymptotic uniaxial dipolar critical behavior.

The paper is organized as follows: In Sec. II we intro-
duce the model and the generalized renormalization pro-
cedure. This will be used in Secs. III and IV to calculate
the renormalization constants and the flow of the cou-
pling constants. In Sec. IV we calculate the susceptibili-
ty, which will be analyzed in Sec. V in terms of an
effective exponent and compared with experiments on
LiTbF4. After a discussion of the specific heat in Sec. VI,
we give a short summary of the results in Sec. VII.

II. MODEL AND RENORMALIZATION

The Landau-Ginzburg free-energy functional for an n-

component uniaxial spin system with an isotropic ex-
change coupling and long-range dipolar interactions is
given by

2
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(2. i)
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' —1
2

Go(ro~go~k~q)= ro+k +go
p

(2.2)

Contrary to Refs. 3 and 21, the propagator (2.2) contains
the full gradient term k, and not only the part orthogo-
nal to the uniaxial direction p . This allows us to de-
scribe the crossover from Ising behavior to uniaxial dipo-
lar behavior. If one would take into account only the p
term, the theoretical analysis would be confined to the
strong dipolar limit, i.e., to an asymptotic analysis. As
can be inferred from the propagator (2.2), the dipolar
coupling constant gp has the same canonical dimension
as the wave vector k. Consequently the RG flow of the
dipolar coupling constant tends to infinity analogous to
the flow of the dipolar coupling constant in isotropic di-
polar ferromagnets' and the flow of the anisotropy con-
stant in the context of bicritical points. Therefore, the
conventional minimal subtraction scheme, where solely
the E poles (a=d, —d ) are subtracted, is not applic-
able in the present case. Nevertheless, the theory can be
renormalized by including divergences of the type lng in
the renormalization procedure. This extension of the
minimal renormalization scheme was formulated by Amit
and Goldschmidt in the context of bicritical points and
has been successfully applied to the crossover problem in
isotropic dipolar ferromagnets. ' In the present case
there is an additional peculiarity, namely that the propa-
gator vanishes in the limit of infinite dipolar coupling.
Therefore, in conjunction with any e pole there is a lng
divergence, i.e., the structure of the divergence D to be
subtracted in order to renormalize the theory, is given by

Here So(q) (a=1,2, . . . , n) are the components of the
bare spin variables. (The most relevant case is the Ising
system n =1.) The d-dimensional wave vector k=(p, q)
is decomposed into q, the component along the uniaxial
direction, and p, the remaining (d —1) components. In
Eq. (2.1) we used the notations I& = jd "k/(2~) and

F»'= '(~ -~V'+fi'S~'+~"n»)
3

The bare reduced temperature is given by

T—Tc
0 TP

C

and gp is a measure of the relative strength of the dipolar
interaction with respect to the exchange interaction. The
Gaussian propagator for the graphical expansion has the
form

El p
—p Z~Sd 9

rp =Z„p'

Rp =Zgf ~

So(q)=(Z~)'~'S (q),
where the factor

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(4~)'"I
2

is introduced for convenience. The renormalization fac-
tors Z have to be determined according to the general
minimal subtraction scheme given in Refs. 19 and 23
where one has to account for the modifications men-
tioned above.

We shall consider the Fourier transforms of bare N-
point vertex functions defined via the appropriate gen-
erating functional. In the remaining part of this section
we derive the renormalization-group equation for the re-
normalized two-point vertex function I'z ' ~=5 ~I z,
which also serves for an introduction of our notation.
The bare vertex functions I z are related to the renormal-
ized vertex functions by

ZeI a (2.4)

As usual, the renormalization-group equations are ob-
tained by noting that the bare quantities are independent
of the momentum scale p. Applying the differential
operator p(d/dp)~0 to the bare two-point vertex func-
tions we find

8 g 8 gp +g„u, —r +g u, —g
Bp

'
p Br g p Bg

+P u, — +(~ u, — I „(r,g, u, p)=0,
p BQ p

where the P and g functions are given by

(2.5)

lar coupling one gets the Ising behavior and (ii) for finite

gp the asymptotic behavior is given by classical behavior
with logarithmic corrections. After introducing a
momentum scale p the renormalized parameters, cou-
pling constants, and fields are defined by

D ~ —(1 —ring)
1

E

in an e expansion around dimension four. In particular,
this structure is maintained in all orders of the perturba-
tion series. Thus, one is confronted with a situation
where the actual expansion coefficient is not the four-
point coupling up but

Pg ~~ p ~IO ~

p Bp

u, —=p lnZ„~O,g a 1

p Bp

u, —=p lnZ ~o,
p Bp

(2.6a)

(2.6b)

(2.6c)

uog '=uo(1 El g) n.
—

The determination of the renormalization factors is fixed
by the requirements that (i) in the limit of vanishing dipo-

gq u, —p lnZq, ~o

—
1

p, Bp
(2.6d)

The symbol ~o indicates that all derivatives are to be tak-
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en at fixed bare parameters ro, go, and uo. One should
realize that, due to the generalized renormalization pro-
cedure, the renormalization factors depend on the dipolar
coupling, which implies that the P and g functions de-
pend on u as well as on g /p.

