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The effective theories for the hierarchical fractional quantum Hall effect (FQHE) are proposed.
We obtain the quantum numbers of the quasiparticles and the structure of the edge excitations for
the general hierarchical FQHE state. It is shown that at the filling fractions v=k/(2km+11 the
Jain states and the hierarchical FQHE states give rise to the same quasiparticles and edge excita-
tions and have the same effective theories (in the dual form). This suggests that these FQHE states
are equivalent despite having been obtained from two different schemes.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) at general
filling fractions is explained by the hierarchy schemes.
These schemes allow one to construct various incompres-
sible states of electrons in the magnetic field. Today
several different construction schemes for the FQHE are
known. However, it is not clear yet whether they lead to
the same FQH state or not for a given filling fraction.

There are mainly two different ways to construct the
FQH states. The first one is the hierarchy construction.
This construction was first proposed in Ref. 1 and later
developed in Refs. 2 and 3. A closely related approach
that uses the particle-hole duality was developed in Refs.
4—6. A different scheme of the construction was pro-
posed recently by Jain in Refs. 7—9.

The first approach uses the assumption that as we
change the filling fraction the added quasiparticles in the
FQH states can "condense" and form a new incompressi-
ble state. This new state supports different kinds of
quasiparticles. The new quasiparticles also can condense
and form the higher-level FQH state. In the second ap-
proach due to Jain, one deals directly with the fermion
"cond ensates. " In this approach each electron is
represented as a sum of several fictitious fermions. The
fermions of each type are assumed to be in their own in-
compressible state [which is an integral quantum Hall
(IQH) state]. Some arguments were given in Ref. 9 to
demonstrate the stability of this kind of the electron
states.

However, it is not clear whether these two schemes
lead to the same FWH states or not for a given filling
fraction. It was argued in Ref. 10—12 that the filling
fraction is not enough to characterize the FQH state.
The FQH states are classified by their topological orders
Ref. 13. The latter can be characterized by the allowed
quantum numbers of the quasiparticles (i.e., their charges
and statistics) in the given FQH state.

A powerful way to investigate the topological order in
the FQH states is to construct the eff'ective theories of the
FQH states. The effective theory for the Laughlin state
with the filling fraction 1/p was first proposed in Refs.
14—16. It was proven to be a useful tool for understand-
ing the qualitative properties of these states.

In our previous paper (Ref. 12) the effective theories of
the FQHE states proposed by Jain were constructed. We

were able to find the quantum numbers of the quasiparti-
cles and the structure of the edge states.

The purpose of the present paper is to construct the
effective theories for the hierarchy FQH states. The mi-
croscopic wave functions for these states were construct-
ed in Refs. 1 —6. Using the effective theory we can calcu-
late the allowed quantum numbers of the quasiparticles in
the general hierarchy states. These results enable us to
compare the hierarchy FQHE states with the Jain states.
We find that for the case of the filling fraction
v=k/(mk+I) (m is an even integer) the quantum num-
bers of the quasiparticles in these states coincide. This
suggests that these hierarchy FQHE states are equivalent
to the corresponding Jain states. We also discuss the
particle-hole duality in the framework of the effective
theory and the structure of edge excitations.

The plan of the paper is the following. In Sec. II we
construct the effective theory for the second-level hierar-
chy states with a filling fraction v=pz/(p, pz+ I ). (Here

p~ is an even integer, p &
is an odd integer). The quantum

numbers of the quasiparticles in these states are obtained.
These quantum numbers are compared with the quantum
numbers of the quasiparticles in the Jain state. We
demonstrate the connection between the effective theory
and microscopic wave functions. It is argued that the mi-
croscopic construction due to Halperin (Refs. 2 and 3)
gives rise to the same quantum numbers of the quasiparti-
cles as our effective theory does. The particle-hole duali-

ty is also discussed. In Sec. III we construct the effective
theory and calculate the quantum numbers of the quasi-
particles for the general hierarchy states at an arbitrary
level of the hierarchy construction. We also compare the
Jain states and the hierarchical states for the case of the
filling fractions v=k/(kp+1). In Sec. IV we discuss the
dual theory and find the structure of the edge states for
the hierarchy construction. The main results are summa-
rized in Sec. V.

II. THE CONSTRUCTION OF THE
HIERARCHICAL FQH STATES

In this section we study the second level of the hierar-
chy construction in the framework of the effective theory.
Recall that the microscopic wave functions for the
second-level hierarchy states were constructed in terms of
the quasiholes in the Laughlin state: '
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where zk =xk+iyk are the complex coordinates of the
quasiholes, p2 is an even integer, and lo=v'Be/hc is the
magnetic length. It is clear that in this construction we
have bound an even number k of the flux quanta to each
quasihole of the Laughlin state. The microscopic wave
function (1) describes the hierarchy state that arises from
the "condensation" of the quasiholes (bounded with p2
units of flux). Similarly it is possible to write down the
wave function of the hierarchy state obtained from the
"condensation" of the quasiparticles in the Laughlin
state. Now let us construct the effective theory for the
above hierarchy states. Our starting point will be the
effective theory for the Laughlin state with a filling frac-
tion 1/p.

The Ginsburg-Landau Lagrangian for the Laughlin
state can be written as

X=@,i (r}o+iao ie A—o}4,+ 4, (B;+ia; ieA, )
—4,2M

+ pd' c„B„cz+ e"" c„r}~&—V(4, ) .
4~ ~ 2~

(2)

4, (r, P) = tt/ n, exp(+i P),

a~(r, P)=+, ao=0 .er'

The vortices correspond to the excitations with the
nonzero winding numbers in the 4, and a fields. They
are the quasiparticles in the Laughlin state.

