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Time-dependent behavior of classical spin chains at infinite temperature
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An ultrafast, vectorized spin-dynamics method is used to study the time-dependent properties of
classical XY and Heisenberg spin chains at infinite temperature. The decay of the energy-energy

and spin-spin correlation functions is oscillatory for short times and at long times is consistent with

classical diffusion, although the approach to the asymptotic behavior is extremely slow. We have

also calculated S(q, co) and find clear indication of spin-wave peaks in both models.

I. INTRODUCTION

Although the time-dependent behavior of magnetic
spin systems has been investigated for several decades,
relatively little has been learned about the properties of
systems at infinite temperature. There are several impor-
tant questions to be answered, including the nature of
long-time correlations and the difference between classi-
cal and quantum behavior. ' Much work in this area has
concentrated on understanding the low-temperature
properties and had neglected the high-temperature limit.
Since many experiments are carried out at relatively
high temperature, this problem has more than purely
theoretical significance. Time-dependent behavior has
been studied theoretically using moment theories. Wind-
sor first simulated Heisenberg spin chains with nearest-
neighbor coupling J using a spin-dynamics method, and
similar calculations were later made by Lurie, Huber, and
Blume. The first investigations of equivalent XY models
of which we are aware were by Huber and followed by
Thomchick and Landau. All of these simulations were
performed over restricted periods of time t ~ 10J ' and
for systems of modest size. Interest in this problem was
recently rekindled when Miiller studied the classical
Heisenberg model at infinite temperature using spin-
dynamics simulations and concluded that anomalous
diffusion was occurring. In this paper we present a rein-
vestigation of this problem as well as results for the XY
model using 2 orders of magnitude more computing effort
than used in Ref. 8. Indeed, our study shows that quite

r J g (S,"S;"+,+S;S;y+)) (2)

for the XY model. Equations of motion for each spin
were obtained by evaluating the expression

S;=S;X Vs& .

We used a vectorized, fourth-order predictor-corrector
method on a Cyber 205 to integrate the equations of
motion for each spin; the method is explained in more de-
tail elsewhere. ' Time-displaced, space-displaced correla-
tion functions were determined, and the results for multi-

ple chains were averaged together. Results from as many
as 300 chains were averaged to produce the final esti-
mates. The scattering function S(q, co) was determined
by calculating the space-time Fourier transform of the
spin-spin correlation functions c(r, t), where the resolu-
tion function factors used were 5r =0.015 and 5t =0.02J:

long simulations are needed to observe the true long-time
properties.

II. MODEL AND METHOD

We have studied spin chains of length L =20000 with
a periodic boundary and with classical three-component
spins (unit vectors) at each site. The spins interact with
nearest neighbors only with the Hamiltonian

N
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for the Heisenberg model, and

t max

S(q, co)=&2/m J™xg cos(cot)cos(qr)c(r, t)exp[ —,'(r 5r) ]ex—p[—,'(t 5t) ]dt . —
I'

max

(4)

This process introduces a certain broadening in the
scattering function which is equivalent to resolution
broadening in experiments; but it also removes spurious
wiggles produced by the "cutoffs" in our data. A review
of the tests of the limitations in accuracy of the results is
also presented in Ref. 10.

III. RESULTS

A. Heisenberg model

Data for the spin autocorrelation function and energy-
energy correlation function are plotted in Fig. 1. In the
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FIG. 1 ~ Time dependence of the spin autocorrelation func-
tion (upper curve) and energy-energy correlation function
(lower curve) for the classical Heisenberg chain at T= 00. The
solid lines have slope —,

'.

early-time regime the spin autocor relation function
shows several gentle undulations which are far outside
the statistical error of the data, but these have died out
by a time of 10J '. The decay is then almost simple
power Iaw, but the effective power of the decay continues
to decrease very slowly until times well past t =100J
(see Fig. 2). We have analyzed the data over restricted
regions of time in the following way. Least-squares fits

FIG. 2. Asymptotic behavior of the spin autocorrelation
function for the classical Heisenberg chain at T= 00. The open
circles show the results of least-squares fits to simple power laws

using data that are within the horizontal arrows; the vertical
bars are error bars for these fits. The mean time for each fitting
interval is t. The dashed line shows a simple linear extrapola-
tion to t=00.

were made to a power-law decay of the form

(S,(0)S,(r)) ~r

where an effective exponent a,z is extracted for each time
interval. In Fig. 2 we plot the resultant values as a func-
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FIG. 3. Time dependence of the space-displaced spin-spin correlation functions for the classical Heisenberg chain at T= ao. The
inset shows the long-time behavior on a double logarithmic scale. The symbols denote the following: (X) r =0, (+) r =2, (0) r =4,
(0) r =6, and (+) r =8.
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FIG. 4. Neutron-scattering function S(q, co) for the classical
Heisenberg chain at T= ~. The symbols denote the following:
(X) qa=m/8, (+) qa =3m/8, (0) qa =5m/8, and ( )

qa =7~/8.

