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An extensive series-expansion study of the square-lattice, spin- —,
' Heisenberg antiferromagnet with

nearest- and second-neighbor couplings has been carried out to investigate the nature of the ground
state for J, /J, = —,. In agreement with an earlier numerical study along similar lines, we find that

the magnetically disordered phase exhibits columnar spontaneous dimerization, but the magnitude
of such order may not be as large as had been suggested previously. Although the magnetically
disordered phase is not critical, it appears to have both spin-spin and energy-energy correlations of
range greater than a few lattice spacings. The possibility of "spin-nematic" order, as proposed by
Chandra, Coleman, and Larkin, has not been directly ruled out, but the balance of circumstantial
evidence weighs against it in this system.

I. INTRODUCTION

Consider the question of T=O order in the square-
lattice, spin- —,

' quantum Heisenberg antiferromagnet with
nearest- and second- (i.e., nearest-diagional-) neighbor in-
teractions,

~=QS, S+J~ g S;S, ,
NN 2NN

also known as the "J,-Jz" model. (We have set J, = 1 for
convenience. ) Classically, Jz =

—,
' is a point of infinite de-

generacy, separating a two-sublattice Neel phase, for
Jz (—,', from a four-sublattice Neel phase, for Jz & —,'. For
J2 not too close to —,', ' and especially for J2 =0, there is

convincing numerical evidence that even for 5 =
—,
' quan-

tum spins the character of the ground state is faithfully
described by spin-wave theory, that is, the classical
ground state gives a qualitatively correct picture of the
quantum ground state. For Jz= —,', say 0.35 J2 0.65,
much numerical evidence, as well as spin-wave theory it-
self, indicates that the ground state is not simply a
quantum-renormalized version of the corresponding clas-
sical ground state. The character of the ground-state or-
der in this case has been the subject of a remarkable
variety of proposals, including (i) complete disorder, with
a gap, i.e., a "spin-liquid" or "short-range resonating
valence bond" phase, (ii) spontaneous dimerization in a
particular "columnar" pattern, with fourfold degeneracy
and a gap, and (iii) "spin-nematic" order, in which the
system lacks any sublattice magnetization, but, nonethe-
less, has long-range order in, say, S,XS + . The J, -J2
model thus serves as a testing ground for current theories
of exotic behavior in quantum many-body systems. (Of
course, the absence of, say, spin-nematic order in the Ji-
J2 model does not rule out its existence in nature. ) The
model also poses a challenge for numerical studies, which
have so far proven unable to conclusively establish the
nature of the ground state for J2= —,'. The present work

substantially advances the numerical attack on the J&-J2
model, providing new, direct evidence in favor of spon-
taneous dimerization (and, necessarily, against disorder),
and also offering circumstantial evidence against spin-
nematic order.

The standard numerical method for elucidating
ground-state properties, namely, finite-cluster diagonali-
zation, suffers from substantial finite-size and boundary
effects for the clusters up to size N=20 that have been
examined. Indeed, two cluster-diagonalization studies,
those of Dagotto and Moreo, ' and Figueirido et al. ,
which employ different approaches in the analysis of the
data, reach opposite conclusions regarding the tendencies
towards both collinear order in the four-sublattice Neel
phase and columnar dimerization in the magnetically
disordered phase, with the former authors in favor and
the latter opposed on both counts. We should also note
that the increase in the magnitude of the "twist order pa-
rameter" of Ref. 1 for 0.50&J2(0.57 on going from
N = 16 to 20, which one might take as evidence in favor
of spin-nematic order, really shows that the lattices used
are too small to draw definitive conclusions: on general
grounds, one expects any order parameter to asymptoti-
cally decrease with increasing N towards its value on the
infinite system.