Partial differential equations like (2.5) are solved by the
method of characteristics which, in the present case, are
given by

III. RENORMALIZATION OF THE COUPLING
CONSTANT U AND THE FLOW DIAGRAM

In this section we evaluate the renormalization factor
of the four-point coupling constant. The resulting How
will elucidate the fixed points and the crossover in be-
tween. The renormalization constant Z„ for the coupling
constant u is determined by the requirement that the re-
normalized four-point vertex function

1 = r(l )g„u (1), —= r(l )g„(l),dr( 1 ) g (1)
'

(M(1)

1
dg(1) g(l )=g(1)gs u(1), =—g(1)gs(1),'

p(1)

du (1) g(l )
1 =P„u (1), —=P„(l),

(u 1

(2.7a)

(2.7b)

(2.7c)

(2.7d)

r,""('r'(.,g, Ik =Oj, , l )

=F ~r I'„'(r,g, Ik; =OI, u, (u), (3.1)

which is related to the bare vertex function I'~ 'by

r(z 1(r,g, I k, =0I up)=Z, &I'z'(r„go, Ik;=0],uo),

(3.2)

is finite according to the renormalization procedure of
Sec. II. The one-loop contribution is given by

with the initial conditions r( 1 ) =r, g( I ) =g, and
u( 1)=u. Combining Eq. (2.5) with Eqs. (2.7), the follow-
ing ordinary differential equation for the scaled vertex
functions

r(,"(r„g„Ik, =OI, u, )

2n+8=uo uo [I4(ro go)+ ],18
(3.3)

r„[r(1},g(l ), u (1 ),p(l )]=r„(l )

is obtained:

1—I 21 (1 ) = —
gq, (l )1 ~ (I ) .

This is solved by

(2.&)

where the ellipsis represents two permutations referring
to the external legs of the corresponding one-loop dia-
gram. After performing the q integration in

1I,(r,g)=
(2') ' 2~ (r+p +q +g q ip )

(3.4)

r„(1)=exp —f g@(p) rq(l),Idp
1 p

Idpr(1)=r exp f g„(p)
1 p

(2.1oa)

where I z(l)=1 g(r, g, u, p) and the liow equations (2.7b
and 2.7c) are solved by

one obtains

I4(r, g) =
—,
'

dd —1

(2 )d
—

1

( +p2)3/2(g2+p2)1/2
(3.5)

In determining the divergent part of this integral, one has
to take care that both limits g~0 and g ~ ~ are taken
into account correctly. Let us first consider the asymp-
totic limit (g~ ), in which case the integral (3.5)
reduces to

g(l ) =g exp f g~(p)
I dp

1 p
(2.10b) 1

I4(r, ~ )=
4g (2m} ' (r+p )

(3.6}

By dimensional analysis one finds that I z has the dimen-
sion p . This implies that the dimensionless vertex func-
tion

r g k 1
, —,—,u = I ~(r, g, k, u, p)

p P P p

obeys the RG equation

r g k, idp g(p)
, —,—,u =1 exp f gq, u(p),

(M p p ' p p(p)

r(l ) g(l ) k

p2(1)
'

(M(l )
'

(M(1)
'

(2.1 l)

This shows two essential points: (i) the integral is loga-
rithmically divergent in d =3 dimensions, i.e., the upper
critical dimension is d, =3, and (ii} the effective expan-
sion coefficient is no longer the four-point coupling con-
stant u but v =u/g. This asymptotic limit was studied
extensively in the literature. ' It is found that the fiow
of the coupling constant v tends to zero as the inverse of
the logarithm of the How parameter.

For finite nonzero dipolar coupling g, a dimensional
analysis shows that the integral (3.5) is proportional to
g" implying that the effective expansion coefficient is
no longer u but v =ug" . In d =3 dimensions this leads
to an effective coupling constant v =u/g in agreement
with the asymptotic analysis.