FIG. 6. Time dependence of the out-of-plane spin autocorre-
lation function (lower curve) and energy-energy correlation
function (upper curve) for the classical XYchain at T= ~.

tion of the mean time of the fitting interval. The open
circles show the results of least-squares fits using data
that are within the horizontal arrows; the vertical bars
are error bars for these fits. The mean time for each
fitting interval is t. The dashed line shows a simple linear
extrapolation to t = ~. For very short times the effective
exponent is well above 0.6, but it decreases systematically
as the fitting interval is moved to longer times. At the
very longest times the fitting is no longer robust; i.e., the
answer depends on the explicit interval used, but the
trend is still quite clear. The data can be convincingly ex-
trapolated to a= —,', although it would also be possible,
within the errors bars, to extrapolate to slightly larger

03

values. The energy-energy correlation function also
shows a relatively slow approach to the asymptotic be-
havior, but by a time of 40J ' it is well described by a
t ' decay all the way out to the maximum time of the
study. Thus these data show that there is diffusion, as
suggested by Muller, but that it is not anomalous; more-
over, the approach to the long-time behavior is extremely
slow. This is a rather curious effect since Muller"
showed that the asymptotic time regime is easily reached
in linear Heisenberg models which included nonuniform
exchange.

We have also examined the time dependence of space-
displaced correlations. The various rounded peaks in the
correlation functions have been explained in terms of the
diffusion of information from spin to spin (or back again).
We can see, however, from Fig. 3 that the long-time be-
havior of all the correlation functions is apparently the
same, although the effective power is now smaller than —,
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FIG. 5. Fit of S(q, cu) for qa =2~/8 to a Gaussian (diffusive)
central peak and a Lorentzian spin-wave peak at co=0.60J.
Note that both the "theoretical" functions have been convolut-
ed with the "resolution function" appropriate for our spin-
dynamics calculation as described in Sec. II. The dotted line is
the Gaussian and the dashed line is the Lorentzian line shape,
and the solid line is the sum of both.
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FIG. 7. Time dependence of the in-plane spin autocorrela-
tion function for the classical XYchain at T= ao.
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FIG. 8. Time dependence of the space-displaced spin-spin correlation functions for the classical XY chain at T= ~. Same nota-
tion as in Fig. 3.

at short times.
The excitations in this system can be understood in a

more direct way by examining S (q, co), which we show in
Fig. 4. The initial impression that one obtains from this
figure is that there is a simple diffusive central peak
which broadens as we move further out into the Brillouin
zone. A diffusive peak should, however, be a simple
Gaussian, and the data in Fig. 4 indicate that the peaks
are far too square to be Gaussian. In Fig. 5 we show the
result of an attempt to fit S(q, co) to the sum of a Gauss-
ian central peak and a Lorentzian spin-wave peak at
nonzero frequency. The deviation of the overall line
shape from a Gaussian is pronounced, but the inclusion

of the spin-wave peak improves the comparison dramati-
cally. Nonetheless, there are systematic differences that
indicate that a simple Lorentzian line shape is inadequate
for a truly quantitative analysis. Theoretical guidance is
needed to determine the functional form of the spin-wave
peak to be used in any further curve fitting.

B. XYmodel

Many of the qualitative features of the XY-model be-
havior parallel those of the Heisenberg model. The out-
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FIG. 9. S,(q, co) for the classical XY chain at T= ~. Same
notation as in Fig. 4.