Because the finite-cluster studies are not entirely con-
clusive, it is sensible to try alternate numerical ap-
proaches to shed more light on the problem. In an earlier
work, ' henceforth denoted I, a method of T=O series
expansions (high-order, nondegene rate perturbation
theory about explicitly dimerized models) was applied to
the J,-J2 model, and also to models with third-neighbor
interactions, and it was concluded that the magnetically
disordered phase was spontaneously dimerized. Howev-
er, as noted by Kivelson, " the degree of dimerization
suggested by the series expansions is so large, roughly
half of the maximum value possible, that one might ex-
pect all correlations to be quite short-ranged' and,
hence, the finite-cluster studies to clearly indicate that di-
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II. TWO-POINT CORRELATIONS

A. Background

For any nearest-neighbor dimer covering of the square
lattice 2) one can define a two-parameter family of
"dimerized J&-J2" models, via

(i,j)6g)
S; Sj+A,

NN
(.I,j ) 62)

S;S+J2+S;S,
2NN

(2.1)

For any S, one recovers (1.1) when k= 1, while at A. =O
(and any J2) (2.1} is trivially solvable. The value of ex-
tending the J, -J2 model to (2. 1) is that for any value of J2
one can construct power series expansions in A, for a
variety of quantities, particularly ground-state expecta-
tion values and T=0 susceptibilities.

The first step in such calculations is to specify the "un-
perturbed" Hamiltonian, by choosing a dimer covering.
We will consider the five periodic dimer coverings
displayed in Fig. 1; of these, the "columnar" and "stag-
gered" ones were already considered in I. (The present
selection of dimer coverings was not entirely arbitrary, as

merization. Even if the correlations are not very short
ranged one might still expect strong long-range order to
be reflected in strong local order in finite systems. It is
thus difficult to understand the results of Figueirido
et al. given the estimates of the spontaneous dimeriza-
tion in I (and vice versa}. This observation, as well as the
recent suggestion of spin-nematic order in the J, -J~ mod-
el, motivated the present work.

The outline of the paper is as follows. In Sec. II, we re-
view the expansion method and discuss the calculated
two-point correlations, and particularly the magnetic
phase boundaries, for five choices of the unperturbed
Hamiltonian, of which only two had been studied in I.
The phase diagrams might, on the face of it, appear to
support the notion of a spin-liquid phase, and contradict
the conclusions of I. Various scenarios for the resolution
of this apparent inconsistency are outlined, and tested in
the remainder of Sec. II, and in the sections that follow.
In Sec. III the ground-state energy series (obtained to at
least one order higher than in I) are analyzed, and shown
to be more consistent with columnar spontaneous dimeri-
zation than with disorder. More direct evidence for di-
merization comes from a calculation of the susceptibility
to columnar dimerization, described in Sec. IV. Section
V summarizes the results of the preceding sections. The
evidence pertaining to the possible existence of spin-
nematic order, both from the two-point correlations and
the ground-state energies, is presented; we conclude,
while leaving some room for doubt, that spin-nematic or-
der is not present in the J, -J2 model. We also suggest,
based on evidence from several of the series expansions,
that there are a variety of correlations in the non-Neel
phase which, though not long ranged, never become very
short ranged either; this is what one would expect, in
light of the discussion regarding the finite-cluster studies,
above.

Columnar Staggered

ll ll II -

ii ii

Checkerboard

Ii f
Herringbone

will become evident later. ) Expansions for the ground-
state two-point correlations, S(r)= (S~oo~ S,), and ener-

gy per spin E, were carried out to orders A, and A, , re-
spectively, by the cluster method of Singh, Gelfand, and
Huse. ' Most of the technical details are described at
length elsewhere the principle innovation developed for
the present calculations was in improved graph enumera-
tion algorithm, which could be readily adapted to more
complicated dimer coverings than those treated in I. The
connected graphs needed for the expansions starting from
the columnar, staggered, checkerboard, herringbone, and
striped coverings number 1245, 1295, 1188, 548, and
4434, respectively.

