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We propose effective theories that describe the fractional quantum Hall effect (FQHE) states for
the generic filling fractions v=1/3,, (1/m,) where m, are integers. The theories describe the mi-
croscopic FQHE states proposed by Jain. We calculate charges and statistics of quasiparticles in
these states. The structure of the edge states is derived directly from the underlying effective theory
in the bulk. Our results are shown to be consistent with those obtained from the microscopic

theory.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) at general
filling factor v (v#1/1), is explained by the hierarchy
schemes (see Refs. 1-6). There are many different hierar-
chy schemes. One may wonder whether the different
hierarchy schemes lead to the same FQH states or not. If
different hierarchy schemes lead to different FQH states,
then we should determine which of the FQHE states con-
structed thus far are actually realized in nature.

As it is pointed out in Refs. 7 and 8, the filling fraction
is not sufficient to characterize the FQH states. There
can be many different FQH states for a given filling fac-
tor. The FQH states contain some universal internal
structures which are independent of arbitrary perturba-
tions. Such universal internal structures are called the to-
pological orders in the FQH states. Characterizations of
the topological orders are discussed in Refs. 7 and 8 using
the ground-state degeneracy and properties of the edge
states. However, complete classification of the topologi-
cal structure of the generic FQH states remains an un-
solved problem. Different hierarchy schemes may give
rise to FQH states with different topological orders.
Therefore, it is very important to find some physical
properties of the FQH states which are related to their
internal topological structures and can be tested experi-
mentally. An important characteristic of the topological
orders is the spectrum of the fractional statistics and frac-
tional charges of the quasiparticles. The spectrum of the
quantum numbers of the quasiparticles might completely
classify the topological orders in the FQH states.

Quite recently an effective Ginsburg-Landau (GL) ap-
proach to the FQHE was proposed in Refs. 9-12 as a
way to build the mean theories of the FQHE. This ap-
proach has been proved to be a useful tool in understand-
ing the qualitative properties of the FQHE at filling frac-
tions v=1/1.1"12

In this paper we construct the effective theories for the
FQH states at generic filling fractions. We show that
schemes proposed recently by Jain have a natural
description in terms of the effective Ginsburg-Landau ap-
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proach. The relation between our theories and micro-
scopic construction of Jain’s states are discussed. We
also work out an effective theory that describes states
that do not belong to the Jain scheme. Using the effective
theories, we can easily calculate charges and statistics of
the quasiparticles. These quantities have not been deter-
mined from microscopic considerations as yet. We also
determine the structure of the edge states (Refs. 8 and
13-19) directly from the effective theory in the bulk of
the sample. The dynamics of edge excitations is deter-
mined by the effective theory in the bulk of the sample up
to the choice of their velocities.

The paper is arranged as follows. In Sec. II we de-
scribe the effective theory based on the ‘“composite fer-
mions” picture proposed by Jain.> We derive the charge
and statistics of quasiparticles in these states. In Sec. III
we consider a general effective theory based on another
hierarchical scheme proposed by Jain. This scheme per-
mits one to obtain naturally the general filling fractions
v=1/3,(1/m;. In Sec. IV we consider the dual
description of the effective theory proposed in Sec. III.
The results obtained in Sec. III are rederived and
confirmed. In Sec. V we give a new derivation of the dy-
namics of edge excitations. We show that the topological
Chern-Simons theory, which describes FQHE states in
the bulk of the sample, naturally gives rise to the edge ex-
citations. The propagator of the edge excitations has
scaling properties. In Sec. VI we discuss the results. We
also give an example of an effective theory that cannot be
included in the hierarchical schemes of Refs. 3 and 4.

II. COMPOSITE FERMIONS
IN THE GINSBURG-LANDAU APPROACH

In this section we shall construct an effective theory for
the FQH states with filling fraction v=m /(mp+1),
where p is an even integer. The construction is based on
the hierarchy scheme proposed by Jain.?

Let us recall the basic ideas of this construction. We
start from a 2D electron gas in the presence of a trans-
verse magnetic field with a filling fraction
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v=m /(mp +1). We consider a ‘“composite’’ object that
consists of an electron and a flux tube with p units of flux
(p is an even number). The resulting object displays a
Fermi statistics because p is even. The 2D gas of such
‘“composite” fermions detects an effective “magnetic”
field B—p¢ym and an integer filling fraction v=m. In
this way the v=m /(mp + 1) FQH state of electrons is re-
lated to the v=m integral quantum Hall (IQH) state of
the composite objects.