There are two ways to take into account these solu-
tions in the quantum theory. First, we can consider the
contributions to the partition function from the different
topological sectors in the N, and a fields in which the 4,
field has different winding numbers. The second possibil-
ity is to restrict ourselves only to the trivial topological
sectors of the fields 4, and a„. The vortex can be
unwinded with use of a singular gauge transformation.
In this case, in order to take into account the vortex con-
tribution, we must introduce a new quantum field Nq to
keep track of the singularities. This field describes the
quasiparticles in the Laughlin state. We must now find
the effective Lagrangian for the field 4 in the limit when
the vortices can be considered as the pointlike particles.
This problem was considered in Refs. 17—19 and the fol-
lowing effective Lagrangian was obtained:

The order parameter 4, describes the electrons that form
the incompressible state. It is easy to see that integrating
out the auxiliary gauge field c„we return to the standard
Ginsburg-Landau action of Refs. 15 and 16.

The equations of motion for the Lagrangian (2} have
the vortexlike solutions, with the center at r =0 and
asymptotic behavior for r ~ Do:

X=@,i(BO+iao—ieAo)4, + 4, (B;+ia, ieA, ) 4,2M

+p e" c„d cz+ e"" c„B~&+i@t(BO+ico)44~ ~ 2~

Q, = f(n, n, )d x=——

(p4, +4, }

2'
1

Q, = (6)2'
a —a x=0. (7)

Equation (7) is the consequence of our assumption that
field a is unwinded. The integer I is the number of the
quasiparticles, n, is the electron density, and
4, =|(c —c )d x is the flux of the auxiliary field c. Note
that 4, is not an integer since the quasiparticles do not
condense in the state under consideration.

Using Eqs. (5)—(7) it is straightforward to check that
the quasiparticles described by the field 4 have the
quantum numbers

el 1'n .
Q„=—,8= (8)

These are just the quantum numbers of the quasiparticles
in the Laughlin state. Hence it is consistent to use (4) to
describe the Laughlin state.

Note that for a vortex with winding number I, the
equations of motion that follow from the Lagrangian (2)
imply

4, =2ml,

C

2m-
(9)

Solving these equations we obtain the quantum numbers
(8) for the vortices. Hence the winding number of the
vortices in the effective theory (2) is just the number of
quasiparticles in the effective theory (4) and the 4~ parti-
cles in (4) are just the vortices (3) in the theory (2). The
two effective theories are equivalent and both describe
the same Laughlin state. It is possible to prove that the
partition functions calculated using the Lagrangians (2)
and (4) coincide in the limit when the vortices can be
represented as pointlike particles (see, e.g. , Refs. 19, 17,
and 18 for the detailed calculation). The Lagrangian (4)

+ 4&(B;+ic) C&~
—V(4, ) .

2M

In order to check the self-consistency of the two
different but equivalent descriptions, (2) and (4), of the
Laughlin state we would like to show that the field 4
has the same quantum numbers (the charge and statistics)
as the vortex (3}. The equations of motion that follow
from the Lagrangian (4} imply that
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will be the starting point for our future discussion of the
hierarchy state.

From the microscopic construction described above it
is clear that in orer to construct a hierarchy state we
must bind an even number of flux quanta to each quasi-
particle. Note the close connection between this con-
struction and the Jain construction that was used to con-
struct the FQH states with the filling fractions
v=k/(mk+ I) (here ni is an even integer. ) The main
difference between these two approaches is that in the
Jain case we construct composite fermions, binding an
even number of flux quanta to each electron. In the
hierarchy construction we construct "composite" quasi-
particles, binding an even number of flux quanta to each
quasiparticle. This is the origin of the second term in the
wave function (1). We refer to Refs. 7 and 20 for a more
detailed discussion of this procedure. In order to con-
struct the hierarchy FQHE state we assume that these
"composite" objects (that have now the anyon statistics)
form an incompressible state.

The binding of the even number of flux quanta to the
quasiparticles can be achieved by introducing a new

gauge field b„. This leads to the following effective
Ginsburg-Landau Lagrangian for the hierachy state

X=i@,(BO+iao ieAO)4, —

+ 4, (B;+ia; ieA; —) 4, + e"" a„r)„ci

+i@ (Bo+ico+ibo)@e+ @e(B;+ic;+ib,) 4
2m

+ p, e"' c„B„ci— el'""b d„bi —V(4, ) .
4m 4m p,

(10)

In the mean-field theory the hierarchy FQH state is de-
scribed by the condensates of 4, and 4, i e.,
(4, ) =const and (4 ) =const. Using the equations of
motion

b+c =a —B =0,

hierarchy states using the effective theory. However,
they did not discuss the quantum numbers of general
quasiparticles and topological orders in FQH states.

Let us consider the quantum numbers of the quasipar-
ticles in this model. The quasiparticles are vortices in the

and +q fields. Using equations of motion it is
straightforward to obtain

Q'=—
27T

'

pz

p)4'+4'
(16)

Q =Q', 4 +O'=122m. , 4, =1,2n .

Here

4 =f (b b)d x—, 4'= f (c —c)d x,
4'= f (a —a)d x,
Q"=Q'= f (ne n~)—d x, Q'= f (n, n, )—d x,

(17)

(18)

(19)

l2+p21)
Q.i =

p&p2

and the statistics

(20)

and, for example, a means the value of the field a in the
ground state. The integers l, and I2 are the winding
numbers of the vortices in 4 and 4, fields. We denote
the electron and the quasiparticle densities by n, and n,
respectively. Note that in this description of the
hierarchical state, only the "condensed" quasiparticles in
the Laughlin state are described by the order parameter
4 . The integer l, is the winding number of vortices in
the 4, field. These vortices describe the quasiparticles
that are not in the "condensate. " Their density in the
ground state is zero.