B. Magnetic phase diagrams

Let us now discuss some results of the calculations of
S(r). The magnetic phase diagrams, estimated by the
same procedure as in I, are displayed in Fig. 2. Several
features are immediately evident. First, for the staggered
and herringbone dimer coverings, there is always a mag-
netic phase transition between A, =O and 1; while in the
columnar, checkerboard, and striped cases, there is a
range of J2 where analytic continuation to the uniformly
coupled J, —J2 model, at A, = 1, seems possible. (One
should note that nonmagnetic continuous transitions, and
any first-order transitions, cannot be detected by inspec-
tion of the series for the two-point correlations and hence
are not displayed in Fig. 2.) A reasonable guess, based on
the five available examples, is that infinitely many dimer
coverings will lack a magnetic phase transition for Jz = —,',
namely, all those in the zero-winding-number sector of
the Rokhsar-Kivelson hard-core dimer gas model. '

Does this prove that the magnetically disordered phase of
the J&-Jz model lacks any particular pattern of spontane-
ous dimerization? The answer is that while the magnetic
phase diagrams are consistent with a disordered phase,

Striped

FIG. 1. Dimer coverings of the square lattice, used to define
the dimerized Jl-J2 models treated in this work.
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FIG. 2. Magnetic phase diagrams associated with the five di-
mer coverings in Fig. 1. The solid vertical segments indicate the
confidence limits of the magnetic critical points at the indicated
wave vectors; the dashed lines serve to guide the eye. Note that
the diagrams for both the staggered and herringbone coverings
exhibit rather asymmetric bicritical points, while the others lack
any magnetic instability for some range of J2. The transitions
denoted by (= 4m. , m) for the striped covering are to an ap-

parently incommensurate phase; the ordering wave vector
moves towards ( 4 m, m ) as J,~~. The interval 0.7 ~ J, ~ 0.8

for the checkerboard dimerization, indicated on the figure,
shows strong short-range ordering (or, possibly, an instability
very near X=1) at the wave vectors close to (vr, —'m. ); but this is

presumably preempted by another transition (see Sec. IV).

taneous dimerization estimated by Fade approximants
was quite large, and easily distinguished from zero.
However, one might doubt the accuracy of the numerical
extrapolations, thus motivating the second test.

(2) If one starts at A, =O with any pattern other than
columnar, the nearest-neighbor correlations at k = 1

should also exhibit columnar spontaneous dimerization.
This is a trivial restatement of our working hypothesis.
However, it is not always possible to test this by the series
method —if any phase transition intervenes between /(, =0
and A, = 1, the correlations at X= 1 cannot be reliably es-
timated even from series of arbitrary length. Thus it is
clearly pointless to examine the correlations for the stag-
gered and herringbone coverings.

For the checkerboard covering, it is also impossible to
analytically continue from A, =O to a spontaneously
columnar-dimerized phase, as one sees by the following
argument. At k = 1, the columnar-dimerized ground
state is fourfold degenerate, while at A. =1, it should be
evident from Fig. 3 that the fourfold degeneracy is re-
duced to twofold. However, at A, =O the ground state is
nondegenerate. Thus at least one phase transition must
be present between A, =0 and 1 . (At A, = 1 itself there is
necessarily a first-order transition if the ground state is
spontaneously dimerized; see the discussion in Sec. IV of
I.) If there is only one transition, it may be first order or
continuous; in the latter case, symmetry considerations

they do not imply one. (Indeed, to the extent that the
magnetic phase diagrams support the notion that the
hard-core quantum dimer gas' accurately represents the
low-energy physics of the J, -J2 model, they also provide
support for columnar spontaneous dimerization, since the
dimer gas model is now believed to exhibit such ordering
in the relevant parameter range. '

) Let us turn the ques-
tion around, and ask, if there is columnar spontaneous di-
merization, what does that imply that we might test nu-
merically?

C. Tests of columnar spontaneous dimerization

(S() o) S(2,o)~ (S(o,o) S(I o)) +0 ~ (2.2)

and so forth. This issue was investigated in I; the spon-

(1) If one starts at A, =O with the columnar pattern, the
nearest-neighbor correlations at A. = 1 should remain of
that character: if the dimer covering couples (0,0) to
(1,0), then at k) one should have

FIG. 3. The two parts of this figure represent the same set of
spins, with the dashed lines indicating the nearest-neighbor
pairs with the largest values of —(S, .S, ), for two of the four
possible spontaneously columnar-dimerized ground states.
These states remain degenerate even when the Hamiltonian is
slightly dimerized in the checkerboard pattern, with the
stronger bonds indicated by the ovals.
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suggest it should lie in the universality class of the classi-
cal three-dimensional Ising transition.