Let us now show that this construction can be de-
scribed naturally in the mean-field approach. We start
from the Lagrangian for the electrons in the magnetic
field given by

— gt : 1+ : 2
J— +_._ J—
Lo=¢"i(3g—ie Ay 2M1//(8, ied,)Y , (1)

where 9 is the anticommuting variables that describe the
electrons. The density of the electrons is given by

n, =y =—"—u = 2)

Let us bind the p units of the flux to the electrons. The
binding of the flux to the electrons can be realized in the
Lagrangian language by introducing a “fictitious” U(1)
gauge field a, with a Chern-Simons term. The effective
Lagrangian for the composite object is given by

Ly=4"T1(d,+iay—ie Ay

1

+— om 11/’*(8 +ia; —ied; W +;4—a d a,\e’”}‘ s

(3)

where i is the fermionic field for the composite object.
Using the similar arguments, similar to those given in
Refs. 9-12, we find that Eq. (3) can be recovered from
Eq. (5) by integrating out the a, field. However, here we
will regard a,, as a slow varying field. The vacuum expec-
tation value of b=(d,a,—03,a,) is determined by the
electron density n,. From the equation of motion
8.L/8a,=0, we find that

b=(b) . 4)

field:

—b+eB= ——an+Mne he
m
=—;;nehc=v—l*nehc . (5)

Therefore, the effective filling factor v* for the ¢ fer-
mions (i.e., the composite objects) is m. This agrees with
the result in Ref. 3. In the mean-field theory, i.e., ignor-
ing the fluctuations of b, we find that the ground state of
the ¢’ fermions in Eq. (5) is an integral quantum Hall
(IQH) state with the first m Landau levels filled by the ¢’
particles.

The GL effective theory of the IQH state with the filled
first Landau level is given by’ %’
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L=i¢\(dy+ia,,—iedy)d,+ ¢ (3, +ia, —ie A,)*,

+ 4‘ a,,9,a,,€“*—V(|g]) . (©6)
A hole in the first Landau level corresponds to a vortex in
the ¢, field. In the IQH state with m filled Landau levels,
the fermions in the different Landau levels are indepen-
dent. Therefore, the effective theory for the v=m IQH
state is given by

iqﬁ;(ao—l-ia,o—ieAO)(/),

1 + . .
+5H¢,(8,+za,,-—zeA,)zd>,

+ o dane = Vid, D) | @)
Because in the mean-field theory the ground state of the
Y’ particle is the v=m IQH state, we may replace the
first two terms in Eq. (5) with Eq. (9), with e4, in Eq. (9)
replaced by a, +eA,. The final effective theory of the
FQH is

m

Lr=3

I=1

i3y +ia,tiay,—iedy)d,

1 .+ . . .
+W¢,(a, +iay; +ia;—ie A,)’d,

1
+“4;(11“a alke !¢I|

1 A

+;4 a,d,a, EF . (8)
Let us note that in this construction a number of
different bosonic fields is equal to a number of filled Lan-
dau levels. The physical picture is that the electrons in
each Landau level form an independent incompressible
state. This state is described as a “‘condensate” of bosons.
The quasiparticles are vortices in the boson field, and all
have a finite gap. In the following we will study the
ground state of the effective theory (8). From the equa-

tions of motion 8. ,/8a,=8.L,/8a;,=0, we find that

L
np=o o I=L...om,
. L b B 9
-+ 06 _ _ m eb
Iglnlﬁp he e mp+1 hc’

where b, =8,a; —93,a;,, and n; = |¢,|%.
The potential energy of the theory (8) is minimized at

(¢,;)=const , (10)
and
—b,—b+eB=0. an

The Egs. (9) and (11) can be satisfied if
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n =7 :_l__n
1 11— m e’
~_ 1
b,=b,=—n,hc , (12)
m
b=b=pn,hc .

The Egs. (10) and (12) describe the mean-field ground
state of the v=m /(mp + 1) FQH state.

The effective theory (10) can be used to determine the
quantum numbers of the quasiparticles. The quasiparti-
cle excitations correspond to the vortices in the ¢, fields.
Consider the excitations that consist of vortices in the ¢;
field with integer winding numbers /;. The excitation
carries an additional flux of a;, and a, gauge field, given
by

(I)[:fdzx(bl_gl) y

_ (13)
o= [d’x(b—b) .
The flux ®; and ® should satisfy
D, +d=/hc . (14)

The excitation also carries the charges of the gauge fields
aj, and a,. From Eq. (9) we find those charge to be

U=
” L (15)
TR ke
where
q1=fd2x(n,—ﬁ1) ,
(16)

q=fd2x(n —n,).

Equations (14) and (15) imply that the charges satisfy a
system of linear equations:

J
Solving Eq. (17), we obtain
= |}, ——P < I,
qr [1 mp+1,§::1 1}
1 m

q= >0

mp +1 /=,

Note that ge is also the electric charge carried by the ex-
citation. We find that the quasiparticle excitations in the
FQH state are labeled by m integers [;, I=1,...,m.
The electric charge of the excitations is given by
[(Z7=11;)/(mp +1)]e. The statistics of the excitation
are given by

_ 1 “
0= 2%c q¢+[§1q1¢1 T
_ . m
1 —P—pmﬂ ] Sulr (19)
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We see that for the FQH states described by Eq. (8) the
statistics of the quasiparticles only depend on their
charges.

