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A method is proposed for determining the elastic constants of an anisotropic solid from acoustic-
wave group velocities measured in off-symmetry directions in a specimen. The method corresponds
to a two-stage optimization procedure in which the elastic constants are varied so as to obtain a
least-squares fit of measured to calculated group velocities. At each iterative step a numerical

minimization process is employed to find the wave normals and velocities of waves having the re-

quired ray directions. The method is demonstrated with synthetic data generated for a number of
cubic crystals, and to experimental data obtained on single crystals of silicon using the ultrasonic
point-source —point-receiuer technique. When provided with longitudinal- and transverse-mode ve-

locity data, the method is able to accurately recover all three independent elastic constants. When

only longitudinal mode data is provided, C&~ and the combination C»+2C44 can be accurately
recovered, but not C» and C44 individually.

I. INTRODUCTION

Most determinations of elastic constants of anisotropic
solids are based on acoustic-wave-speed measure-
ments. ' Usually in these investigations it is the phase
velocity rather than group velocity that is measured. The
reasons for this are partly experimental and partly have
to do with the methods that are available for data inver-
sion. Some techniques, such as neutron scattering and
Brillouin scattering, ' provide direct access to the disper-
sion relation of a medium, and hence to the phase veloci-
ties in various directions. Other techniques such as the
pulse-superposition and pulse-echo —overlap techniques,
while nominally concerned with the transmission of wave
packets, also yield values of the phase velocities rather
than the group velocities, when applied to nondispersive
media. The reason for this is that the experimental ar-
rangement is usually such that one measures only the
component of the group velocity in the direction of the
wave normal and this equals the phase velocity. As re-
gards the inverse problem, the methods for recovering
elastic constants from phase-velocity data are fairly
straightforward and well established, but the same is not
true for group velocities. The recovery process from
phase velocities is particularly simple for data pertaining
to high-symmetry directions, where the formulas relating
velocities to elastic constants are very simple and easily
inverted. On occasion, the need arises to take account of
phase velocities in off-symmetry directions. It often hap-
pens in this situation that there are more velocity mea-
surements than independent elastic constants to be deter-
mined, and an optimization method is used to obtain a
least-squares fit. '

Group velocities also carry information about the elas-
tic constants and, in principle, this information should be
recoverable. There are a number of areas in which group
velocities are measured and where a method for extract-

ing elastic constants from such measurements could be of
use. In seismology there is growing recognition of the
importance of the elastic anisotropy of the earth and its
influence on wave propagation. " Whether considering
near-field phenomena of far-field asymptotic limits to
wave fields radiated by localized sources, the group veloc-
ity is a crucial quantity describing signal propagation.
Phonon imaging in crystals is another area in which
group velocities play a central role. ' Complex patterns
of caustics are observed in phonon images that are de-
rived from the focusing of acoustic ray vectors in certain
directions. The caustic patterns of phonon images are
governed by the elastic constant ratios, but there does not
appear to have been any concerted eff'ort yet to use this
technique for elastic constant determinations, although
the potential for doing so certainly exists. Fitting et al. '

have developed a method, based on a variable-angle ul-

trasonic wedge source and an array of phase-insensitive
receivers, with which they measure group velocities. Be-
ing able to determine the wave normal n from the source,
however, they are able to obtain the phase velocity, and
then follow the familiar inversion route to recover the
elastic constants.

The recently developed ultrasonic point-source —point-
receiver (PS-PR) technique has shown promise as a
method for measuring group velocities and determining
elastic constants in materials. ' ' The PS-PR technique
has the advantage of flexibility as regards sample
geometry, it provides a simultaneous measurement of all
three velocities in any number of directions, and its
broadband feature proves particularly advantageous in
the study of highly attenuating materials. The principle
of the PS-PR technique, which has been described in
greater detail previously, ' is illustrated in Fig. 1. Some
form of localized excitation, which may, for example, be
a pulsed laser beam or a breaking capillary, generates
acoustic waves which spread out in all directions in the
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FIG. 1. Schematic diagram of the point-source —point-
receiver method.