Using standard techniques, the divergent part of the in-
tegral I~( r =o,g ) is found to be
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[I4(r =O, g )]d;„=—Sd a +1

p
(3.7)

I )
6 g/PI

n+8 lni —lnl
(3.14)

in d =4—e dimensions. The coefficients a and 0. are fixed
by the requirements that (i) for g =0 one obtains the re-
sult without dipolar interaction and (ii) in the asymptotic
limit (g ~ oo ) the coupling constant U flows to zero as the
inverse of the logarithm of the flow parameter in d =3 di-
mensions. The first requirement gives

gQH
lnl =

PQ

The quantity

(3.15)

where the quantity I is determined by the boundary con-
dition u ( I = 1 ) = u leading to

a=1 (3.8a} (3.16)

and the second leads to
o. =1 . (3.8b)

In one-loop order there is no field renormalization and
hence the renormalized four-point vertex function is
given by

I' '(k, =0)=p' Z„uS

denotes the Heisenberg fixed point, which reduces to the
Ising fixed point for n =1: uH(n = 1)=ui.

From Eq. (3.14) one infers that the effective coupling
constant U(l ) =u(l )/g(l) tends to zero as the inverse of
the logarithm of the flow parameter I well known from
earlier asymptotic studies. ' Here g(1) is the canonical
flow of the dipolar coupling constant g

n +8 Z2S —2„29
g(l ) =

pl

For 1~0 one obtains

(3.17)

X [Iq(Z, r /p, Zsg /p)+ j U(l ) = 6 1

n+8 lnl —lnl
(3.18)

(3.9)

where the ellipsis represents two permutations. There-
fore, the renormalization constant for the four-point cou-
pling constant is found to be

These considerations demonstrate that the generalized re-
normalization procedure gives the correct asymptotic
fiow of the coupling constant. Let us now study the gen-
eral solution of the flow equation (3.12). For e = 1 we find

Z„=1+ "+8 —" 1+ g
6 e p

(3.10}
g"H

1
1+g(l )

pu 1+g /p
(3.19)

With P„=p(B/Bju) ~ou one obtains for the corresponding
P function

Without dipolar interaction, g ~0, this equation reduces
to

P„u,—= —au+ u 1—g n+8 2 1
'
p 6 1+p/g

(3.11) (3.20)

Knowing the p function, we can now study the flow of
the coupling constant u (I } from the flow equation

ldu(l) =p (I), g(1)
Q

Therefore, in the absence of dipolar forces the asymptot-
ics are determined by the Ising (Heisenberg) fixed point,
i.e., in the limit I~O one obtains, from Eq. (3.20),
u ( I )~uH. For g @0 one finds in the asymptotic limit
I~O that v(l)=u(l)/g(l) tends to zero as the inverse
logarithm of the flow parameter

= —eu(I)+ u (I) 1—n+8 2 1

I+pl/g I
1U(1~0)~ —+0.

ln(1/I )
(3.21)

(3.12}

The renormalization of the dipolar coupling g is deter-
mined solely by the renormalization of the fields because
there is no contribution to the divergent part of I ' '(k) of
the form q /p . Therefore, in one-loop order, the flow of
the dipolar coupling is given by g(l }=g, i.e. the flow of g
is solely determined by its canonical dimension.

In the limit 1~0, the flow equation (3.12) reduces to

These limiting cases suggest to define a coupling con-
stant w(l ) by

TABLE I. Fixed points of the flow equations (n =1). The
Gaussian (G) and Ising (I) fixed points are unstable, whereas
the uniaxial dipolar (UD) fixed point is infrared stable.

I
du(l ) (I )

n +8 2(1) pI
dl 6 g

The solution of Eq. (3.13) for E= 1 reads

(3.13)

UD

ao =o
0

CUD

wg —0
6

n+8
WUD =0("ln")
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g(t)=g(t)l[1+g(I)] .

The flow diagram is depicted in Fi . 1e in ig. 1, where the momen-
um sca'e is c osen as =1 thep=, e number of components

as n = ' uniaxial case an p
e flo diagram in Fi . 1 ig. is divided into two regions b

a separatrix, which is the ren
ns y

ry rom the Isin I fi

e renormalization-group traj t-ee o-

g ( ) fixed pomt to the uniaxial (UD) fix d
point. All renormma'ization-group trajectories flow into
the separatrix asymptoticall . Fy. or u ur, there are, be-
sides the stable uniaxial diipolar fixed point, two unstabl

Starting from the Gaussian (G)xe points (I and G.
e

xed point (i.e. forp
' (, for weak dipolar systems with sm 11

'
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r g, e renormalization-group tra'ect
traverse re ions ne
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s ows sing behavior in approaching the criticale cri ica tempera-

re ere is a crossover to uniaxial di olar behav-
ior. The onset of thisis crossover region depends on th

ipoar e av-

relative stren th
' ' ', u e e avgth of the dipolar interaction, but the behav-

ior in the crossover region is universal. For stron di o-
lar systems (large values of th