Note that for most dimer coverings, including the
striped pattern, the fourfold degeneracy in the
columnar-dimerized phase is completely lifted at X=1
and hence no transition need intervene between k =0 and
1 —although one might, regardless.

In summary, as a test of columnar spontaneous dimeri-
zation we should study the nearest-neighbor correlation
series extrapolated to A. =1, starting from the striped pat-
tern; the results will be discussed later in this section.
The discussion above also suggests two further tests.

(3) In the simplest scenario, the ground-state energies
extrapolated to A. =1 in the magnetically disordered re-
gime should be the same for the columnar and striped
patterns. The checkerboard pattern should yield rather
different extrapolated energies, but the character of that
difference will depend on the nature of the intervening
phase transition. A first-order transition might be ex-
pected to yield energy estimates that are too high (as ap-
pears to happen in the J

&
-J3 model, for the staggered pat-

tern' ), while a continuous transition might be reflected
in a large fraction of defective Pade approximants, with
poles on the real axis between X=O and A, =1. The
analysis of the energy series will be deferred to Sec. III;
let us note here only that neither of these two reasonable
expectations concerning the energies for the checker-
board pattern is entirely fulfilled.

(4) Assuming there is a single, continuous transition
from onefold to twofold ground-state degeneracy for the
checkerboard pattern, we should be able to calculate a
series expansion for an appropriate susceptibility that
diverges at that transition. Such a calculation is de-
scribed in detail in Sec. IV.

01

(a}

~~~~

~~ ~ ~ ~~~~~

~~~~ ~
(b)

» ~~~
(c)

S(4)( 1 )
—S(6)( 1 )

S'"(l)=S '(l)=S"'(1),
S(4)( 1 ) & S(5)( 1 ) S(1)(1 )

(2.4a)

(2.4b)

(2.4c)

Of course, if the ground state is, instead, a spin liquid,
one would expect to find

FIG. 4. In (a), the encircled numbers label the six distinct
nearest-neighbor correlations in the striped-dimerized J&-J2
model. The two patterns of columnar spontaneous dimerization
that might arise at k = 1 are shown in (b) and (c), with the
dashed lines indicating the nearest-neighbor pairs with the larg-
est —( S, S, ).

S(1)( 1 )
—S(2)( 1 )

—.. . —S(6)( 1 ) (2.5)

D. Nearest-neighbor correlations

S"'(1)=S"'(1),
S(4)( 1 )

—S(5)( 1 )
—S(6)( 1 )

S(')(1)& S(')(1) S"'(1)

(2.3a)

(2.3b)

(2.3c)

while if that of Fig. 4(c) is the result,

Let us address point (2) above, and turn to the numeri-
cal results for the nearest-neighbor correlations starting
from the striped covering. There are six distinct nearest-
neighbor correlations, indicated in Fig. 4(a, ; let us denote
the corresponding values of (S; S ) by S" (A, ) through
S' )(A, ). What does the assumption of columnar dimeri-
zation at X=1 tell us about the S '(I)? Unfortunately
the situation is complicated by the fact that two of the
four possible columnar-dimerized states remain degen-
erate to first order in (1—

A, ) (although this will not per-
sist in higher orders, unlike the case of the checkerboard
pattern, because no symmetry demands it), so it is
difficult to determine a priori which of the two the striped
pattern will evolve towards. If the columnar pattern of
Fig. 4(b) is the result, then one expects

To what extent are any of these expectations fulfilled?
The results at J2=0.5 are typical: For S"', S' ', and
S' ', the few nondefective Fade approximants in each
case vary widely at A, = 1, so it is not possible to estimate
them with any confidence. For the others, the estimates
are

8S '(1)= —2.5,
8S '( 1 ) = —0.3,
8S '(1)= —1.0,

(2.6a)

(2.6b)