sample. These waves are then detected by one or more
small-aperture sensors located on the surface of the sam-
ple. The source position can easily be varied to obtain
data for a variety of directions in a specimen. The time
dependence of the excitation usually approximates a 5
function or a Heaviside step function. In the detected
signal one discerns sharp features, such as spikes or
discontinuities, ' that correspond to arrivals of waves
that have propagated through the medium at their group
velocity. ' In the past, however, the treatment of these
wave arrivals has ignored the difference between phase
and group velocity. ' ' ' To determine the elastic con-
stants of an anisotropic material, the arrival times for
various source-receiver configurations have been ex-
pressed in terms of phase velocities in the respective
directions, and the elastic constants were obtained by an
optimization method or by use of the simple formulas
that apply in the symmetry directions. This approach is
valid when applied to materials having a low degree of
anisotropy, or where only data pertaining to the neigh-
borhood of certain high-symmetry directions are used.
In these situations, the difference between the phase and
group velocities is negligible. For more highly anisotrop-
ic materials and a wider spread of measuring directions,
the phase and group velocities of a wave can differ
sigI1iflcantly, ' ' ' aIld the elastic constants obtairled orl
the basis of ignoring this difference become progressively
less reliable with increasing anisotropy. This fact needs
to be recognized even though this earlier approach may
continue to serve a useful purpose in providing a relative-
ly simple means of obtaining approximate values of the
elastic constants, which for some purposes might be ade-
quate. Indeed, the rigorous algorithm we describe in this
paper requires the input of suitable, approximate starting
values of the elastic constants, and the above method
constitutes one means by which they may be obtained.

There are two main problems in determining the elastic
constants from group-velocity data. Firstly, there is no
closed-form mathematical expression presently available
that relates only the elastic constants and the group ve-
locity, and which might conceivably be manipulated to

obtain the elastic constants. Such an expression, if it
were to be established, would be of enormous complexity.
The only methods that are presently available for calcu-
lating the group velocity are based on parametric equa-
tions involving quantities such as the phase velocity,
wave normal, polarization vector, and slowness vec-
tor. ' ' ' Secondly, the slow transverse (ST) and fast
transverse (FT) [but not the outer longitudinal (L)] sheets
of the group-velocity surface (ray surface) commonly pos-
sess folded regions where the group velocity is mul-
tivalued. This poses a severe challenge to the implemen-
tation of a computerized optimization scheme. A numer-
ical iteration may go awry, and the resolution of the ex-
perimental data may not be adequate to distinguish be-
tween different values of the group velocity in a given
direction.

In this paper we propose an optimization method for
determining the elastic constants of an anisotropic solid
from acoustic-wave-group velocities measured in off-
symmetry directions, and we point out certain pitfalls
which must be avoided in applying the method. We have

implemented the method for media of cubic symmetry,
developing the appropriate computer coding and process-
ing synthetic computer-generated data for a number of
crystals, and have also applied it to experimental data ob-
tained on single crystals of silicon. We demonstrate that,
when provided with longitudinal and transverse-mode ve-
locity data, the method is able to accurately recover all
three independent elastic constants. When only
longitudinal-mode data are provided, C» and the com-
bination C&2+2C«can be accurately recovered, but not
C,2 and C« individually.

II. METHOD OF ANALYSIS

A. General considerations

The elastic-wave equation for anisotropic solids admits
plane-wave solutions which are governed by the
Christoffel equations '

(r„,—pu'5„,) U, =0,
where I „,=C,&, n&n is the Christoffel tensor, C,I, are
the second-order elastic constants (in subsequent discus-
sions we will employ the Voigt two-subscript conven-
tion, and refer to C &), n=(nI) is the wave normal,
v=un is the phase velocity, U=(U, ) is the polarization
vector of the wave, p is the density of the medium, and5„is the Kronecker 5. The secular equation for Eq. (l) is

fl „,—pu'5„, f
=0,

and is cubic in v and in the elastic constants.
The forward motion of points of constant phase in the

plane wave is determined by phase velocity v, and it is
this quantity, or its inverse, the slowness vector s=n/v,
that is measured in most experiments on nondispersive
media. In light scattering or neutron scattering, for ex-
ample, the information obtained on an acoustic wave or a
phonon is its wave vector k and angular frequency co,
from which s=k/m follows immediately. In most ul-
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V=V„m(k}=[u(n)—n V,v(n)]n+V„v(n) . (3)

In an elastically anisotropic solid, the phase and group
velocities of a wave are not, in general, equal, even in the
absence of attenuation and dispersion. It is only in very
special (usually high-symmetry) directions that v and V
are equal. Elsewhere the two velocities may deviate in
direction from each other by up to 20' or more, depend-
ing on the degree of anisotropy. They are not completely
independent of one another, however, being related by

'

trasonic determinations of elastic constants, a plane wave
is rejected back and forth between two surfaces which
are parallel to the wave fronts and only the phase velocity
is measured. Some plane-wave experiments with immer-
sion systems ' involve oblique transmission through a
sample, but again, careful analysis shows that it is the
phase velocity that is measured.