Solving Eqs. (14)—(17) we obtain the electric charges

c
n, =vB=-

2m-
'

p21 +pi i
g —ggq g+ Q b@b+ Q c@

p&p2 1
(21)

a+p&c
n b,

2m p,
we obtain the filling fraction

p2V—
p&p2

—1

l

p &

—1/p2
(12)

The condensate densities are given by the equations

n, =vB, ne ~ q

Here a =e, -B,-aj b 'E jB b-, and c =e;-B,.c are the auxi-
liary gauge-field strengths and B is the magnetic-field
strength.

This Lagrangian (10) was first obtained in Ref. 19.
These authors rederive the results of Halperin ' for the

of the quasiparticles in the effective theory. The quasi-
particles are labeled by two integers l, and 12.

Note that the integers p, and p2 can be both positive
and negative. The hierarchy FQH states with pz )0 are
obtained by the quasielectron condensation. While the
hierarchy FQH states with p2 &0 are obtained by the
quasihole condensation. From Eq. (21) we see that if
there is quasielectron condensation, all quasielectrons
have the same sign of statistics 0. If the quasiholes con-
dense, then the quasiparticles may have different signs of
statistics.

%'e have two "fundamental*' quasiparticles. By funda-
mental quasiparticles we mean here the quasiparticles
with quantum numbers l2 = 1, l, =0 or l, = 1, l2 =0. The
quasiparticle with l2 =1 l& =0 has the charge and statis-
tics
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1

p&p2

p]
7T .

p,p2
—1

(22)
and 12). In the Jain state the quasiparticles are labeled by
two integers 1, and Iz and have quantum numbers'

This kind of quasiparticle was first studied by Hal-
perin. Our result (22) agrees with Halperin's results.
The second fundamental quasiparticle with l2=0, l& =1
has the quantum numbers

P2 P2

p]p2 1 p&p2
(23)

This quasiparticle is just the one induced by adiabatic
turning on the unit inagnetic fiux. The result (23} can
also be derived from the microscopic calculation. Note
that for pz ~ 00 (this limit corresponds to the decoupling
of the field b, i.e., we return to the Laughlin state) the
quantum numbers of this quasiparticle become the quan-
tum numbers of the quasiparticle in the original Laughlin
state.

The effective theory (10) also allows one to consider the
particle-hole duality. For example, the state conjugated
to the v= 1/(k +1) Laughlin state (k is an even integer)
can be constructed from the v=1 integer quantum Hall
state by binding to its quasiholes k units of flux. Such
states have filling fractions v= 1/(1+1/k) and contain
two fundamental quasiparticles. The first one has quan-
tum numbers Q,i= —[1/(k+1)]e, 8= —[I/(k+1)]n.,
i.e., the same quantum numbers as the quasiparticle in
the Laughlin state. The second one has electric charge
Q„= [k/(k +1)]eand statistics 8=[k/(k +1)]m.

Let us now compare the v= —', states constructed in this
chapter with the ones obtained by Jain (see Refs. 7, 8, 9,

I, +12
Q„= e, 8=[1i+1~——', (1, +12) ]m . (24}

The quasiparticles in the hierarchy state with a filling
fraction v= —,

' = 1/(3 —
—,
'

) are also labeled by two integers

n, and n 2. They have the quantum numbers

Q.i
= n ) +2n2 2n ] +3n 2+2n )n2

e, 8=
5

(25)

It is easy to see that (24) and (25) coincide if we identify
I, =n, +n2 and 12=n2. Thus at filling fraction —', the
quantum numbers of the quasiparticles in both the Jain
state and the hierarchical states are the same. This sug-
gests that the two states have the same topological order
and are equivalent. At the filling fraction v= —', both the
hierarchical state and the Jain state describe the same
fractional quantum Hall state, despite these two states
having different electronic wave functions.

Above the charges and statistics of the quasiparticles in
the hierarchy states were calculated from the effective
theory. Now we would like to argue that the same results
can be obtained from the microscopic wave functions.
The electron ground-state wave function can be derived
from the pseudo-wave-function (1) of the quasiholes using
the "fractional-statistics transformation" (see, e.g., Refs.
2, 3, and 21)

N N Nh Nh N, Nh

~(~' '~. )-ri(~. -~.)ri(~, -~, ~f ii~-, --,~'"'ii(-, --, )" ri (;-~, )

n 1 (J 1(J 1 (J
Nh

X ri exp ~z, ~' ri exp( —
—,
'

g, ~')d'z, .
2P1

(26)

Here g; and z; are the coordinates of the electrons and the quasiholes, respectively. The number of the quasiholes is
given by

1
1V~= X, .

P2
(27)

The filling fraction of the state (26) can be easily found from the angular-momentum argument. The angular momen-
tum L and the electron number N, are connected by the equation L =N, (N, —1)/2v. The angular momentum can be
determined as L =[N, (N, —1)/2]pi —[N&(Ni, —1)/2]pz+N, NI, . Taking the limit N„N& ~ oo and using the condition
(27) we find that the filling fraction is given by Eq. (12) (where we make a substitution p2~ —

p2 since we consider the
quasihole condensation).

In the microscopic theory there are two different types of the quasiparticles in the state described by the wave func-
tion (26). The quasiholes of the first type are described by the following electron wave function:

N N Nh

~(~' '~. '~.)-ri(~. -~.)ri(~, -~, )"f rr ~, —;~'"'ri(-,--, )" ri (;-~, )

n 1 (J 1 (J p~q

N

Xrr exp
1 ii exp( —

—,
'

I
g', I')d'z; .