(2.6c)

with uncertainties of +0. 1 in each case determined by the
consistency of the nondefective Pades. Certainly one
cannot claim that (2.6) is entirely consistent with either
(2.3), (2.4), or (2.5). Our preferred interpretation is that
(2.6) is most consistent with (2.4), but the extrapolated
series underestimate the difference between S"(0) and
S"(1) in every case. [Note that 8S' '(0)= —3, while
S' '(0) =S' '(0) =0.] If the variation of the nearest-
neighbor correlations with A. is similarly underestimated
for the columnar covering, the estimates of the degree of
columnar spontaneous dimerization given in I are too
large. Of course this discussion is rather speculative,
what is clear is that the estimates of the nearest-neighbor
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correlations, for both the columnar and striped cover-
ings, do not by themselves offer a convincing case for
columnar spontaneous dimerization.

E. Intermediate-range magnetic order

Let us assume, for the purposes of this subsection, that
the magnetically disordered phase is spontaneously
dimerized, and ask now what is the range of the two-
point correlations in the J&-Jz model when the system
lacks Neel order. To investigate this, it is appropriate to
consider only the series for the columnar covering, since,
as argued earlier, all others except the striped have a
phase transition between A, =O and 1 for all J2. More-
over, the striped covering shows a first magnetic instabili-
ty, for all J2 )0.7 (calculations have been done for J2 as
large as 5), at q=( —,'m, n. ); this is clearly not indicative of
the ordering at A, = 1, and fairly substantial correlations
of that type persist into the magnetically disordered
phase. Thus it seems that only the columnar covering
might offer reliable insights into the two-point correla-
tions.

One finds that the wave vector with the longest-range
correlations switches abruptly from (n, n) to (.m, 0) be-
tween J2=0.5 and 0.6; see the series in Table I. The
quantities S(q) and Q(q) given there are the zeroth and
second radial moments of the correlations at wave vector
q, that is

S(q)= QS(r)e'q', (2.7)

and

M(q) = g S(r)r e'q' . (2.8)

For most q, the coeScients in these series are irregular in
sign and/or small; the preferred q are readily found by
inspection.

To characterize the range of the preferred correlations,
one may study the length g defined by

g (q)=2M(q)/S(q); the factor of 2 is included so that
g((m, q~))=1 at A, =O. At J2=0.5, g((m, m. ))=4 and at
J2=0.6, g((m, O))=7. Both of these estimates are, of
course, for X=1, and the associated uncertainties are
quite large, at least 30%.

To investigate the crossover between (n, m ) and (m, O)
quasiordering in more detail, the correlations have been
calculated at J2=0.55. In this case there is no obvious

choice for a preferred wave vector. We estimate
(((m.,O))=3, which is probably the longest spin-spin
correlation length for this value of J2.

To recapitulate, it seems likely that substantial antifer-
romagnetic correlations extend over several lattice spac-
ings in the magnetically disordered phase of the J, -J2
model, except perhaps for a narrow region close to
J2 =0.55.

III. GROUND-STATE ENERGIES

Here we address the third point in Sec. II C, and dis-
cuss the ground-state energies extrapolated to k = 1 in the
magnetically disordered regime for the columnar, check-
erboard, and striped coverings. The Pade approximants
are displayed in Fig. 5 for 0.3 J2 0.8 at intervals of
0.1; also shown are upper and lower bounds on the ener-
gies determined by diagonalization of a 16-site cluster
with free boundaries' and a 20-site cluster with periodic
boundaries. ' For the columnar covering at 0.4( J2 0.7,
the energy series were calculated to seventh order, and
the [2/5], [3/4], [4/3], and [5/2] approximants, which use
all the terms, are denoted by arrows in the figure. (These
expansions involved a total of 7242 connected clusters. )

There are several observations to be made regarding Fig.
5.