For a fixed value of n Eq. (2} represents a relationship
between the elastic constants and u. Solving for u yields
three velocities, one corresponding to a quasilongitudinal
mode and the other two to fast and slow quasitransverse
modes. The corresponding inverse problem can be re-
garded as solving Eq. (2) for the elastic constants when a
sufficient number of measured u's are given.

For certain high-symmetry directions, Eq. (2) factor-
izes, yielding one or more linear equations in the elastic
constants and u . In some cases, measurements in these
directions suffice to determine all the elastic constants.
Data pertaining to off-symmetry directions tend to be
used, for example, where suitably faceted samples are not
available, or where there are additional elastic constants
to be determined because of low symmetry, or where
higher accuracy is desired. Often in this situation there
are more velocity measurements than additional elastic
constants to be determined and an optimization method
is employed to obtain a least-squares fit. The quantity
that is minimized might be the mean-square difference
between the calculated and measured velocities, ' or
the Euclidean functionals associated with Eq. (2).

The energy of a wave propagates not at its phase veloc-
ity v but at the group velocity V given by '

comes a two-stage process. Given a set of elastic con-
stants, the wave normals n (or equivalently v or s) must
first be determined such that the associated group veloci-
ties are parallel to the observed velocities. The elastic
constants are then varied (at each stage adjusting the n's
to keep the directions of the V's the same) so as to optim-
ize the fit of the calculated to the measured group-
velocity magnitudes. Details of the method we have used
for calculating these n's are discussed next.

B. Determination of the wave normals

to small portions of the surface and then obtaining n
from the gradient

n=VvQp(V)/~VvQp(V)~ .

However, in a practical situation where the data set is
sparse and subject to experimental error, the numerical
differentiation of the data required to obtain the normals
would generate unacceptably large errors.

We have adopted a different approach. We note that,
given the elastic constants of a medium and a direction
for the group velocity, it is possible, with certain pro-
visos, to numerically determine, in a systematic way, n, v,
and V. We treat this as a minimization problem, varying
the polar angular coordinates 8 and P of

n = (sin8 cosP, sin8 sing, cos8),

so as to minimize the angular deviation between the ray
vector calculated from n, and the given direction. The
quantity that is minimized can be taken to be either

or
expt calc

In principle, if a sufficient number of high-precision
measurements were made to accurately map out the en-
tire ray surface, or at least some continuous regions of it,
then the wave normals, which are normal to this surface,
would follow. These could be obtained, for instance, by
piecewise fitting of a low-order polynomial equation

Q (V)=0

Vn=u . (4)
( 8expt calc } + ( @expt @cate )

The inverse problem of obtaining elastic constants
from measured group velocities needs to be approached
indirectly. There is no equation available, analogous to
Eq. (2), that relates the elastic constants and the group
velocity, which might conceivably be manipulated to ob-
tain the elastic constants. Analytical arguments indi-
cate that this equation, which for fixed C & would de-
scribe the ray or group-velocity surface, could, in the
most general case, be of degree as high as 150 in the com-
ponents of V. The prospect of attempting to construct
this equation is daunting. So, at present, there appears to
be no closed-form analytical procedure for obtaining the
group velocity in a given arbitrary direction. The only
presently available methods for calculating V, such as Eq.
(3), all involve expressing it parametrically in terms of
quantities such as v, n, s, and U. As a result, the deter-
mination of elastic constants from group velocities be-

where 8 and 4 are the polar angles of

N=(sin8 cos@,sirt8 sin@, cos8),

which is a unit vector in the direction of V. The sub-
scripts "expt" and "calc" refer to experimental (or input)
and calculated (or recovered) values, respectively. An al-
ternative approach would be a constrained minimization
with respect to the three components of n subject to
~n~ = l. In our computations this minimization was per-
formed with the IMSL subroutine DBcoNF, which is
based on a quasi-Newton method.