' ' ' '
ar

cou lin thcoup ing g), the fiow tends directly to the uniaxial di olar
fixed point. The eft'ects of the I '

fi
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e sing xed point are seen

mere y in a maximum of the flow of th 1'
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0.0
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1.0

IV. MASS RENORMALIZATION
AND SUSCEPTIBILITY

FIG. 1. (a) Flow diagram for the cou linFIG '
e coupling constant w(l ) vs

i =1,2, . . . , 10). (b) Flow dia ram fori=1 2 . . '

g m or the coupling constant
as &n (a) where g is given on a '

Q(g(1
g' n a 1inear scale in the interval

(I )
u (I)

1+g(1)
(3.22)

with finite values in both limits. Thi s. en, one finds for (i)
g~0: w(I)~u(I) and for (ii) g~ao: w(1)~U I .

The topology of the (w ) fio,g ) ow diagram is determined

y t e xed points summarized in Table I. I
ange of g(l) onto the interval [0,1], it is con-

venient to define the quantity

In this section we stud th
compute the scalin

y e mass renormalization and

p aling function of the susceptibilit . As re-
normalization is done at th

' ' '
t e

normalization is determine
e critical oint t e

'
n is etermined by the requirement that the

renormalized vertex function I' "wit o
'

n z'& wit one S -insertion
ni e accor ing to the renoni d' normalization procedure

e ne in ec. II. In oS . . In one-loop order there is the follow-
ing relation between the bare and the rn e renormalized vertex

I (2, 1)«&(» =O, g, k, ,k„p, u, p)

Z I(2, 1)
p~ p»o=0, go, k„k2, p, uo), (4.1)

where the one-loop contribution to the bo e are vertex func-

I (2, 1)(ii'p(» 0 g,k, k, p) 5(k +k + )5 1 "014( 0 &0 p) (4.2)

The ddivergent part of this one-loo dia r-oop ag a
erefore, the renormalization constant

or e mass is found to be

l

and the corres ponding g function is given by

g Pl+2 1
'

p 6 1+p/g
(4.4)

Pl +2 g
6E P

(4.3) et us now calculate the
~ ~ ~

der. The
e susceptibility to one-loop or-

e unrenormalized (bare) two-point vertex func-
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tion is found to be

I s p:5 ro+uo I2(ro go)(2) aP n +2
(4.5)

I'g '
p( r, g, p ) =p o Z„—uSd '

p

X [I2 ( r /P, g /9 ) —I2 (0,g /I ) ]

where the integral I2 is defined by

I (r,g)=
d" ' d 1

(2 )d
—i f 277 2+ 2+g2 2/ 2+r

(4.6)

As in the isotropic case, the dipole-dipole interaction
leads to a shift of the transition temperature, ' which can
be taken into account by a counter term or equivalently
by subtracting from the integral I2(r, g ) its value at r =0

Ii(r =O,g ) = —,'Sd 1 (d /2)I (
—1+a/2)g (4. /)

which is a measure for the magnitude of the shift of the
transition temperature.

According to the above considerations, one finds for
the renormalized two-point vertex function after sub-
tracting the counter term

I2(r, g )=— 1 ( ——,
' )I'(2 —e/2)—s„r-

2ir 2 2 1 ( —', —e/2)
r

xr —&+-E'

2

X dxf [g x+r(1 —x)]'
[x(1—x )]'~

The evaluation of the parameter integral

J(r,g )

(4.9)

=f dx[x(1 —x)] '~ [g x+r(1 —x)]' '~ (4.10)
0

in Eq. (4.9) results in (see the Appendix)

(4.8)

Using standard techniques for the evaluation of integrals
in the dimensional regularization scheme, the integral
Ii(r, g ) is found to be

J(r,g ) =J(r,g ) J(r —=O,g )

2

r(r+g—) 1+eln2+ ———ln
7T 2 —e/2 E' 6' g
2 2 2»+g2

r+g' &r
r g

r g 1
E'

1+g/&r
(4.11)

r+ ln(1+&r /g )
r

g
p+g

which will be analyzed in terms of an e6'ective exponent in the next section.