2p]
(28)

Here go is the position of the quasihole. The quasiholes of the second type are described by the wave function
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N N~ N~

p,(g„. . . , g„;go)—g(g; —
g, )"I P lz;

—z, I
"(z;—z, )"(z; —g, )(z; —g, )+exp

e

lz, +exp( —
—,')g, l

)d z, .
2P1

(29)
The analogous wave functions can be written in the case of the quasiparticle, although they look more cumbersome.

The charge and statistics of the quasiparticle described by the wave function (28) can be found in the same way as it
was done for the quasiparticles in the Laughlin state in Ref. 22. Adiabatically moving a quasiparticle rough the circle
induces the phase which is proportional to the enclosed fiux. The coefficient determines the electric charge of the quasi-
particle. By adiabatically interchanging two quasiparticles we can obtain their statistics. By repeating the calculation
of Ref. 22 we obtain that the quantum numbers of the quasiparticle (28) are given by

Q„=ve, 8=vx . (30)

These are the quantum numbers of the quasiparticle in the hierarchical state, labeled by l1= 1, l2 =0. Hence the quasi-
particle with l l

= 1, 12 =0 in the effective theory corresponds to the quasiparticle (28) in the microscopic theory.
However, the adiabatic approach of Ref. 22 cannot be directly applied to the wave function (29). The reason is the

occurrence of the cross terms g, (z; —
g ). According to Refs. 2 and 3 the second type of the quasiparticles in the

hierarchical state can be described by the pseudo-wave-function

N~ N~ k =N—1/P
11'(, , , )=g( „—,)
' g( „—,)

' g (
—g, ) p( —q„l „I'/4l,') . (31)

k (1 k«& 1 k=1

The wave functions (29) and (31) are connected by the "fractional-statistic transformation. " We assume (although we
lack direct proof) that a quasiparticle in the incompressible anyon state described by the wave function (31) is the same
quasiparticle as the one described by the electron wave function (29). Thus we can use the wave function (31) to find the
quantum numbers of the quasiparticle described by Eq. (29). It is straightforward to obtain the quantum numbers of
such a quasiparticle:

1
e, 0=-

7 172+1
7T .

u1S 2+1
(32)

(The alternative proofs can be obtained from the arguments given in Refs. 2 and 3 or using the methods of the confor-
mal field theory Ref. 23.) Equation (32) describes the quantum numbers of the quasiparticles of the effective theory la-
beled by the integers l1=0 l2 =1. We thus convinced ourselves that our effective theory has a direct correspondence
with the microscopic theory. Let us note that in the framework of the microscopic theory it is straightforward to calcu-
late the quantum numbers only of the quasiparticles given by the wave functions (28) and (31). More general quasiparti-
cles are labeled by the arbitrary integers l1 and 12. It is not clear to us whether the above arguments can be used to cal-
culate the quantum numbers of such general quasiparticles. It is difficult to obtain the cross term in 8 [see Eq. (21)] us-
ing the microscopic wave functions. For such general quasiparticles the separation between the short-range properties
of the wave functions and their long-range properties that define the quantum numbers of the quasiparticles becomes
more complicated. On the other hand, the effective theory directly describes the long-range properties of the FQH state
without taking into account its short-scale structure. This is the reason why it is so simple to find the quantum numbers
of the quasiparticles using effective theory. The short-range properties in the electronic wave functions depend on the
details of the model and complicate the calculation. The different construction schemes may lead to the same FQH
states, although they have different wave functions. The only difference between these states are the unimportant
short-range structures.

III. THE TOPOLOGICAL ORDERS IN THE GENERAL HIERARCHY STATE

In the previous chapter we discussed in details the second level of the FQH hierarchy. In this chapter we shall dis-
cuss the general construction. The effective Lagrangian for the most general state of the Haldane-Halperin hierarchy
can be obtained in the same way as for the second level, by assuming that quasiparticles (or quasiholes) condense. We
write explicitly the effective Lagrangian in the Ginsburg-Landau representation

X=i4,"(l)p+iap ieA )4, +— 4, (B;+i apieA') 4, + e"" a~pl3"a,
1 y . ; . ;2 1

e 2m

1l 2

+ y ie,+"(ap+ia», +iazk)4q+ 4,+"(8,+ia2k, +ia'2„) Cq

+ pke 2k —1 d 2k —I+e a 2kB a 2k+ i + !4 (Op+la 2„3+ia2„2)4
4m 2m.

+ 4 ~+'" "(8,+ia'2„3+ia'2„2) 4~ '+ e"' az„28'az„2 —
4 P„,e"" a2 —38 2 3 (33)
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Here n is the level of the hierarchy (Laughlin state corre-
sponds to the first level of the hierarchy). The order pa-
rameters 4 describe the condensates of the quasiparti-
cles that form the hierarchy state. We denote N, —=4 .
The fields a, are the fictitious U(1) gauge fields that are
bound to the quasiparticles of the preceding states in the
way described in Sec. II. We assume that each level of
hierarchy can be represented by means of the condensa-
tion of the "composite" objects that contain a quasiparti-
cle of the previous level and the flux tube with the even
number of flux units. The ground-state properties of this
Lagrangian are easily found using the equations of
motion:

+2k +1
Q2k

=— k=1, . . . , n —2,
m'

1
Q2k —1 @2k—2+Pk @2k —1 2m.

~'2. -2
Q2. —2=

pn 2&

@'2k -1+@2k—~k2~ ~

@o=lo .

(40)

(41)

(42}

(43)

(44)

We can eliminate the fluxes 42k from these equations us-

ing Eqs. (43) and (44). We obtain the system

a2k 1+a2k =0,
ao —e8 =0,

A,j@2, , =1;,(i =1, . . . , n ) .