When applied to the longitudinal modes, we find that
this method of minimizing F or 6 is stable and efficient.
Given virtually any direction N and the starting values
and upper and lower bounds for 8 and t}t, the procedure
requires only a few tens of iterations to converge to the
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correct n. This is not surprising since, in the absence of
piezoelectric stiffening of the elastic constants, the L
sheet of the slowness surface is entirely convex. The ray
vector, which is normal to the slowness surface, is rotated
towards N,„,by the numerical procedure, and hence
converges to the correct point along a fairly direct path.
There is no likelihood of migration to a spurious
minimum.

As regards the ST and FT modes, greater care has to
be exercised in determining I, particularly where the de-
gree of anisotropy is large. The source of the difficulty is
illustrated in Fig. 2. Suppose a group velocity is sought
having the direction N. Because of the folding of the
transverse sheets of the group-velocity surface, there are
actually three rays, represented by the points a', b', and
c' on the ray surface, that point in the required direction.
These correspond to similarly labeled points on the slow-
ness surface where the normals are parallel to N. The
numerical procedure will converge to any one of these
three points depending on where the starting point is. If
this is a point such as a, then the convergence is towards
a' and so on. There are some materials whose ray sur-
faces are folded to the extent that in some directions
there are 6ve or more collinear rays for a particular po-
larization. It is recognized that it will often not be possi-
ble to resolve all of these different velocities in the experi-
mental data. Keeping track of multiple velocities and as-
signing measured velocities to particular modes is a prob-
lem of considerable complexity, particularly when carried
out within a computerized optimization scheme in which
elastic constants are varied. We have found it expedient
therefore to steer a wide berth of folded regions of the ray
surface, aiming to fit only data associated with single-
valued regions such as the neighborhood of X' in Fig. 2.
Even here caution has to be exercised in applying the al-
gorithm that searches for n. If the starting value is
reasonably close to the correct one, as depicted, for ex-
ample, by the points d and e in Fig. 2, the numerical pro-
cedure converges to the correct value. On the other
hand, for a starting value such as f, the procedure mi-
grates to a point of inflection (point of zero Gaussian cur-
vature) on the slowness surface, which corresponds to a
cuspidal edge on the ray surface.

Figure 3 shows a (110) plane section of the ray surface
of germanium. It has been constructed by generating a
large number of ray vectors from a uniform distribution
of wave normals, and sorting out from these rays, ones
which lie within an angle of 0.03 of the (110) plane, and
then discarding the small out-of-plane components of
these selected rays. Some of these rays are associated
with normals which lie very close to the plane. Others,
the so-called oblique rays, are associated with normals ly-
ing well away from the plane. The arcs labeled ST and
FT indicate the single-valued regions of the ST and FT
sheets of the ray surface, respectively, whereas elsewhere
the surface is folded. In our optimization method for
determining the elastic constants, these constants are
varied within certain bounds and the folded regions of
the ray surface can expand or contract somewhat. Only
data well away from the boundaries of the multiple-
valued regions is therefore safe to use.

C. Recovery of elastic constants

(a}

b

a

FIG. 2. Two-dimensional schematic of (a) an acoustic slow-
ness surface and (b) the associated group-velocity surface of an
anisotropic material.

The successful implementation of the optimization
method that we describe here requires that approximate
values of the elastic constants be known. These might be
obtained, for instance, by treating the measured velocities
initially as phase velocities and applying one of the
simpler and more direct methods that are available for
recovering elastic constants from phase velocities. In cer-
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FIG. 3. A (110) section of the ray surface of germanium.
Elastic constants for the calculation are from Ref. 8.

tain high-symmetry directions, the values of the phase
and group velocities are identical, and data acquired for
these directions will generally, with minimal effort, yield
fairly reliable estimates of some or all of the elastic con-
stants. Using the approximate elastic constants, one then
calculates the ray surface using Eqs. (2) and (3) and
identifies the folded regions of the transverse sheets that
are to be avoided.

Our optimization method for determining the accurate
elastic constants C

&
of an anisotropic medium is as fol-

lows.

( p'J —p'J )~

j=1

(l) A set of r group velocities V,'„„.. . , V,"„,(with
directions N', . . . , N") are measured. These velocities
may correspond to L modes in any direction or to trans-
verse modes associated with unfolded regions of the ray
surface. For an accurate determination of all the elastic
constants, both longitudinal and transverse velocities are
required in general.

(2) Using a trial set of elastic constants C & the method
of Sec. II B is used to determine a calculated set of wave
normals n', . . . , n" whose associated group velocities (of
the appropriate polarization) V,'„„.. . , V,",~, point in the
directions N', . . . , N". The calculation of the n's can be
done with any required degree of precision, since two pa-
rameters 0 and P are being varied to fit two quantities 8
and 4.

