
PHYSICAL REVIEW 8 VOLUME 42, NUMBER 13 1 NOVEMBER 1990

Percolative conduction in three dimensions
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We employ finite-size scaling to analyze the critical behavior of large [up to (80) ] three-

dimensional random resistor lattices. The ratio of the conductivity exponent t to the correlation
length exponent v is found to be t/v=2. 276+0.012. Combining this with the accepted value
v=0. 88+0.02 gives t=2.003+0.047, very close to the upper bound t=2 recently proposed by
Golden. Studying the connectivity of lattices up to (200), we estimate that the bond percolation
threshold p, =0.24883+0.00005, slightly smaller than some recent estimates, and have also
confirmed the accepted value of v.

I. INTRODUCTION II. THE EXPONENT t

Consider a simple cubic lattice of resistors, where a
fraction p of the resistors have conductance 1, while the
remaining fraction (1—p) have conductance 0. ' For
p &p„only finite clusters of resistors are present, so that
a very large sample will have a bulk conductance G=O.
For p equal to, or slightly greater than, the percolation
threshold p„ the bulk conductance of a large cube mea-
sured from one face to the opposite face is known to vary
as

Two finite random resistor lattices with the same size L
and the same bond probability p will not, in general, have
the same conductance G. For lattices where L ))g, the
spread in the conductances is small, but as p approaches
p„Auctuations become large for any finite lattice. This
makes the use of (1) for determining t probleinatic.

An alternative is to determine the average conduc-
tance, ( G ), which is well-defined in finite lattices.
Finite-size scaling arguments suggest that

G ——(p —p, )', (G)-—(p —p, )'fL, L
g(p)

(3)

where L is the length of the cube and I is the length of a
single resistor, and t is the conduction critical exponent.
(The factor of L/L refiects the fact that a cube's conduc-
tance increases linearly with size. )

A second quantity of interest is the correlation length
Near the percolation threshold, the probability of

finding two resistors a distance r apart on the same finite
connected cluster varies as exp( r /g), where —

g varies as

(2)

and v is the correlation-length exponent.
Fogelholm developed an algorithm that applies succes-

sive transformations to an arbitrary two-terminal resistor
network until the conductance between the two terminals
is obtained. Fogelhom applied his algorithm to two-
dimensional percolation. We have used his method on
d-dimensional cubic lattices, and found that it is compu-
tationally very e%cient. For example, our program will
find the conductance of an (80) lattice at p =p, in 36
CPU seconds on a Sun 4/280.

The Fogelholm algorithm makes an improved deter-
mination of t possible in three dimensions. We discuss
our simulations in detail in Sec. II. We first describe how
simulations of finite lattices can be extrapolated to the
infinite-sample limit where (1) is expected to hold, and
then give our data on lattices up to size (80), and our
analysis of the data, to determine t. In Sec. III, a descrip-
tion of our determination of p, using lattices up to (200)
is given. Our results are summarized in Sec. IV.

which is correct if g(p) is the only relevant length scale in
the problem. For (3) to agree with (1), f (ac) must be a
constant because ( G ) =G when L /g(p) ~~. Similarly,
in order for ( G )%0 when p =p„which will be true for
finite lattices,

f(LI((p))=f(L/&(p —p, ) ")-[L/&(p —p, ) "]

in order to cancel the (p —p, )' dependence of (3). This
gives, for p =p„

1 —t/v

(4)

The prescription we follow, then, is to determine ( G ) by
calculating the conductances of a large number of lattices
at various sizes with p =p„and to fit the resulting data
to (4) to determine t /v.