Inserting this result in Eqs. (4.9) and (4.8), one finds for the renormalized two-point vertex function

2
' —e/2

2
P(2) gaP» 1

n +2 r+g
1 ln

r —g 1

1+g~+»
(4.12)

V. EFFECTIVE EXPONENT OF THE SUSCEPTIBILITY

One possibility for analyzing the susceptibility is the so-called eft'ective exponent y,z defined by

d 1ny '( r /p, ,g /p, u )

d lnr

Using the renormalization-group equation [see Eq. (2.11)]

, —,u =l y ', , u(l)r r(l)
p2' p

' p2(2 p$

and the flow equation for the mass

(5.1)

(5.2)

I dpr(l)=r exp f g„(p)
1 p

one finds from Eq. (4.12) to one-loop order

+, . g + d lny '(i,g/pl, u(1))
ea + iver d lnr

(5.3)

(5.4)

where the matching condition
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r(I}
2(2

has been chosen. The g function for the mass is known from Sec. IV, Eq. (4.4),

(5.5)

g„(1)= u(I) 1+
6 pl

'2
ding '(1,g/p, l,u(l)),

I
n+2 g g g l 1+ Pl

1+(p!/g) pi pi g
2

g /Pl g l
PI

pl 1+pl/g p, l g

Using the Eqs. (4.12) and (5.3), the logarithmic derivative in Eq. (5.4) is found to be
2 -e/2

(5.6)

(5.7)

d Iny '(I,g/p, l, u(l)) n+2 pl
d 1nr 12 g

1
2 g l )+Pl

1+pl /g PI
"

g
(5.8)

In order to be consistent to first order in u and e, the first term in the curly brackets, proportional to e, has to be
neglected. Then one finds, for d=3, (i.e., e= 1), from Eq. (5.7)

' 2 —1/2

Before analyzing the effective exponents in general, let us
consider some limiting cases.

(i) In the limit of vanishing dipolar coupling g-0 one
finds

g„(g=O, l) = u(g=0, 1) .
n+2

(5.9)

Since u(g=O, l) is given by Eq. (3.20), the g function
asymptotically (1-0) reduces to

g„'(g =0)= e.n+2
n+8 (5.10)

Furthermore, since the logarithmic derivative of
(l,g/pl, u(1)) vanishes linearly in g, one finds, in the

case of vanishing dipolar coupling for the exponent v of
the correlation length,

one is allowed to set r =p I in Eqs. (5.6) and (5.8) to
one-loop order of Eqs. (5.3) and (5.5). The effective ex-
ponent resulting from combining Eqs. (5.4), (5.6), and
(5.8) is shown in Fig. 2 for the initial value
u(1)=u& (n=l} as a function of the scaling variable

y =r/g for a series of initial values of the dipolar cou-
pling constant g=k/10 with k=1,2, . . . , 5 indicated in
the graph. The curves start at the initial value I =1 of
the How parameter where the effective exponent is given
by

y,$1=1)=1+—,
'

for small values of the dipolar coupling g and n =1.
With increasing dipolar coupling the value of y,z at l = 1

decreases, implying that the crossover from y,~=1+—,
' to

the asymptotic dipolar behavior can be regarded as
1 n+2——2 —— E'.
V n+8 (5.11)

(ii) If the dipolar coupling is finite, classical behavior
with logarithmic correction results. As is inferred from
eq. (5.6) the g function becomes

1.20

1.15 .

g„(1-0)= ~(1)~ = U(1) .
6 g 6

(5.12)

According to Eq. (5.8), the logarithmic derivative of
(I,g/pl, u(l)) vanishes linearly in 1. Combining this

with Eq. (4.14), one finds, for the effective exponent of the
susceptibility,

y,$1~0)~1+ n+2 1

2(n+8} lnl —lnl

which implies, for the susceptibility,

1(~) ~ln
~

(n+2)/(n+8)

(5.13)

(5.14)

in agreement with Refs. 2 and 3.
For the further analysis of the effective exponent y, ff

1 ' 10

1 ' 05

t oo~
—10 —5

1n( )

FIG. 2. Effective exponent of the susceptibility vs the scaling
variable ln{y)=ln{r/g ) for the initial value u{1)=ul and a
series of initial values of the dipolar coupling constant g =k/10
with k =1,2, . . . , 5 indicated in the graph.
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1.20

1.15-

(a) g=&.o 1.20

eff

1.15-

1.10-
/' '4

/

1.10

1.05-
1.05-

1.00
—10

1n( )
1.00 .—

—10

]n( )

1.20 1.20
(d) g=0.001

1.15 1 15-

1.10- 1.10 .

1.05- 1.05-

1.00
—10 0

]n( )

1.00
0

]n( )
10

FIG. 3. Effective exponent of the susceptibility for (a) g=1.0, (b) g=0. 1, (c) g=0.01, (d) g=0.001 vs the scaling variable

ln(y ) = ln(r /g ) for a series of initial values u(1)=
3
+(k —3)/10 with k = 1,2, . . .5 indicated in the graphs.