Here the matrix A is given by the equation

(45)

n, —=no=v8,
(k)

2k —2 Pk 2k —1 2k+1

(34}

k=1, . . . , n —2,
(n —1) 1

2n —4 Pn —1 2n —3 + ~2n —2
Pn

p 1 ~ ~ ~

1

—1 P2
—1

0 —1 P3

0 0 0

(46)

Here n, = (4't4' ) is the "density" of the ith type of the
quasiparticles that take part in the formation of the
hierarchy state. The field a;=e 8 a; is the strength of
the fictitious gauge field, i =0, . . . , 2n —2.

These equations have solutions only if the following
consistency condition is obeyed:

(35)

P2

Pn

The electron density and the values of the gauge-field
strength in the ground state are given by

0 0 0 —1 p„

n —s(Ps+1»' ' ' Pn ) k —1(P1»' ' ' pk —1}
8, = s~k .

(47}

«re Dk(p, , . . . ,p, } is the denominator of the filling

fraction

The solution of the system (45) amounts to inverting the
matrix A. The inverse of the matrix A, the matrix 8 has
the matrix elements

n —k Pk+1»' ' Pn s —1(P1»' ' ' Ps —1}
8, = s &k

(k)— n —k —1(Pk+2»' ' Pn }
2k +2 2k —3 D

8.
(36)

V] =
Ps,

Ps,

(48)

Here D is the denominator of the fi11ing fraction v given
by Eq. (35). D„k is the denominator of the filling frac-
tion

Ps

The numbers D, satisfy the recursion relation

Vn —k

1k+1
7k+2

5'n

(37) Dk(pi Pi„) Pi Dk —1(P' ' P „)

Dk —2(P&. &P—
&

) &

3 k

D =1, D, =O.
(49)

Let us now consider the quantum numbers of the
quasiparticles associated with the Lagrangian (33). The
equations of motion for charges and fluxes of the auxili-
ary gauge field have the form

Note that D:—D„(p1, . . . ,p„).
The charges of the quasiparticles are given by

j=n
Qel 2 ~1jlj—1

j=1
(50)

2m
'

Q2k =Q2k —i

(38)

(39)

Note that 8, coincide with n'j' given by Eq. (36). After
some algebra we can also show that the statistics of the
quasiparticles are given by the formula
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s =2n —2 E,J=n 2
8= g Q, 4, = g B,, l, , l, ,m-.

s=0
(51)

In particular the statistics of the fundamental quasiparti-
cles that are labeled by integers 1, , =1, Ik =0~ k~;, are
given by

D —(p +1 . p }D —1(pl . » —~}
(52)

n;
k k

„2 P
k+1 '

.
' k+1 (53)

As it was pointed out to the authors by Read, the filling
fraction v= k /( kp + 1 ) can be represented in the form

p+1—
(54)

~ ~ ~

In the case n =2 (the second level of the hierarchy) we re-
cover the results of Sec. II.

It is convenient to regard the incompressible electron
state as being made of several different incompressible
components. The density of each of these components is
given by Eq. (36). The fundamental quasiparticles can be
viewed as the quasiparticles in these parent Auids.

The quasiparticle quantum numbers found for the
hierarchy states can be compared with the quantum num-
bers of the quasiparticles in the states constructed by Jain
in Ref. 7 for the same filling fractions. We shall compare
the hierarchical states and the Jain states with the filling
fraction v=k/(kp +1), where p is an even integer and k
is an arbitrary integer. The charge and the statistics of
the quasiparticles of the corresponding Jain state are
given by'

k

p —1+
(58)

~ ~ ~

where there are k —1 levels in the continued fraction.
Thus the quantum numbers of the quasiparticles in the
Jain states and in the hierarchical states are identical.
This shows that these states are in fact equivalent FQH
states.

Note however that, in general, some of the Jain states
cannot be obtained from the hierarchy construction. The
simplest examples are the states with the filling fractions
—,'=1/(1+ —,'+ —,') and —', =1/( —,'+ —,'+ —,'). It would be in-

teresting to find which of the general Jain state with the
filling fraction v= 1/g„l/m„can be obtained from the
hierarchy construction. The Jain states with the filling
fraction v= I /gz 1/mk contain gk (

~ ml, ~

—1)+ 1

branches of edge excitations. "' In the next section we
will see that the number of the edge branches is equal to
the level of the state in the hierarchy. Hence if the Jain
state with the filling fraction v= I/gk I/mk is equivalent
to some hierarchy state, this state must lie at the level

gk( ~ mk ~

—1)+ 1 of the hierarchy.
The hierarchy states have one more interesting proper-

ty. The charge Q, ~
and the statistics of an arbitrary

quasiparticle satisfy the equations

that the charge and the statistics of the general quasipar-
ticle in the Jain states [see Eq. (53)] and in the hierarchi-
cal state [see Eqs. (56), (55), and (51)] coincide. The
analogous results can be proven for the second main se-
quence of the Jain states. These are the states with the
filling fraction v=k/(kp —1). They have the representa-
tion

where these are k —1 levels in the continued fraction.
This is the way in which the Jain state is represented in
the hierarchical scheme. For the hierarchical state (54)
the symmetric matrix 8„' is given by

O=D„,D
e

mod27T . (59)

(k n+ 1)[p—(s —1)+1]
pk +1

The charge of the quasiparticle is given by

(55)
As far as only the charge and the statistics are concerned
the quantum numbers of all the quasiparticles can be gen-
erated using only one quasiparticle labeled by the integers
l„=1, I; =0, iXn. This quasiparticle has the following
quantum numbers:

n=1
el pk +1

k

g (k n+1}l„—
(56)

p. —»
Q =—e, 6=

el 77 . (60)

It can be shown that, after a redefinition of integers, This formula can be easily proved using the Eq. (56} for
the electric charges

n, =1, ,

n2=1, +12,
(57}

g i, D. —,(p;+ i " p. }
Q, = (61)

nk=l, + - . . +Ik, and the identity
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s —i pl» ' &ps —1) n —s(ps+1». pn ) n —1(pl». ~ pn —1) n —s —l(ps+1»pn —1)D (62)

This identity can be obtained by induction over n. Note,
however, that this does not mean that all quasiparticles in
the theory can be considered as the bound states of the
quasiparticle (60). The reason is that the charge and
statistics are not all quantum numbers that characterize
the quasiparticle. For example in the integer quantum
Hall states the electrons in the different Landau levels
have the same charge and statistics but they are definitely
different.