(i) At J2 =0.3 and 0.8, the magnetic phase transitions
are clearly evident in the large spread in the approxi-
mants displayed. Approximants are not displayed only
because they fall outside the limits of the graph, or be-
cause they are defective; in either case the missing points
may also be taken as evidence for an intervening phase
transition. It is quite surprising, then, that the approxi-
mants for the columnar and striped patterns at J2=0.7
appear to be very well behaved. This suggests that the
magnetically disordered phase extends past Jz =0.7, and
the estimates of the relevant phase boundaries, as shown
in Fig. 2, are inaccurate; however, one might conclude,
alternatively, that a phase transition does not necessarily
affect the convergence of (sufficiently low-order) energy
approximants. We favor the latter suggestion in this
case, since the series extrapolations on which the phase
diagrams are based seem quite convincing.

(ii) For J2 =0.4, 0.5, and 0.6, safely inside the magneti-
cally disordered regime, the energy approximants for the
columnar covering are reasonably clustered and clearly
indicative of an extrapolated energy that lies between the
indicated upper and lower bounds. The approximants for

TABLE I. Coefficients in the expansion of the zeroth (S) and second (M) radial moments of the two-point correlations at wave
vectors (~,~) and (m.,O), for J2 =0.5 and 0.6.

4S((m., m))
J2 =0.5

4M((~, m. ) ) 4S((m, O) ) 4M(( m., O) ) 4S((vr, m))
J~ =0.6

4M({m, a) ) 4S((77,0) ) 4M((&, 0) )

6
3

1 ~ 125
2.031 25
0.571 45
1.975 41

3
1.5
3.375
7.640 63
5.313 31
8.289 22

—2.625
—3.0625
—3.144 69
—0.341 93

3
25.5
37.3125
6.984 37

—40.7156
—74.6100

6
1.8

—0.6
0.987

—0.609 51
1.271 93

—2.7
—1.83

4.4935
—1.847 62

1.587 43

6
4.2
0.24
0.133

—1.11596
—0.021 07

3
29.7
61.86
73.2215
69.6838
49.3266
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scenario described in point (3) of Sec. II C, and thus lends
support to the notion that the magnetically disordered
phase is spontaneously dimerized in the columnar pat-
tern. The energies for the checkerboard covering seem to
indicate a continuous symmetry-breaking transition; let
us attempt to study this transition directly.

IV. SUSCEPTIBILITY
TO COLUMNAR DIMERIZATION

We now address point (4) of Sec. II C. It should be ap-
parent from Fig. 3 that an appropriate order parameter
for the (hypothetical) phase transition is

(4.1)

-5p- ~ ~~ sw ~~ i~ J
0.3 0.4 0.5 0.6 0.7 0.8

FIG. 5. Ground-state energies per spin, extrapolated to A, =1
by Pade approximants, for 0.3&J2 ~0.8 at intervals of 0.1,
from expansions about the columnar, checkerboard, and striped
dimer coverings (for which the results are displayed from left to
right at each J&, with thin vertical lines to guide the eye). Each
symbol denotes a diff'erent approximant, namely, the [2/2] (0),
[3/2] (+ ), [2/3], ( X ), [3/3] (0), [4/2] (0), and [2/4] (6 ), ex-

cept that the arrows used to denote all approximants [L /M] for
which L+M=7. Note that [L/M] indicates the approximant
composed of an order L polynomial divided by an order M poly-
nomial, and that to construct such an approximant one requires
an expansion to order A,

™ . The solid horizontal line segments
indicate upper and lower bounds, described in the text.

the striped covering, while not quite as well behaved (par-
ticularly at J2=0.5), are consistent with the hypothesis
that the columnar and striped coverings should yield the
same (and correct) energies when the series are extrapo-
lated to A, = 1, because there are no intervening singulari-
ties in either case.

(iii) For the checkerboard covering and J2=0.4 and
0.5, the energy approximants are ill behaved: in the first
case most are defective and in the second they are nonde-
fective but widely spread. At Jz =0.6, they are strikingly
conuergent, but to an energy that is below the lower
bound and clearly distinguishable from the results for the
columnar and striped coverings. One sees that the ap-
proximants are again ill behaved for Jz ~ 0.7.