FIG. 10. Fit of S,(q, co ) for qa = 2m /8 to a Gaussian
(diffusive) central peak and a Lorentzian spin-wave peak at
co=0.63J. Both "theoretical" functions have been convoluted
with the "resolution function" appropriate for our spin-
dynamics method as described in Sec. II. Same notation as in
Fig. 5.
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FIG. 11. S&(q, co) for the classical XYchain at T= ~x). Same
notation as in Fig. 4.

of-plane spin-spin and energy-energy correlation func-
tions, shown in Fig. 6, show a clear t ' decay at long
times, although the oscillations in the early-time spin-
spin correlations are much more pronounced than they
are in the Heisenberg model. In the "medium-time" re-
gime the correlation function is fairly well described by a
power law with an effective exponent that is less than —,'.
The behavior of the in-plane spin-spin correlations is
more difFicult to understand. The correlations decay
quite rapidly, and by a time of 25J the statistical Auc-
tuations begin to dominate (see Fig. 7). Spin-diffusion
theory predicts an exponential decay for a spin-spin
correlation function only if the corresponding magnetiza-
tion is conserved. Therefore, we do not expect an ex-
ponential decay for this correlation function, and the de-
cay is clearly not power law for times that we can follow.
It is also not exponential or even Gaussian as has been
found for the spin- —,

' case. More distant-neighbor corre-
lations show peaks at short times (see Fig. 8), with a sepa-
ration in time which depends upon the spatial separation
of the spins; at long times they are all consistent with a
t ' behavior.

For the XY model, S,(q, co) shows very pronounced
spin-wave peaks (see Fig. 9), in addition to a diffusive cen-
tral peak. The positions of these peaks describe a disper-
sion curve which is softened moderately with respect to
the T =0 curve. Here, too, fits to the sum of a Lorentzi-
an and a Gaussian reproduce the features of the data
moderately well (see Fig. 10), but remaining systematic
differences can only be explained by using a more compli-

FIG. 12. Fit of S,(q, co) for qa =2~/8 to a Gaussian
(diffusive) central peak and a Lorentzian spin-wave peak at
co=0.64. Both "theoretical" functions have been convoluted
with the "resolution function" appropriate for our spin-

dynamics method as described in Sec. II. Same notation as in

Fig. 5.

cated line shape for the spin waves. For the in-plane
component Sz(q, co) (shown in Fig. 11), only a monotonic
central peak appears. It also shows almost no q depen-
dence. Nonetheless, this central peak is not Gaussian,
but can be rather well described by the combination of a
Gaussian central peak and a Lorentzian at some finite co

(Fig. 12).

IV. CONCLUSION

We have used high-resolution spin-dynamics simula-
tions to probe the infinite-temperature time-dependent
behavior of simple Heisenberg and XY chains. We find a
somewhat surprising richness of behavior with very slow
approach to the asymptotic behavior for some quantities
and with spin-wave shoulders and peaks in S(q, co). We
know of no theoretical framework for describing these
findings.

ACKNOWLEDGMENTS

We wish to thank G. Muller and M. H. Lee, for helpful
discussions. This research was supported in part by the
U.S. Army Research Office (Research Triangle Park,
NC). One of us (R.W.G.) wishes to thank the Alexander
von Humboldt Foundation (Bonn, Germany) for support.

Permanent address: Institut fur Theoretische Physik I der
Universitat Erlangen-Nurnberg, Staudtstrasse 7, D-8520 Er-
langen, Federal Republic of Germany.

M. Steiner, J. Villain, and C. G. Windsor, Adv. Phys. 25, 87
(1976}.

~K. Tomita and H. Mashiyama, Prog. Theor. Phys. 45, 1407

(1974};A. Sur, D. Jasnow, and I. J. Lowe, Phys, Rev. B 12,
3845 (1975).

See, for example, D. Hone, C. Scherer, and F. Borsa, Phys.
Rev. B 9, 965 (1974}; F. Borsa and M. Mali, ibid. 9, 2215
(1974};J.-P. Boucher, M. A. Bakheit, M. Nechtschein, M.
Villa, C. Bonera, and F. Borsa, ibid. 13, 4098 (1976).



42 TIME-DEPENDENT BEHAVIOR OF CLASSICAL SPIN CHAINS . . ~ 8219

4C. G. Windsor, neutron Inelastic Scattering (International
Atomic Energy Agency, Vienna, 1968), Vol. II; Proc. Phys.
Soc. London 91, 353 (1967).

~N. A. Lurie, D. L. Huber, and M. Blume, Phys. Rev. 8 9, 2171
(1974).

D. L. Huber, Phys. Rev. 8 10, 2955 (1974).
7D. P. Landau and J. Thomchick, J. Appl. Phys. 50, 1822

(1979).
8G. Miiller, Phys. Rev. Lett. 60, 2785 (1988).
A preliminary version of this work was presented in R. W.

Gerling and D. P. Landau, Phys. Rev. Lett. 63, 812 (1989).
' R. W. Gerling and D. P. Landau, Phys. Rev. B 41, 7139

(1990).
' G. Muller, Phys. Rev. Lett. 63, 813 (1989).