(3) The magnitudes of the calculated and measured
group velocities will differ. The closer the C

&
are to the

"correct" values of the elastic constants, the smaller, on
average, the differences between the two velocities will
be. At this point we follow the customary practice of
resorting to a least-squares fit, varying the trial elastic
constants so as to minimize

In our implementation of this procedure we have used
the IMSL subroutine DBCLSF which is based on a
modified Levenberg-Marquardt algorithm and a finite
difference Jacobian.

D. Formulation for cubic symmetry

For a medium of cubic symmetry there are three in-
dependent elastic constants C&&, C,2, and C44, and the
Christoffel tensor takes on the form

(C,2+ C~)n„n, , res,r—
C»n„+C44(n n„—), r =s .

In our computations we have made use of a closed-form
solution to Eq. (2) for calculating U, and have obtained V
from Eq. (3) by implicit differentation of Eq. (2).z6

The computer program we have set up for recovering
the elastic constants from supplied velocity data consists
of a number of modules. The starting values and bounds
for the elastic constants are required. Based on the initial
values of the elastic constants, a set of wave normals that
yield the required ray directions is determined. To be
certain of identifying the correct normals, a coarse grid
search is conducted first to obtain approximate values.
These are then provided as starting values to the minimi-
zation procedure DBCONF which, in conjunction with a
fitting routine, does the accurate determination. We will
call this the reference set of normals. They are used as
starting values in subsequent callings of DBCONF.

The IMSL optimization procedure DBCLSF is then in-
voked. It repeatedly calls a subroutine FITT which it pro-
vides with a succession of values for the elastic constants.
FITT, in turn, calls DBCONF to calculate the wave nor-
mals, using the current values of the elastic constants.
Since the elastic constants vary by no more than about
+10% in the optimization process, the wave normals at
each stage of the optimization are expected to be reason-
ably close to the reference set and so the coarse grid
search is dispensed with and DBCONF is run using the
reference set starting values. FITT returns a set of calcu-
lated group velocities, which have the same directions as
the measured velocities, to DBCLSF. By a numerical con-
vergence process, DBCLSF then arrives at values of the
elastic constants that minimize the mean-square devia-
tion of the observed from the calculated group-velocity
magnitudes.

We have written this program in FORTRAN and run
it on a Convex C210 supercomputer. The number of
iterations to convergence averages about 50. The CPU
time varies depending on the size of the data set. We
have found that when 15 measured velocities are fit, the
computational time is seldom more than about 2 min.

As pointed out in Sec. II B, transverse velocities need
to be selected well away from folded regions of the ray
surface. The topology of the ray surface of cubic crystals
and its variation with degree of anisotropy has been stud-
ied in great detail by Every and by Hurley and Wolfe.
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When the anisotropy is low there are only small regions
where the transverse sheets of the surface are folded.
These regions grow in extent as the anisotropy increases.

Figure 4 shows polar plots of the distributions of ST
and FT rays associated with a uniform distribution of
wave normals. The calculation is based on the elastic
constants of CsBr, a moderately anisotropic crystal for
which (C» —C&2)/2& C44. In the context of phonon im-

aging, a plot of this type is known as a phonon focusing
pattern. The cuspidal edges of the ray surface are re-
vealed as caustics or lines of accumulation of the rays.
These delimit regions where the ray surface is folded and
where velocity measurements are to be avoided. The re-
gions from which data can safely be taken are: ST modes
in the proximity of the ( 100] planes and FT modes in the
proximity of ( 100) directions.

Figure 5 shows polar plots of the ray distributions for
Ge, a moderately anisotropic crystal for which
(C» —C&z)/2& C~. The regions in the FT patterns that
are devoid of rays lie inside circles of conical refraction
surrounding the ( 111) directions. It is self-evident that
FT velocities cannot be specified in these lacunas, and ST
rays in these regions should also be avoided. CsBr
possesses similar lacunas, but they are partly obscured by
the folding of the ray surface of that material. Folded re-
gions of the ray surface of Ge are evident in Fig. 5. The
regions from which data can safely be taken are ST
modes in the proximity of (110) directions and FT
modes away from the t 100I planes and the (111)direc-
tions.