It is not entirely clear what to conclude from these
data. If the approximants at J2 =0.6 were as poorly con-
vergent as those at all other values of J2, one would have
clear evidence for a continuous phase transition interven-
ing between A, =O and A, =1 in the magnetically disor-
dered regime, where the two-point correlations show no
hint of an instability. Despite the anomaly at J2=0.6,
this still seems to be the most likely state of affairs, par-
ticularly in light of the results in the following section.

In summary, Fig. 5 is largely consistent with the

and the field conjugate to this, which we may denote &z,
is defined simply by taking (4.1), stripping the angular
brackets, and summing over all dimers in the checker-
board covering. We will investigate the possibility that
this (lattice) rotational symmetry of the checkerboard-
dirnerized J, -J2 model is spontaneously broken by calcu-
lating a series expansion for the susceptibility with
respect to the field &2. Thus, we consider an extension of
the dimerized J, -Jz model (2.1), namely,

A=.'iVo+ ~i+P%~, (4.2)

where %o and A, denote the "unperturbed" and "per-
turbing" parts of the Hamiltonian that were written out
fully in (2.1). The susceptibility of interest is

yz =——lim N 't) (&)/(Bp) ~„=o,P' —+ oc
(4.3)

for which the expansion in A, is calculated by performing
a two-variable expansion of the ground-state energy per
site, in A, and p, and picking out the terms that are of
second order in p. The connected clusters for this expan-
sion are, fortunately, the same ones that were employed
in the expansions for the two-point correlations.

It is clear that the zero-order term in the expansion for
y2 is identically zero. Furthermore, the coefficient of k'
in the expansion is also zero for any J2, for the same
reason that this coefficient vanishes in the expansion for
the ground-state energy. Thus, the connected clusters
that allowed for the calculation of six nonzero terms in
the expansions for the two-point correlations only yield
four nonzero terms in the expansions for gz. As the re-
sults for g2 were not entirely unambiguous, as will be seen
shortly, the calculations were extended to order A. ; a to-
tal of 6110 connected clusters needed to be considered at
that order.

Table II displays the coefficients in the expansion of gz
for several values of J2. Note that at J2=0.5, 0.6, and
0.7, the coe%cients are all positive and increase with or-
der. At J2 =0.4, positivity still holds but the last term is
slightly less than the preceding one. The data is qualita-
tively consistent with the existence of a continuous
rotational-symmetry breaking transition for those J2 that
lack a magnetic transition for 0 & A, & 1. [Since the
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TABLE II. Coefficients in expansion for the susceptibility to lattice-rotational-symmetry breaking
for the checkerboard-dimerized J&-J2 model. {The coefficients of A, and l' vanish for all J&.)

J2 =0

0.75
1.5
1.418 40

—0.203 70
—3.120 15

0.33
0.612
0.987 23
1 ~ 102 59
0.900 53

J~ =0.5

0.281 25
0.457 03
0.814 75
1.027 12
1.17648

J2 =0.6

0.255
0.336 75
0.655 75
0.870 22
1.205 36

0.251 25
0.255 09
0.532 59
0.694 22
1.082 71

0.375
0.281 25
0.624 57
0.846 25
1.503 98

checkerboard-dimerized model may have a (m, ~) insta-
bility for Jz=0.4—see Fig. 2—a nondivergent y2 for
J2=0.4 would not be in contradiction with the hy-
pothesis of columnar spontaneous dimerization. ] A pre-
cise determination of the critical A. values, however, is not
possible. Indeed, it is not entirely clear that A,, & 1 even
for J2 =0.5 or 0.6: the standard ratio plots, of the ratio
of adjacent coefficients c„lc„,versus I /n, cannot be ex-
trapolated to 1/n =0 with any confidence, and there is no
hope at all of checking if the critical points are classical,
d =3 Ising transitions, as anticipated. Certainly one may
conclude that the critical points are not close to X=O. If
one believed they exist for J2=0.5 or 0.6—and the re-
sults of Sec. III, in conjunction with the monotonicity of
the series coefficients offer a strong case in their favor—
then they are probably in the range 0.75 & k & 1, and thus
every point in the magnetically disordered phase of the
J

&
"J2 model would be close to a model with a divergent

energy-energy correlation length.