Finally, let us note that the construction of the
hierarchical FQHE states described above has two natu-
ral generalizations. First, we can construct the hierarchy
starting from an arbitrary Jain state. It would be in-
teresting to consider the hierarchy that begins from the
Jain states that cannot be obtained using the hierarchy
construction, e.g. , the —,

' and —', states mentioned above.
We can built this new hierarchy and calculate the quan-
tum numbers of the quasiparticles in the same way as it
was done above for the case of the Haldane-Halperin
hierarchy states.

Second, let us note that in the Haldane-Halperin
hierarchy construction we assumed that a particular type
of quasiparticles condenses each time when we move into
the next level of the hierarchy. This quasiparticle is la-
beled by the integers I;=I, IJ =0~i~, and has quantum
numbers given by Eq. (60). More general hierarchical
states can be obtained through the condensation of other
quasiparticles. This possibility will be discussed in the
next section.

IV. DUAL THEORY AND THE EDGE STATES

In this section we are going to study the edge
states "" in the hierarchy FQH states. For this
purpose it is most convenient to use the dual effective
theory in which the incompressible fluids are described
by the gauge fields. Furthermore, the dual effective
theory is much simpler than the Ginzburg-Landau
effective theory. In the following we are going to derive
the dual effective theories for the hierarchy FQH states.

First, let us review the dual effective theory for the
Laughlin state. Consider the anyon system in the mag-
netic field

Xo
=f,„„,„i (iso ie A o )P,„—„,„

1 t 2+ (canyon i i i ) Canyon &

2M
(63)

g(z, —z, )
"+ exp —1/4+~z, ~

(64)

The effective theory for such a state is given by (in its

where g,„„,„ is the field that describes anyons with the
fractional statistics 0. At the filling fraction
v=(8/ir+m) ', where m is an even integer, the anyon
ground state is given by the Laughlin wave function

dual form)

—+m a d~ie"'"+ (f „)0 1 g 1

4~ " g'

+ A B~„e"'
2m

+ Cs i(BO ia—o)Cs+ 4 (8; ia; —
) 4 (65)

where the bosonic field 4 describes the quasiparticles in
the Laughlin state. The effective theory (65) for the fer-
mion case (i.e., 8/n = 1) is first given in Ref. 10. The gen-
eralization to the anyon cases is straightforward using the
idea of the adiabatic continuation. The anyon number
current is given by

j„= 8 a~a"'1

2~
(66)

From the equation of motion 5X/5a~=0 we find the
filling fraction to be

joV=
e8

1

8/m+m
(67)

The quasiparticle can be shown to carry an electrical
charge q, =e/(8/yr+m) and a statistics
8q =~/(8/n. +m).

Now consider an electron system. In this case 8/~=1
and v= 1/(m +1). Let us increase the filling fraction by
creating the quasiparticles. In the mean-field theory the
quasiparticle gas behaves like bosons in the "magnetic"
field b =8;a e;, , as one can see froin the second term in
(65). When the boson density satisfies

1 b

p2 2' (6g)

N' (Go+ iao+ibo)4'+ @' (8, +ia, +ib, ) 4&'
2M

—V(4')+ e" b d„bi, (69)
p2 4~

where 4' describe the composite objects. The second
term in Eq. (65) is recovered after integrating out the b„
field. The Laughlin state of the bosons is described by
the mean-field vacuum 4'=const. The quasiparticles in

where pz is even, the bosons have a filling fraction 1/p2.
The ground state of the bosons can be again described by
a Laughlin state. The final electronic state that we ob-
tained is nothing but a second-level hierarchy FQH state
constructed by Haldane and Halperin.

The boson Laughlin state can be described by a con-
densate of the composite objects that are bound states of
the bosons and even number of units of flux. The binding
of the flux to the boson can be realized by introducing a
gauge field b„We write the .second term of Eq. (65) as
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@ti(d i—a }4+ 4 (i}, i—a;) 4. (70)

the new FQH state are the vortices in the 4' field and the
original bosons that are not bounded with the flux. These
"bare" bosons are described by

turn numbers of the quasiparticles. A similar calculation
can also be performed starting from the effective theory
(71) (see Sec. II).

The total filling fraction can be determined from the
equation of motion 5X/5a0=5X/5ao=0:

The total Lagrangian is given by
eB =p, b —b, b =p2b .

We find

(76)

X = —( I+m) a„i}„a»e" + (f„„)2

+ A 8~e""
2m

b

eB p&
P2

(77)

+4 i(BO —iao)4+ 4 (i3; ia—;) 41
Equation (74) can be written in a more compact form by
introducing (a,„,a2„)=(a„,a„):

+ 4' (do+iao+ibc)4'+ 4' (8;+ia;+ib, ) 4'
2M

1 pvX
Arr ar ~mr»&""'+

I,I' 4~ P 2~ P

where the matrix A has integral elements:

(78)

—V(4')+ e"" b„B b»
1 1

P2 4n-
(71) p) —1

—1 p2
(79)

Equation (71) is a mixture of the Ginzburg-Landau
theory and the dual theory.