universal for small dipolar couplings only. However, the
reduction of the initial value y,s(l = 1) is essentially due
to the fact that the effective coupling constant is not u

but u/(1+g). Thus, the initial value of y, tr can be ap-
proximated by

1
y,s(I=1)=1+

Let us now study in what sense the crossover function for
the effective exponent can be regarded as universal, i.e.,
how the choice of the initial values u(1) elfects the form
of the crossover function. For this purpose y,ff(r, g) is
displayed in Fig. 3 versus in(y ) =ln(r/g ) for fixed dipo-
lar couplings (a) g=1.0, (b) g=0. 1, (c) g=0.01, (d)

g =0.001, and a series of initial values u =
—,'+(k —3)/10

with k =1—5 indicated in the graphs. For weak dipolar
systems [Figs. 3(c) and 3(d)], the crossover from the Ising
value yl=1+ —,

' to classical behavior with logarithmic
correction is a universal feature of uniaxial dipolar fer-
romagnets. For stronger dipolar systems [Figs. 3(a) and
3(b)], the Ising fixed point is only weakly attractive for
temperatures well separated from T„but the crossover is
no longer universal, i.e., it depends on the initial value of
the coupling constant u.

Now we turn to the comparison of our theoretical re-

suits with experiments on LiTbF4, which is one of the
most thoroughly studied uniaxial ferromagnets. In Fig. 4
the experimental data for y,~ of Ref. 10, ranging over
the interval 0.001~r 20 of the reduced temperature,
are compared with the present theory where the

1.15

jeff

1.10 .

1.05 .

1.00

&n(r)

FIG. 4. Effective exponent of the susceptiblity for g = 1.0 and
u = ur vs 1n(r }. The momentum scale is chosen as p=1. Exper-
imental data on LiTbF4 from Ref. 10.
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nonuniversal parameters in Eqs. (5.4), (5.6), and (5.8) have
been chosen as g = 1 and u =uH =

—,'. In the range r 1 of
the reduced temperature there is excellent agreement be-
tween theory and experiment. Especially, it is found that
the observed crossover corresponds to the Aow from the
Ising fixed point to the uniaxial dipolar fixed point. For
r 1 the data tend to the mean-field value y,&=1 corre-
sponding to a crossover to the Gaussian fixed point. This
can be described only qualitatively within our critical
theory by the limit l ~ 00. In as far as this crossover to
the mean-field limit is concerned with critical behavior, it
could be described by a method given by Lawrie.

Above T, this quantity is related directly to the vertex
function I B' ' with two S insertions

C, =r,"')(p =0) . (6.2)

This vertex function has to be renormalized additatively

1(o, ) —Z 1(o, ) (Z 1(o, ))R y2 B y2 B sing & (6.3)

where the renormalization constant Z 2 is identical to the
mass renormalization

VI. SPECIFIC HEAT
Z2 —Z (6.4)

C = ( —So(p =0)—So(p =0) ) c (6.1)

I

In this section we study the crossover behavior of the
specific heat, which is given by the cummulant (C)

The RG equation for the specific heat is obtained from
Eq. (6.3) by applying the differential operator tu(d /d)M)io
and noting that the bare quantities do not depend on the
momentum scale p

p +P u, — +g„u., — 2+r +ps u, —g C„(r,g, u, p)=p 'B
2 u, —a g a g a g a,- g

P P " P " lJ p
(6.5)

The inhomogeneity of the RG equation (6.5) has the form

p Zzp, Z
—2[Z2f (s0, 2)(p 0)]

p
(6.6)

The RG equation (6.5) is solved by the method of characteristics. Confining ourselves to the one-loop order, we find for
the renormalized specific heat

with

r
2, —,u =p'Cit (r,g, u, )(()

p p
(6.7)

dl'
, —,u =exp f —[2~„(l)

—e] C, , u (p) —f B2(l )ex—p f, [2(„(l')—e] (6.8)

Since there is no zero-loop contribution to the specific heat, the vertex function Pz' ' is given to one-loop order by

I' ' '(p, 0)= ,' f G—~—(r,g, k.)G (r,g, k.) .
k

(6.9)

Since the integral in Eq. (6.9) already appeared in connection with the renormalization of the four-point coupling u, the
additive renormalization is found to be

g n 1B p
—=—Sd
p 2 " 1+g/p

(6.10)

r g n r+gC, , u Sd
p p 2 p

With the matching condition

r(l)
2l2

For the renormalized specific heat one finds
—e/2

—+ln 1+1

2

Vr—ln 1+ 1

1+glair

(6.11)

(6.12)

and use of the RG equation (6.8), we get, for the dimensionless renormalized specific heat, the expression
T

I dl'C,—,u =exp f —[2(,„(l)—e] C l, , u(p} —f B,(l }exp f—, [2$„(l')—e] (6.13)
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where the flow parameter p and the reduced temperature
r are, according to the matching condition (6.12), related
by

r =p p exp —I —g„(l )
l

(6.14)

g„(l ) is given by Eq. (5.6) and the fiow of the four-point
coupling u(l ) is determined by Eq. (3.19) for e= l. The
additive renormalization in terms of the low parameter
reads

k, (1)=—
2 I+g/pl

(6.15)