Figure 1 shows a finite lattice with b =2, whereb:—L/1. We chose to calculate the conductance of finite
samples with the shape shown in Fig. 1 because the two-
dimensional analog of this type of sample is known to
converge quickly to the infinite-sample limit. Each sam-
ple was generated using a random-number generator to
determine which resistors were present and which were
absent. The Fogelholm method was used to determine
the conductance of each realization. Equipotential
boundary conditions were applied to opposite faces of the
sample, so that, for example, the b=2 sample shown in

Fig. 1 has 12 bonds which carry current. Arithmetic,
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FIG. 1. Cell used for finite sample of size b=2. Bonds are
randomly assigned conductances of 0 or 1, and the cell conduc-
tance G is calculated by imposing equipotentials on two oppo-
site faces.

geometric, and harmonic means were calculated, where
means were taken over the connected realizations. All
three means are different, but all should fit to the same
value of t /v, as in (4).

We originally used Wilke's value of p,
=0.2492(+0.0002) because it was based on a very careful
analysis of lattices up to b=200. We found, however,
that our samples for b & 20 or so had a rapidly increasing
fraction of realizations which conducted as b was in-
creased. We concluded that Wilke's value of p, was

slightly high, and that our sample shape was more sensi-
tive to slight errors in p, than the shapes used by Wilke.
Another possibility was that our random number genera-
tor had subtle correlations in it, which shifted p, slightly.
We concluded, after extensive testing of different random
number generators, that this was not the case. Using a
"maze-solving" program on lattices up to b=200, we
concluded that p, =0.24883+0.000 05, which is very
close to Wilke's value. These results will be described in
detail in the next section. We note that short-range
correlations can shift p„but are not believed to affect the
values of t or v.

The data generated with p =0.24883 are shown in
Table I. Equation (4) can be rewritten as

Thus, to fit the data we plotted ln((G) '}/1nb against
1/1n(b). The data thus plotted should fall on a straight
line, with a y intercept of (t /v) —1.

The data for b=2 do not fall on a straight line with the
other data. Eliminating the point at b=2 yields remark-
ably straight lines, as shown in Fig. 2. Fitting the data
from b=4 through b=80, we obtain t/v=2. 277, 2.279,
and 2.280 for the arithmetic, geometric, and harmonic
means, a spread of only 0.13%. Fitting the points from
b=6 through b=80 gives 2.277, 2.278, and 2.278 for the
three means, a spread of only 0.044%.

If the data were free of statistical fluctuations, elim-
inating still more of the small-b data points could give a
better estimate of t/v. We found that doing this just in-
creased the normalized g of the fits without systemati-
cally changing the value obtained for t /v.

We have also estimated t /v from a second independent
set of data. Letting p'(p, b) be the probability that a lat-
tice of size b with bond occupation probability p con-
ducts, the fixed point p'(b) is implicitly defined by
p'(p, b) =p'. When p )p, the lattice is more likely to
be connected than an individual bond in it, and when

p &p*, it is less likely to be connected. Thus, for exam-
ple, p'( ~ ) =p, . Rather than setting p =0.248 83 for all

b, as was done above, we determine the fixed point p'(b),
and did our calculations for p =p "(b). Our determina-
tion ofp'(b) is discussed in Sec. III.

Table II gives the second set of data. These data also
fit (5) well when the data at b =2 were omitted, giving
t/v=2. 272, 2.276, and 2.279 for the arithmetic,
geometric, and harmonic means, respectively. When the
points at b=2 and b=4 were omitted, the values ob-
tained from the three means were 2.270, 2.272, and 2.273.
We note that, once again, omitting the two smallest-b
data gives less spread than omitting only the smallest-b
data.

As a further check, fits were done to the second data
set with the b=60 and b=80 data points removed. This
was done because the statistics on these last two points
were not as good as on the other points. This did not

TABLE I. Average conductances at p =0.248 83 as a function of lattice size b. X is the total number of realizations simulated, N,
is the number which conducted, and the subscripts a, g, and h refer to arithmetic, geometric and harmonic means.