Application of the method described here presupposes
knowledge of the approximate values of the elastic con-

FIG. 4. Polar plot of the (a) ST and (b) FT ray distributions
of CsBr for a uniform distribution of wave normals. Elastic
constants for the calculation are from Ref. 30. The [001] direc-
tion lies at the center of the plot.

FIG. 5. Polar plot of the (a) ST and (b) FT ray distributions
of germanium for a uniform distribution of wave normals. Elas-
tic constants for the calculation are from Ref. 8.
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stants of the medium under investigation. These are used
to calculate the ray distribution patterns so that safe re-
gions for data input can be identified.

III. APPLICATION TO SYNTHETIC DATA
ON CUBIC CRYSTALS

Because of the complications encountered in dealing
with the transverse sheets of the ray surface, it is worth
investigating what information can be obtained on the
elastic constants solely from L-mode-velocity measure-
ments. A further motivation for addressing this question
is that, in the experimental signals obtained with the PS-
PR technique, the L-wave arrivals are generally more dis-
tinct and easier to measure accurately than the ST- and
FT-wave arrivals. For ablative sources or buried ther-
moacoustic sources, ' the L signals are also the most
intense.

In the three principal directions (100), (110), and
( 111), the L-mode velocities depend not on all three in-
dependent elastic constants, but only on C» and the
combination CI =C&2+2C~. Phase and group velocities
coincide in these directions and are given by

PU(joo) =C»2

C»(iso) =(Cii+ Ci ) ~2

and

pu & ))) &
=(Ct) +2CI ) ~3

Using L-mode-velocity measurements in these directions,
the individual values of C,2 and C44 cannot be deter-
mined, only their combination CI. Away from these sym-
metry directions, the phase and group velocities differ.
The L-mode velocities are still mainly determined by C»
and CI, but now they also have a slight dependence on
C,2 and C44 individually. Except in cases of extreme an-
isotropy, this dependence on C,2 and C44 is too weak,
however, to allow these constants to be determined with
any reasonable degree of accuracy. Similar considera-
tions apply to the transverse modes whose velocities are
determined mainly by C44 and C, =(C» —C,2)/2.

Table I presents some results we have obtained on ger-
manium and other cubic crystals from computer-
generated velocity data. The first row lists the elastic
constants we have taken for Ge. On the basis of these
values we have calculated group velocities in various
directions for the three polarizations. We have then ap-
plied our optimization method to this data in an effort to
recover the elastic constants. The density p has not been
specified since it scales the computed velocities but does
not affect the calculated elastic constants.

The second row of Table I shows values of the elastic
constants that have been obtained from a grid of 7 L ve-
locities, and 3 ST and 4 FT velocities randomly chosen
outside the folded regions of the ray surface. All veloci-
ties were calculated and supplied to the fitting program
with eight-figure accuracy. This is much higher accuracy
than is attained in practice, and has merely been used to
test the method. As can be seen, the original elastic con-
stants have all been recovered to six- or seven-figure ac-

TABLE I. Recovery of elastic constants of cubic crystals
from computer-generated velocity data. The input elastic con-
stants for Ge and Al are from Ref. 8, and those for Cu are from
Ref. 30.

Elastic constants in GPa
Ci C44 CI C,

Germanium data
a 128.9
b 128.9000
c 128.9
d 128.8
e 128.7

48.3
48.3000
49.3
46.9
49.)

67.1

67.1000
66.6
68.1

66.9

182.5
182.5000
182.5
183.1
182.9

40.3
40.3000
39.8
40.9
39.8

Aluminum data
a 108.0
d 108.1

61.3
60.0

28.5
29.0

118.3
118.1

23.35
24.0

Copper data
a 169
d 1685

122
119.8

75.3
76.2

272.6
272. 1

23.5
24.4

'Values used in calculating group velocities.
Values recovered from grid of 7 L velocities and 3 ST and 4 FT

velocities, all supplied with eight-figure accuracy.
'Values recovered from grid of 15 L velocities, all with eight-
figure accuracy.
Values recovered from grid of 15 L velocities, randomly scat-

tered in interval of +0.5%.
'Values recovered from grid 15 L, 1 ST, and 2 FT velocities,
randomly scattered in interval +0.5%.

curacy. In running the program we have randomized the
starting values of the elastic constants by up to +5%, and
have found that for this material this affects only the
seventh or eight figures in the final results.