The boson Laughlin state can also be described by a
dual effective theory of a form (65}:

a„d~»e"" + a„d~»e"" +4 i(BO iao)—4

Let us consider a generic quasiparticle that consists of
I,@ quasiparticles and 124 quasiparticles. Such a quasi-
particle carries I, units of the charge of the a„ field and
12 units of the charge of the a„ field. The statistics of
such a quasiparticle is given by

+ 4 (8; ia;) 4—. (72)
0=m.l A 'l= 1

(p2l, +p, 12+2l, l2 } .2 2

P2P &

(80)

This is just the dual form of the terms in square bracket
in Eq. (71). Note that in Eq. (72) a„ is treated as the
background field just as A„ in Eqs. (63) and (65). In Eq.
(72) a„describes the boson condensate and 4 describes
the new quasiparticles corresponding to the vortices in
the boson wave functions [i.e., the vortices in the 4' field
in Eq. (71)]. The current j„ofthe quasiparticles in the
original Laughlin state can be expressed in terms of a„:

(73)

The total effective theory has a form

The electric charge of the quasiparticle is

P2l, + l2
Q,i=eAIr'lr e

P2P i

(81)

p&

P2

(82)

These results are in full agreement with the results ob-
tained in the Sec. II.

The above construction can be easily generalized to the
level n hierarchy FQH states with the filling fraction

a d a»e"" + A B~»e""e
4 " 2

+ — a B~»e"" + a B~»e"'
4~ ~ ' 2~ ~ (74)

+4 i(BO iao)4+ — 4 (i}; ia;) 4, —(75}

where p, =m + 1 is an odd integer. The quasiparticle ex-
citations in the new state are described by the Lagrangian

X=@i(BO iao)@+ —4 (8; ia;)4—1

where p, is odd and p; ~; » are even. The effective theory
still has a form (74) but now I runs from 1 to n To ob-.
tain the form of the matrix A, let us assume that at level
n —1 the effective theory is given by Eq. (74) with ar„,
I =1, . . . , n —1, and A=A'" ". The quasiparticles car-
ry integer charges of the al„gauge fields. If we assume
that the nth-level hierarchy state is obtained by the "con-
densation" of the quasiparticles with the al„charge
lr ~r, „,, the level n effective theory will be given by
Eq. (74) with n gauge fields. The nth gauge field a„„
comes from the new condensate. The matrix A is given
by

where the field @describes the original quasiparticles (the
vortices in the electron wave function). In the following,
we use the dual theory (74) and (75) to calculate the quan-

A'"'= (83)
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0 1TIIAIJ /J g =eA1I /I (84)

In the hierarchy construction one always assumes that
the quasiparticles with the quantum numbers given by
Eq. (60) "condense. " Therefore for the hierarchy FQH
states A is given by

The new condensate gives rise to a new kind of quasipar-
ticles that carry the integer charge of the new gauge field

a„„. Hence a generic quasiparticle always carries integral
charges lr of the ar„ field. The electric charge and the
statistics of the quasiparticle are given by the following
general formulas:

tained in Ref. 12 after a proper field redefinition. This
further indicates that the states with v=

5 3 obtained by
the Jain construction are the same as those obtained by
the hierarchy construction. The same thing is true even
for more general FQH state with filling fraction
v=k/(pk+1). Using the transformation (57) we can
show that the dual effective theory for those Jain states
are identical to the dual effective theories for the corre-
sponding hierarchy states.

The quasiparticle propagator along the edge has the
following general form:

Arr'=pr &r, r' &r, r' —i &r, r'+ &
~ (85)

(86)

Now A ' is the 8 matrix we calculated in Sec. III. Once
again our results are in full agreement with those ob-
tained using Ginsburg-Landau theory in the previous
chapters.

From the above discussion we see that more general
hierarchy states can be obtained by assuming other quasi-
particles condense. The choice of the condensing quasi-
particle in the Haldane-Halperin hierarchy scheme is val-
id if the quasiparticle has the smallest energy gap. How-
ever, one cannot exclude the possibility (at least there are
no reliable arguments to exclude such possibility) that a
different type of quasiparticles has the smallest energy
gap. In this case, such quasiparticles shall condense and
we will obtain a new hierarchy state. It is straightfor-
ward to find filling fractions and the topological orders in
this new hierarchy state using the above general formu-
las.

In Ref. 12 we have shown that each independent gauge
field in the dual effective theory gives rise to one branch
of the edge excitations. Hence the nth-level hierarchy
state will have n branches of the edge excitations. The
signs of the edge velocities are given by the signs of the
eigen values of the matrix A. Let us consider the
v=(p, —1/pz) ' FQH state in more detail. The two ei-
genvalues of Eq. (79) have the same sign if pz & 0. In this
case the edge states have two branches moving in the
same direction. This is consistent with the picture that
the FQH states with pz & 0 are formed through the
quasielectron condensation. The quasielectrons and the
electrons have the same charges. The wave functions for
quasielectrons are also holomorphic, like the electron
wave function. Thus the quasielectron condensate and
the electron condensate give rise to the edge velocities
with the same sign. When pz &0, two eigenvalues have
the opposite sign and the two edge branches will move in
opposite directions. This is also consistent with the fact
that the FQH states with pz(0 are formed by the
quasihole condensate. The wave function for the
quasiholes is antiholomorphic, which gives rise to the op-
posite sign of the edge velocity. In particular v= —', state