Combining Eq. (6.11) with (6.12), the term
C( l,g/pl, u(I )) in Eq. (6.13) can be written as

' 2 —e/2

for very small values of the flow parameter p or
equivalently for large values of the dipolar coupling con-
stant g, i.e., in the strong dipolar limit. Equation (6.17),
however, has the same structure as Eq. (42) of Ref. 1,
which was obtained from a resummation of the leading
logarithms in each order of perturbation theory. This
confirms that the present field-theoretic approach is valid
for both the strong and weak dipolar limits. As we will
see later by comparison with experiments, Eq. (6.17) is
closer to the data than the ultimate asymptotic logarith-
mic behavior (6.18). (ii) For vanishing dipolar coupling

g =0, one finds in the limit I ~0

g„(1) e,n+2
n+8

C l, , u(l) =—1+' pl' 2 pl

1 1

2 1+g /)Ml

C l, , u(l )
g n

' pl' 4

and consequently6.16

l, , u(l)' pl' 4 g

and consequently the following asymptotic expression for
the specific heat:

r g n(n+8) uH

p~' p' 2(4—n) u

(4—n )/(n+ 8)

X 1+ ln
pu 1

guH p

(6.17)

One should note that our asymptotic result (6.17) is valid
for any value of the strength of the dipolar coupling in
the limit l ~0. It reduces to the logarithmic behavior

r g n(n+8) "H
, up~' p 2(4 n) u—

X ~

(4—n )/(n + 8)
pu 1

ln
guH p

(6.18)

found by purely asymptotic analysis in Refs. 2 and 3 only

Here and in the following, the common prefactor Sd of
B & and C(1) has been omitted.

Let us study two important limiting cases. (i) With
nonzero dipolar coupling g, one finds, in the asymptotic
limit (1~0) for d =3 dimensions,

n+2 pl
6

u(1)- n+8 lnl —lnl

k g(l)~—n pl
2 g

C
~

u =A Br-
p

(6.19)

where A and B are constants and the critical exponent of
the specific heat is found to be

2g„' —e

2— (6.20)

with g„*=[(n+2)/(n+8)]e.
Now we turn to the numerical analysis of the specific

heat, Eq. (6.13). In Figs. 5(a) and 5(b), the specific heat
versus the scaling variable r/g is displayed for the pa-
rameters u =ui, n =1, p=1, a=1, and a series of dipo-
lar couplings (a) g =k/3 and (b) g =10 "with k =1,2, 3
indicated in the graphs. The solid lines represent the nu-
merical solution of Eq. (6.13) and the dashed curves the
asymptotic law Eq. (6.17). For systems with a weak dipo-
lar coupling [see Fig. 5(b)], the behavior of the specific
heat in the experimental accessible region looks more like
a power-law behavior with a positive a [see Eq. (6.19)]
than a logarithmic divergence. Closer to T, there is a
crossover from positive to negative o, and ultimately to
logarithmic behavior. For stronger dipolar systems [see
Fig. 5(a)], the specific heat is nicely represented by Eq.
(6.17) and this approximation is better the larger the di-
polar coupling. The ultimate asymptotic behavior (6.18),
even for strong dipolar systems, fails to describe the be-
havior of the specific heat in the experimental accessible
region. The reason is that, due to the slow increase of the
term inc,'p), the asymptotic behavior is reached for small
flow parameters only. In particular, this implies that the
purely logarithmic asymptotic behavior is outside the ex-
perimental range. In order to substantiate this point, the
asymptotic expression (6.18) for the specific heat is also
displayed in Fig. 5(a) as the dot-dashed curves.

In Sec. V we have compared our theoretical results
with measurements of the susceptibility in LiTbF4, where
we have chosen the parameters according to
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u =ul, n =1, g=1, @=1,and d=3. Now we compare
with specific-heat experiments in LiTbF4 using the same
set of parameters as in Sec. V. The resulting curve is ex-
hibited in Fig. 6 versus the reduced temperature r (solid
curve). For comparison we have also plotted Eq. (42) of
Ref. 1 (dot-dashed curve)

20 .

C+ =( A /b') I [1+bin(a /r )]'—1), (6.21)
I

15

where z equals —,
' for n =1 and the parameters in Eq.

(6.21) have been determined by a least-squares fit in the
temperature range 10 r 10 . According to Ref. 5,
one finds A /R =0.4394, b =2.425, and a =0.2084,
where R =8.3144 Jmol 'K '. Equation (6.21) gives
quite a good description in the temperature range given
above, while it falls below the data for reduced tempera-

O
E

10

10 10 10 '

FIG. 6. Specific heat of the uniaxial dipolar ferromagnet vs
the rescued temperature r. The solid curve represents Eq. (6.13)
with the parameters g =1 and u =u&. The dot-dashed curve
represents Eq. (6.21) as described in the text. The data points
are taken from Ref. 5.