The third row shows typical values of the elastic con-
stants that have been obtained by fitting to a grid of 15 L
velocities covering the irreducible sector ( « th of the unit

sphere that is replicated into the whole sphere by the
symmetry operations of the cube). No transverse veloci-
ties have been used here. Again the velocities were sup-
plied with eight-figure accuracy. We see that C» and CI
have been determined to four figures, but the optimiza-
tion procedure has not been able to drive C,2, C44, and
C, to their correct values in spite of the very high accura-
cy of the calculations. In successive runs with different
starting values, a similar pattern was found. It is
significant that, although all the elastic constants are
inextricably involved in determining all three velocities
(unlike in the high-symmetry directions where there is ex-
act separation), C» and C& can be fairly accurately ob-
tained from the L velocities even though the other elastic
constants remain poorly known.

The fourth row shows the values obtained when the 15
calculated L velocities are randomly varied within an in-
terval +0.5% to simulate statistical errors. Again we see
that C» and CI have been determined with reasonable
accuracy, but the other three elastic constants have not
been successfully recovered.
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The fifth row shows the elastic constants obtained by
fitting to 15 L velocities, 1 ST velocity, and 2 FT veloci-
ties, all with statisitcal scatter in a 0.5% interval. All
the elastic constants are now determined with a fair de-
gree of accuracy, but C» and CI are still more accurate
than the others, reAecting the fact that more longitudinal
than transverse velocities have been used.

We have carried out similar calculations for a number
of other materials and find that whether they are fairly
isotropic (like aluminutn) or fairly anisotropic (like
copper), the conclusions are essentially the same. When
only L data are used C» and C& can be accurately deter-
mined, as shown in Table I for Al and Cu, but not the
other elastic constants. The inclusion of transverse veloc-
ity data allows C&2, C44, and C, to also be obtained with
reasonable accuracy.

IV. APPLICATION TO EXPERIMENTAL DATA
ON SILICON

The experimental data reported in this section were ob-
tained using a scanned broadband ultrasonic PS-PR tech-
nique based on laser excitation and piezoelectric sensing.
The method has previously been described in greater de-
tail. ' The beam of a Q-switched Nd:YAG (yttrium
aluminum garnet) laser (wavelength = 1.06 pm, pulse
duration=4 ns, energy=10 mJ) is focused down to a di-
ameter of =0.5 mrn on one face of a disk-shaped single
crystal of silicon. This acts as a thermoelastic source

generating waves which spread out in all directions in the
sample. The waves are detected with a small (1.3-mm-
diam) PZT piezoelectric transducer mounted on the op-
posite face of the sample. Signal onsets are registered at
the arrival times of longitudinal and transverse waves
which have propagated through the sample at their
group velocities. '

Two disk-shaped silicon single crystals, both of diame-
ter 7.5 cm, have been studied. The first one has faces
parallel to the (001) plane, and is of thickness 9.906 mm.
The excitation was carried out at a series of points lying
in a line along the [100]direction and passing through ep-
icenter, i.e., the point directly opposite the detector. In
this sample only the L and ST waves were observed. The
reasons for this have been discussed elsewhere. ' The
first 6 L velocities and the 2 ST velocities listed in Table
II are measurements made on this sample. The second
sample has faces parallel to the (110) plane and is of
thickness 9.970 rnrn. The excitation was carried out at a
series of points lying along the [112]direction and pass-
ing through epicenter. In this sample only the L and FT
waves were observed. The remaining L and the FT veloc-
ities listed in Table II were obtained with this sample.

The elastic constants we have obtained for silicon using
our optimization method on this data are listed in the
first row of Table II. For comparison, the second row
lists published values for this material. The agreement
between the two sets is within 2% for all the constants.
Table II also shows the calculated angular coordinates of
the wave normals and the calculated values of the group

TABLE II. Elastic constants of silicon determined from 16 group-velocity measurements made on
(100) and (110) oriented single crystals. The density has been taken to be 2.332 g/cm'. Measured
(m) and calculated (c) data on the group velocities is given. 8,4—polar angles of V; 8,$—polar an-

gles of n.

Elastic constants in GPa
Cl2 C! C,

Branch

165.1

165.7

e.