V. RECAPITULATION AND DISCUSSION

Numerical evidence from series expansions for two-
point correlations, for the ground-state energy, and for a
novel susceptibility suggests that the magnetically disor-
dered regime of the J]-J2 model is not fully disordered,
but, rather, is spontaneously dirnerized in a columnar
pattern, as had been predicted by Read and Sachdev. It
is possible, though by no means certain, that the degree
of such dimerization is much less than one would esti-
mate on the basis of expansions about the columnar-
dimer covering; one should note that the magnitude of
"column-state order parameter" calculated by Dagotto
and Moreo for small clusters' is consistent with the di-
merization estimates reported in I. With rather more
confidence, we may state that substantial magnetic corre-
lations extend over distances of several lattice spacings
through nearly all of the magnetically disordered phase;
energy-energy correlations are likely to be reasonably
long ranged, as well. One might speculate that this last
result accounts for the large overlap, found by Figueirido
et al. , between the exact ground state of 16-site clusters
and trial spin-density-wave states even well inside the
magnetically disordered phase.

We should not give the impression here that the results
of series expansions are entirely clear cut. Indeed, the
present calculations, particularly of the energy, have
some peculiar features that are not at all understood (see

Sec. III). However, the consistency of a wide variety of
results with the hypothesis of spontaneous dimerization is
most appealing.

Let us now address the issue of spin-nernatic order in
the J, -J2 model. First we should consider whether spon-
taneous dimerization is incompatible with spin-nernatic
order. Since (S, XS~) =

—,'( —,'+S, Sz), it is apparent &hat

dimerization works against spin-nematic ordering at the
shortest length scales. Note, however, that even in a fully
columnar-dimerized state, with the dirner configuration
shown in Fig. 1, there are strong short-range spin-
nematic correlations associated with S,XS +, it seemsr+y'
conceivable that such vectors might develop long-range
order as A, is increased from zero, even if the dimerization
persists.

A good way to address this issue numerically would be
to calculate series expansions, starting from the colum-
nar covering, for the quantities Q(r)=((SOXS ) (S,9
XS+ )). One could then investigate the question of
long-range order by examining radial moments of these
correlations, just as the two-point correlations were ana-
lyzed. Unfortunately, it turns out that the connected
clusters that were used for all the calculations so far are
not suitable for expansions of Q(r). The appropriate set
of clusters seems to be rather difficult to construct; worse
yet, some fairly large clusters are needed for even low-
order calculations (e.g. , 12-spin clusters appears in third
order, whereas for the other calculations the largest clus-
ters at that order have 8 spins). Consequently, this ap-
proach to the problem was not carried further.

The only avenue remaining is to consider the implica-
tions of spin-nematic order for the quantities that have
already been calculated. Let us consider, in particular,
the expansions about the columnar covering. The appear-
ance of long-range spin-nematic order at k„(Jz ) might be
evident in (i) the ground-state energy, for which the ex-
trapolations via Pade approximants to A, = 1 should gen-
erally be rendered unreliable by the phase transition, and
(ii) in the two-point correlations, which should hint at
substantial short-range correlations at wave vectors con-
sistent with noncollinear ordering [and particularly not
(vr, m)or (m. , 0)]. That .neither of these expectations is
fulfilled may be taken as circumstantial evidence against
the existence of spin-nematic order, despite the fact that
the spin-nematic order parameter calculated by Dagotto
and Moreo for finite periodic clusters increases with lat-
tice size (on going from 16 to 20 sites) for
0.50~ J2 ~ 0.57. It may not be entirely coincidental that
this interval is precisely where the series calculations in-
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dicate a switch-over from (n., m) to (m, 0) as the wave vec-
tor at which correlations are strongest.

A final note: A recent calculation by Singh and Naray-
anan' for the J&-J2 model on the 16-site cluster at
nonzero temperatures (by full diagonalization of the
Hamiltonian) also concludes that columnar dimerization
seems to be preferred over spin nematicity in the magnet-
ically disordered phase.

Note added in proof. The picture presented in the
spin-wave calculation of Ref. 3 may require reconsidera-
tion even at large S; see Ref. 18.
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