0-

40 .

30.

20-

10
ture r & 10 . In contrast, the present theory, Eq. (6.13),
gives a satisfactory description in the whole temperature
range 10 '~ r ~ 10 '. Furthermore, the main advan-
tage of the theoretical results of this section is that (be-
sides of a nonuniversal scale for the amplitude of the
specific heat) there are no adjustable parameters. More
precisely spoken, if one makes a choice of the set of
nonuniversal parameters by comparing, for instance, the
theory with susceptibility measurements, this set of pa-
rameters has to be maintained for all further quantities of
the same substance. This we have done in comparing our
theory with measurements of the specific heat.

VII. SUMMARY

10.

0-
I

10
T

&o-' 1O'

FIG. 5. (a) Specific heat of the uniaxial dipolar ferromagnet
vs the scaling variable r/g . The solid lines represent Eq. (6.13)
with the parameters u =ui and g =k /3, where k = 1,2, 3 is indi-
cated in the graph. The dashed curves represent Eq. (6.17) and
the dot-dashed curves Eq. (6.18). (b) Specific heat of the uniaxi-
al dipolar ferromagnet vs the scaling variable r/g . The solid
lines represent Eq. (6.13) with the parameters u = ui and

g =10,where k = 1,2, 3 is indicated in the graph. The dashed
curves represent Eq. (6.17).

In this paper we have developed a field theory for the
crossover in uniaxial ferromagnets mediated by the dipo-
lar interaction. In particular, we succeeded in describing
the crossover from Ising to classical behavior with loga-
rithmic corrections, which is accompanied by a change in
the upper critical dimension. The theory is applicable for
both weak and strong dipolar systems. Within this
theory we were able to give a quantitative interpretation
of susceptibility and specific-heat measurements on
LiTbF4, where solely the strength of the dipolar coupling
g and the initial value of the four-point coupling u en-
tered as adjustable parameters. These parameters are,
however, nonuniversal quantities depending on the sub-
stance under consideration. The important point is that
this set of parameters is adjusted by comparing the
theory with measurements of one particular correlation
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function, for instance, the susceptibility, and has to be
maintained for all other physical quantities.

Let us compare the present crossover to the situation
in isotropic dipolar ferromagnets. There one finds a
minimum in the effective critical exponent y,& of the
order-parameter susceptibility. This minimum appears in
the crossover region between isotropic and dipolar criti-
cal behavior, and has to do with the split up of the
order-parameter components in two transverse and one
uncritical longitudinal component. The maximum of Fig.
4 is of quite different an origin. It is located in the isotro-
pic critical region and appears because the isotropic ex-
ponent is higher than the asymptotic uniaxial and the

classical at the border of the critical region.
A particular virtue of the present approach is the capa-

bility to describe the crossover between fixed points of
different upper critical dimensionalities. The method in-
troduced here in the context of uniaxial dipolar magnets
has a variety of potential applications.
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APPENDIX: HARTREE INTEGRAL

In Sec. IV one has to calculate the parameter integral

J(r,g)= f dx[x(1 —x)] '
[g x+r(1 —x)]'

0
(Al)

In order to give the correct result in both limits r~0 and g~O, it is necessary to extract the factor (r+g )' '~ from
the integral without making an e expansion of this term. Then one finds

J(r,g)=(r+g )' ' f dx[x(l —x)] '~ x+ (1 —x)
0 r+g r+g

The remaining integrals can be evaluated analytically with the result

E'

1 ——ln
2

g rx+ (1—x)
r+g r+g

(A2)

2

J(r,g)= (r+g ) — 1+— +eln2 ——ln2 i —e/2 «g
2 2 r+g 2

where

g
2

r+g~

2
I' '(r/g )

—— I"'(r/g ), (A3)
~ r+g~ vr r+g~

&r 1I"'(r/g )= dx x ' (1—x)' ln 1+ =n ln 1+ +
g x g 1+g/&r

V'y
ln 1+I' '(r/g )=f dx x' (1—x) ' ln 1+

0 g X

1

g 1+g/v'r

Hence, by additionally subtracting the counter term Jcz =J(r =O, g ), one gets for J(r,g ) =J(r,g ) J(r =O, g)—
(A4a)

(A4b)

J(r,g)= r(r+g )
' 1+——+eln2 ——ln

2 2 2
g

2

r+g~
1 r+g——e ln(1+&r /g )

1+g /&r
(A5)
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