65.0 80.2
63.9 79.6
Angles in degrees

8,

225.5
223. 1

50.0
50.9

Velocities in mm/ps
V V,

L
L
L
L
L
L
L
L
L
L
L

ST
ST
FT
FT
FT

90.0
90.0
90.0
90.0
90.0
90.0
89.5
66.1

76.7
85.9
87.4
90.0
90.0
77.2
72.7
67.7

0.6
33.7
39.8
31.9
25.9
19.2
44.7
26.7
35.4
42. 1

43.2
22.5
32.0
35.8
32.3
28.1

90.0
90.0
90.0
90.0
90.0
90.0
89.7
72.6
80.4
86.9
88.1

90.0
90.0
61.8
59.9
58.4

0.3
25.2
35.0
22.9
16.3
10.9
44.3
18.6
28.2
39.3
41.4
36.8
40.5
40.0
39.5
39.0

8.26
8.93
9.20
9.06
8 ~ 89
8.72
8.93
9.23
9.28
9.29
9.26
4.95
4.77
5.40
5.35
5.36

8.41
9.00
9.11
8.96
8.80
8.64
9.15
9.07
9.11
9.14
9.15
4.87
4.71
5.48
5.40
5.36

'This investigation.
Published values from Ref. 33.
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velocities. The agreement between calculated and mea-
sured group velocities is better than l%%uo in all but one
case. The importance of distinguishing between phase
and group velocity is highlighted by the angular separa-
tion between the measured V's and their calculated n*s.
For the L-mode data this angle ranges up to 9.6, while
for the FT modes it reaches 14.4'.

We have not attempted at this stage to do a detailed
statistical analysis of the experimental errors or the e6'ect
they have on the elastic constants. A few comments are,
however, in order. The accuracy of the time measure-
ments in these experiments is limited by the wave-form
sampling period, which is 16.7 ns. Most of the transit
times exceeded 1.67 ps, and so the time measurements
are at best accurate to =1%. The major source of error
in the path lengths is the finite size of the detecting trans-
ducer. Near epicenter and far from epicenter this intro-
duces a negligible error, but in between, it leads to a frac-
tional error in the path length of (d/4l)sin2p, where
d = 1.3 mm is the diameter of the sensor, I = 10 mm is the
specimen thickness, and p is the angle between the
source-receiver direction and the normal to the surface.
Taking an average value of sin2P =0.5, one obtains an er-
ror of =1.6% for the path length. The errors in the
measured group velocities are therefore about 2%, and
the errors in the elastic constants might be expected to be
comparable.

V. CONCLUSIONS

We have described a method that permits the deter-
mination of the elastic constants of an anisotropic solid
from measurements of the group velocities of acoustic
waves traveling in off-symmetry directions in the speci-
men. The method is necessarily an indirect one, since
there is no explicit equation available, or easily derivable,
that relates only elastic constants and group velocities,
and which might be manipulated to yield the elastic con-
stants. The method we have presented is based on the
following: (1) A minimization procedure to calculate the
wave normals associated with the given velocities. (2) An
optimization procedure that varies the elastic constants
to minimize the mean-square deviation of the measured
from the calculated group-velocity magnitudes.

In order to apply the method, reasonable estimates of
the elastic constants of the medium must be known, so
that the approximate ray surface can be calculated and
suitable regions for data input identified, and also to pro-

vide starting values for the optimization procedure. Ap-
plication of this method is simplest when only L data are
used. All directions are available in this case since the L
sheet of the wave surface is single valued and the pro-
cedure is more robust, tolerating much wider bounds and
more remote starting values for the elastic constants.
However, when only L data are used, not all the elastic
constants can be determined.

We have applied this method to media of cubic symme-
try and have shown in this case that when data on longi-
tudinal and transverse velocities are provided, all the
elastic constants can be accurately recovered. When only
L data are provided, C» and Ci can be accurately deter-
mined, but the other elastic constants cannot be
recovered.

In many situations the optimum strategy for recovery
of elastic constants will probably be a hybrid approach, in
which some of the elastic constants are determined using
data measured along certain high-symmetry directions
where the phase and group velocities are equal, and the
remaining elastic constants are then determined by the
optimization procedure described here.

One of the main objectives of this paper has been to
draw attention to the fact that there are a number of
techniques that deliver group-velocity rather than phase-
velocity data on acoustic waves. When determining elas-
tic constants from such data, the distinction between
phase and group velocity should be borne in mind, even
though in certain cases it might be expedient to ignore
this distinction in order to easily arrive at approximate
values of the elastic constants. We have shown that
recognizing that the wave-speed data refer to group ve-
locities does not lead to an intractable problem, but rath-
er to one that can be solved numerically in a systematic
way.
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