(p, =3, pz =2) has two edge branches with the same sign
of the edge velocities. While the v= 1 —1/n state (p, = 1,
pz =1 n) has two edg—e branches with the opposite edge
velocities. These results agree with those obtained in Ref.
11, 28, and 12. Actually one can show that the effective
theories for these FQH states are identical to those ob-

where ua; (uL; ) are the edge velocities of the right- (left-)
moving excitations. The exponent a; and c7; are the
quadratic functions of the quasiparticle charges. Let us
call h =

—,'g; a; the right dimension of the quasiparticle
operator and h =

—,'g; a; the left dimension of the quasi-

particle operator. We find that 2h —2h is related to the
quasiparticle statistics

2h —2h =—,0
7T

(87)

where 9 is given by the Eq. (51). Therefore 2h —2h is
universal and independent of the electron interactions
and edge potentials. From Eq. (87) and the fact that h

and h are quadratic functions of the quasiparticle
charges, we find that

2h —2h = lr AIJ'IJ (88)

1 1
G„,(x, t) ~

(x+uLt)"

where h and h satisfy

2h 2'= (pzl, +—p, /z+2l, lz)
1

pap'i

=pz~i —2(pei —1)1i+pi(pzpi —1) .

(89)

(90)

When pz & 0 we further have h =0. For pz & 0, ~2h —2A'~

has a minimum near I& =p& ..

I ) =p )
—1 2h —2h =p~ —2+p ),

I, =p~'. 2h —2h =p&,

I& =p&+1: 2h 2h =pz+2+p, .

(91)

This agrees with the results obtained in Ref. 11.
For the case of the general hierarchical state obtained

for the quasiparticle with the ar„charge lr. If the edge
excitations contain only right (or left) movers the Eq. (88)
completely determines the total dimension of the quasi-
particle operator on the edge (which is given by h +h).

Let us consider the pz/(pzp, —1) states as the exam-
ple. In this case the charges of the quasiparticles are
given by integers (1, , lz) satisfying pzl, +lz=pzpi
These quasiparticles correspond to electrons. Thus the
electron propagator on the edge has a form
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Thus the quasiparticle propagator on the edge has a form
' 5/3

(93)
x —vt

When the chemical potentials on the two islands are
different, the quasiparticle can tunnel from one island to
the other. The differential conductance is expected to
have a form

Ir2h +2h —1 —Ir2/3
V

(94)

Another quantum number that reflects the topological
orders in the FQH states is the ground-state degeneracy
on the torus. ' ' From the topological theory, one can
show that the ground-state degeneracy nG of the theory
(78) is equal to the determinant of the matrix A. It is
easy to prove that

nG=D,
where D is the denominator of the filling fraction.

V. DISCUSSIONS

In this paper we construct the effective theories for the
hierarchy FQH states. Using the effective theories we
evaluate the charge and the statistics of the quasiparticles
in the hierarchy FQH states. The quasiparticles for the
nth-level hierarchical FQH state with a filling fraction

through the condensation of the quasiparticles (all p; )0)
we can also prove that 2h has a minimum value p&. This
is achieved for the following quantum numbers of the
electron state: I, =p

& I2 = 1 all other I; =0.
In Ref. 11 we have discussed how to experimentally

measure the exponent (2h+2h ) in the electron propaga-
tor on the edge. In the following we will discuss how to
measure the exponent in the quasiparticle propagator on
the edge. We will concentrate on the following example.
On a background of the v= —,

' FQH state there are two is-

lands in which the electrons form a v= —', FQH state. The
—,
' FQH state in each island can be regarded as formed by
the anyon Laughlin state on the background of the

3

FQH state. The anyons are just the quasiparticles in the
—,
' FQH state. There is one branch of the edge excitations
on the edge of each island. The quasiparticle wave func-
tion is given by

(92)

(12) are labeled by n integers l„.. . , 1„. The charges and
statistics of the quasiparticles in such states are given by
Eqs. (50) and (52).

We showed that at the filling fractions v=k/(kp+I)
the Jain states and the hierarchy states have the same to-
pological order. Moreover, the dual theories obtained for
those states in the hierarchy and the Jain schemes are
identical after a field redefinition. This result is quite re-
markable since the effective theory and the microscopic
wave functions obtained from these two constructions
have very different form. Hence these Jain states are
identical to the hierarchy states. Note, however, that
there exist Jain states that cannot be obtained using the
hierarchy scheme. The simplest examples are the states
with the filling fractions —,': v= 1/(1+1/2+1/2) and —', :
v= 1/ —,'+ —,'+ —,'). Also there are hierarchical states that
cannot be obtained from the Jain construction. The sim-
plest example is the level-two state with a filling fraction
4. We conclude that the set of Jain states has a nonzero
overlap with the set of hierarchical states. This overlap
includes all Jain states obtained in Ref. 7 by binding flux
to fermions. The latter states have filling fractions
k/(kp+1). However, there exist states that can be ob-
tained only from one of the two schemes, either the Jain
or the Halperin-Haldane hierarchical scheme.

We discuss the relation between the effective theories
and the microscopic wave functions. Our results are con-
sistent with the known results derived from the micro-
scopic theory. We also study the edge excitations in the
hierarchy FQH states. The number of the edge branches
is found to be equal to the level of the hierarchy state.
We also consider the quasiparticle and the electron tun-
neling in the hierarchical edge states as the possible way
to explore the properties of these states. The I-V curve
for the quasiparticle tunneling is given by Eq. (94).

Combining the results in Ref. 12 and in this paper, we
gain some basic understanding about the structures in the
high-level FQH states. The universal properties in the
bulk and on the edge are closely related. Our results give
rise to physical and sometimes practical ways to charac-
terize the different FQH states. These results bring us
closer to the complete classification of all possible QH
states.
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