N,

2
4
6

10
15
20
30
40
60
80

200000
200000
100000
40000
20000
20000
20000
20000
24000
11 000
11 000

58 317
60 737
30 197
12 034

5 924
S 927
5 806
5 739
6933
3 215
3 096

0.527 74 +0.00077
0.229 47 +0.00040
0.13652 +0.000 34
0.094 88 +0.000 38
0.071 35 +0.00041
0.042 66 +0.000 24
0.029 23 +0.000 17
0.01740 +0.000 10
0.012 210+0.000 065
0.007 261+0.000 057
0.004 9S5+0.000 039

0.502 96 +0.000 65
0.212 36 +0.000 33
0.12600 +0.00028
0.087 51 +0.00031
0.065 77 +0.00034
0.039 31 +0.00020
0.02699 %0.000 14
0.016036+0.000 083
0.011 245+0.000 053
0.006 683+0.000 047
0.004 571+0.000 032

0.478 18 +0.00061
0.197 88 +0.000 30
0.117 18 +0.00025
0.081 35 +0.00028
0.061 12 +0.000 30
0.03649 +0.000 18
0.025 12 +0.000 12
0.014913+0.000 073
0.010442+0.000 047
0.006 205+0.000 041
0.004 253+0.000 028
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FIG. 2. Dependence of mean conductance (G) on lattice
size b at p =0.24883. Harmonic mean is represented by ~,
geometric mean by 0, and arithmetic by ~. Data for 4 ~ b & 80
are shown.

alter the results very much: fitting from b=4 through
b=40 gave 2.273, 2.278, and 2.281, and fitting from b=6
through b=40 gave 2.271, 2.273, and 2.275.

All of these different estimates of r/v fall between
2.270 and 2.282. We take the midpoint as our estimate
for t/v, and double the range as a subjective estimate of
uncertainty, thus

—=2.276+0.012,
V

which is the central result of this paper.
Equation (4) is asymptotically true when (L /I) is large.

A more complete form for (4), which allows data from
smaller lattices to be fit, is

1 —E/v ' —5/v
L L(G&=-
l

c +c
1 2 + ~ ~ ~

where c, and cz are constants. This equation reduces to
(4) when (L/l) is large, as long as b, is positive. We
found that corrections to scaling were too small to be
determined from our data; c2/c, was between 10 and

10 for 5/v & 3 when the data at b =2 were omitted.
Based on a number of values ' ' reported in the litera-

ture, it is probably safe to conclude that v=0. 88+0.02.
(Our value, discussed in Sec. III, is toward the high end
of this range, but is probably less accurate than other re-
ported values. ) Combining this with (6}gives

t =2.003+0.047 .

Using the more recently determined value v=0. 875
+0.008 gives t =1.992+0.021 ~ Although we believe that
the more recent determination of v is probably accurate,
we will emphasize the more conservative evaluation of t
(8) in this paper.

III. THE THRESHOLD p, AND EXPONENT v

It is easier to calculate whether or not lattices conduct
than to calculate their conductances, so that we were able
to estimate p, and v on much larger lattices, up to (200}
in size. As mentioned above, we define p'(p, b) to be the
probability that a lattice of size b with bond occupation
probability p conducts. The fixed point p* is implicitly
defined by p'(p*, b)=p*. Knowing p*(b) and
(dp'/dp), will allow us to estimate p, and v.P=P

For each value of p and b, our program generated a
large number N of different lattices and determined the
number N, of the lattices which conducted. Thus,
p'=N, /N, and the uncertainty in p' was taken to be
[p'(1 —p')/N]' . For b=3, for example, 500000 lattices
were studied for each p=0.223, 0.224, 0.225, . . .0.229.
A straight line of the form p'=c&p+c2 was fit to this
data, and the intercept of this straight line with the line
p'=p was used to estimate p*. The data thus obtained
are given in Table III, as well as the slope (dp'/dp) P=P

The uncertainties listed in Table III are derived from
the statistical uncertainties in the data and the resulting
uncertainties in c, and c2. Additional error may occur if
the range over which p' varies linearly with p is exceeded
in the fit. We decreased the range as b got larger, from
0.223 ~p 0.229 for b = 3 to 0.2485 p ~ 0.2489 for
b=200. Although the curves appear to be straight in the
ranges chosen, it should be noted that fitting over too

TABLE II. Average conductances at p =p* as a function of lattice size b. Ã is the total number of realizations simulated, N, is

the number which conducted, and the subscripts a, g, and h refer to arithmetic, geometric and harmonic means.

N,

2
4
6
8

10
15
20
30
40
60
80

0.2085
0.2331
0.2400
0.2430
0.2446
0.2464
0.2472
0.2479
0.2482
0.2484
0.2485

200 000
200 000
100000
40 000
20 000
20 000
20 000
20000

8 000
5 500
4 500

41 664
46 708
24013

9 615
4 787
4 900
4 880
5 082
1 935
1 168

988

0.508 82 +0.00078
0.219 62 +0.00040
0.13100 +0.000 35
0.09021 +0.00038
0.068 02 +0.00041
0.040 66 +0.000 24
0.028 32 +0.000 17
0.01696 +0.000 10
0.011 76 +0.000 12
0.006 923+0.000 081
0.004 971+0.000 067

0.488 30 +0.00067
0.205 37 +0.00034
0.121 85 +0.00029
0.083 96 +0.000 32
0.063 18 +0.000 34
0.037 79 +0.00020
0.026 23 +0.000 14
0.015 743+0.000 083
0.010859+0.000 095
0.006 465+0.000 068
0.004 598+0.000 OS7

0.469 82 +0.000 65
0.19305 +0.00031
0.11409 +0.00026
0.078 70 +0.000 28
0.059 13 +0.000 31
0.035 38 +0.000 18
0.02449 +0.000 13
0.014711+0.000 075
0.010 122+0.000 084
0.006 076+0.000 061
0.004 281+0.000 OS 1
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3
4
5

6
8

10
15
20
30
40
50
60
80

100
150
200

0.225 317 +0.000075
0.233 116 +0.000054
0.237 281 +0.000052
0.239 996 +0.000047
0.242 951 +0.000053
0.244551 +0.000047
0.246 400 +0.000026
0.247 182 +0.000028
0.247 870 +0.000032
0.248 173 +0.000019
0.248 303 +0.000019
0.248 401 +0.000018
0.248 516 +0.000013
0.248 597 7+0.000008 1

0.248 684 8+0.000 007 8
0.248 7199+0.000 008 7

3.15+0.11
4.19+0.11
5.42+0.23
6.99+0.30
9.71+0.51

10.87+0.51
19.6 +1.3
26.3 +1.8
38.6 +5.8

54.3 +3.9
77.5 +5.6
81.9 +5.6

122.2 +8. 1

164.4 +6.6
240 +14
349 +27

wide a range will cause us to underestimate
(dp'/dp), ,.

We estimate p, by extrapolating p'(b) to the infinite-

sample (b~) limit. A finite-size scaling argument
gives

p 4(b) b 1/v (9)

Thus, when p*(b) is plotted against b ' ", the extrapo-
lated y intercept gives p, .

We did a number of different fits to our data, which
had 3~b ~200. We found that the data points for
40~b ~200, which are shown in Fig. 3, gave excellent
and nearly indistinguishable linear fits for trial values of

0.2488

0.2486

e (~)

0.2484

0.2482

0.000
~ l

0.005 0.010 0.015

FIG. 3. Plot of fixed point p*(b) against b ' ' for v=0.88.
Data runs over the range 40~ b ~200. The y intercept of this
curve, 0.248 83, is an estimate for p, .

TABLE III. Fixed point p* and derivative (dp'/dp) ~ of the
P

probability p' that a lattice is connected, as a function of lattice
size b.

(dp'/dp) +

v=0.86, 0.87, 0.88, 0.89, and 0.90, with intercepts of
0.24882, 0.24882, 0.24883, 0.24883, and 0.24883, respec-
tively. When data for 10~b ~200 were plotted, curva-
ture was apparent, so quadratic and cubic fits were done.
The quadratic fits gave the same intercepts as the linear
fits for the same values of v, while the cubic fits all gave
an intercept of 0.24881. Finally, when all of the data
points, for 3 ~ b ~ 200, were fit, intercepts between
0.248 85 and 0.24902 were obtained using quadratic and
cubic fits. Our choice for p„

p, =0.248 83+0.000 05 (10)

IV. SUMMARY AND CONCLUSIONS

The central result of this paper is (6), which leads to
(8)—that the critical exponent for conductivity in three-
dirnensional percolation is very close to 2. In spite of two
decades of work on this problem, a considerable spread
exists in quoted values. Sahimi' plotted a frequency dis-
tribution of reported values in 1984 ranging from 1.5 to
2.4, with 2 indicated as the "currently accepted value. "
Mitescu and Musolf" obtained t/v=2. 47+0.12 using
finite-size scaling on lattices with b 20. This would lead
to a higher value of t if the presently-accepted value of
v =0.88+0.02 were used. When their value of
v =0.83+0.05, also obtained from small lattices, was
used, they obtained t =2.06+0.06, in agreement with this
work. Clerc et al. ' favored a value of 1.9+0.1 in 1989,
giving preference to the transfer-matrix value. ' Adler's

is a subjective estimate chosen to encompass the results
of the various fits. This is in excellent agreement
with Grassberger's Monte-Carlo result, p, =0.248 75
+0.00013, and with Ziff and Stell's Monte-Carlo result,

p, =0.248 812+0.000 002.
In addition to providing an estimate for p, for use in

determining Table I, these calculations provided the fixed
points p *(b ) used in determining Table II. For
3 b ~30, the numerically determined fixed points of
Table III were used to do the calculations for Table II.
For 40& b ~200, the linear fit shown in Fig. 3 was used
to determine the fixed points used in Table II, as a way of
smoothing out statistical Auctuations. Significant
differences would not have occurred in Table II if the
numerically-determined fixed points had been used for all
b.

Empirically, fits to (9) were much more sensitive to the
choice of p, than to the choice of v, so that fitting data to
(9) is not an effective way to determine v. Another scal-
ing result,

dP
b -&/&

dp

was used to attempt to extract an accurate value for v.
This was fit using the same method as was used on (4) to
extract a value for t/v. Large statistical uncertainties in
dp'/dp prevented us from getting a highly accurate value
of v. On the basis of our data alone, we would estimate
v=0. 90+0.03. Our result is in agreement with the ac-
cepted value for v, but is probably not as accurate.
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series analysis' ' gives t =2.02+0.05, in excellent agree-
ment with this work.

Roman' has very recently studied diffusion using the
ant-in-the-labyrinth Inethod. His two independent calcu-
lations can be analyzed to give i/v=2. 505+0.072 and
t/v=2. 465+0.054. ' These values are clearly in conflict
with the results presented here; note that they correspond
to the y intercept of Fig. 2 being either 1.505 or 1.465.
We point out that the analysis of data for Roman's
method is much less straightforward than for our
method. Random walks involve calculating slopes of rms
displacement versus time on log-log plots, which is in-
herently less reliable than obtaining average conduc-
tances, as is done here. ' Note that our estimated uncer-
tainty in (8) would have to be more than doubled to en-
compass the values 1.9 and 2.1, and the uncertainty in (6)
would have to be multiplied by a factor of 19 to enclose
Roman's value.

Of three recent calculations, then, the series method
and this work favor a value for t near 2, while the ant-in-
the labyrinth is 10% higher. A consensus on the values
of the static critical exponents, in particular v and P/v in
three dimensions, would greatly simplify comparison of
values obtained by different methods. This, plus an ex-

tension of the present work to larger lattices, could nar-
row the error bars in (8) by a factor of 5 or more.

Golden' has recently proposed the bound t &2 in
three dimensions, with additional arguments for the value
t=2. Series calculations and this work, coupled with
Golden's bound, suggest that the value t=2 may indeed
be exact in three dimensions. Further theoretical and nu-
merical work are needed to check the bound, and the
conjectured exact value.

Finally, three independent methods applied to large
lattices now agree that the bond percolation threshold in
three dimensions is p, =0.2488, with disagreement in the
fifth digit to the right of the decimal point.
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