The fundamental excitations are characterized by the
integers /;=1, and /,=0 for J#I. The charges and
statistics of those excitations are given by

1

= 1_
mp +1’

mp +1

q. (20)

Note that for the Laughlin states (m =1) we recover the
known results:
1 1

= s 9: s
b+l p+17T (21

q
thus proving the self-consistency of our approach.

III. DECOMPOSITION OF THE FERMION
AND HIERARCHICAL FQHE

Let us now describe a more general construction for
the FQHE states also proposed by Jain in Ref. 4. This
scheme permits one to obtain general filling fractions:

1

y=—g——— . (22)

1=1

Let us briefly review the basic construction. We begin by
dividing an electron into particles of P distinct species la-
beled by I=1,...,P. We solve the problem for each of
these fictitious particles and in the end enforce the con-
straint that the coordinates of the fictitious particles be-
longing to the same electron are equal, i.e., z;; =z; for all
I and j. Here index j labels the real electrons in the sam-
ple, and index I labels the fictitious particles into which
we divided an electron.

In order to solve the problem, the following physically
plausible assumption is made. An incompressible elec-
tron state is obtained if the particles of each of the ficti-
tious species are in the incompressible state. To make use
of this assumption we require the quasiparticles to satisfy
the following conditions. (1) The particles of all species
must be fermions since in this case we can use their fer-
mionic statistics to produce an incompressible state. (2)
Each of the fictitious particles sees the physical magnetic
field. (3) the densities of all species must be equal to the
electron density. (4) A sum of electric charges of the par-
ticles of different species must be equal to the charge of
the electron e.

In the Jain construction, each ground state is described
by a sequence of numbers (m,...,m;). If we choose
the charges of the fictitious fermions to be e; =v/m;, we
find the filling fraction of the Ith fictitious fermions to be
m;. Therefore, m; can be regarded as the number of
Landau levels filled by the fictitious particles of the Ith
type. From the equation 3 ; e; =1, we see that the filling
fraction is then given by the formula (22).

Let us now describe this theory in the mean-field ap-
proach. We have P species of the fictitious fermions.
Each of them has a filling fraction m; and a density equal
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to the electron density. This determines the charge of the
fictitious fermions to be e; =(1/m;)/3 ;(1/m;). We can
introduce a set of independent bosonic fields ¢y,
I=1,...,my, to describe the IQH state of the Ith ficti-
tious particle. These fields are the “‘order parameters” of
the incompressible QH states at each filled Landau level.
Here index I labels the species, and index / labels different
Landau levels.

The incompressible QH state is described by the con-
densates of these bosonic fields. Each of these fields in-
teracts with a slowly varying gauge field a; and has a
fractional electric charge e;.

We also have to impose a constraint that the densities
and the currents of all species are equal. This is done by
introducing an auxiliary gauge field a;,. The fields a,
have no Chern-Simons term and are simply the Lagrange
multipliers. But the fields a,; are not all independent, be-
cause we only require that the densities of the different
species are equal to each other. This only gives rise to
P —1 constraints instead of P constraints. Actually, a;,
satisfies the condition

S a;,=0. (23)
1

From these considerations, we can write the following
effective theory:

L= iy (dy+iay+iayy—ie; Agldy
Il
1 + . . . 2
+2 ——¢ (0, tiay; tiay, —ie; A) ¢y,
”2M 1 1

1
+3 ——€,.,a;,0,a, - 24
% 4 eyxlally agin (24)

Let us first consider the ground states of our theory.
In the same way as it was done in Sec. II, we get the fol-
lowing densities of the bosonic condensates n;:

ny= I;I—Ié , (25)

n=yn;=n,=vB . (26)
Minimizing the potential energy, we obtain

(¢, ) =const , 27

—b;—b;,+e;B=0, (28)

where by =€,d,ay,, and n;=|é,|*. In the ground state,
the values of the Lagrange multipliers are zero: b;=0.
Hence we obtain

mleI:'V (29)

for the filling fraction. Note that there is no summation
over I in Eq. (29). Using the condition ¥ ; e, =e, we im-
mediately get Eq. (22) for the filling fraction v.

Now let us consider the low-lying excitations of this
ground state. They are described by the holes in the filled
Landau levels or by the excited electrons in empty Lan-
dau levels. A hole in the Landau level / of the fictitious
particles of Ith type corresponds to a vortex in ¢, field.
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Let us consider the excitations consisting of vortices in
the ¢, fields with winding numbers M,;. We have

;= [dx(b,—by), (30)

@, = [dxb, . 31)
The fluxes ¢, and P, satisfy the equations

¢+, =M hc . (32)

From the equations of motion (25)-(28), we can deter-
mine the charges carried by these excitations relative to
the gauge fields a;; and q;:

q,,=—'—=fd2x(n,,—ﬁ1,) , 33)

0=¢,=3 q,= [d*(n,—n,) . (34)
!

Equation (34) means that in the quasiparticle the densi-
ties of the fictitious fermions for different species are all
the same. The quasiparticle in the theory receives the
contributions from all the fictitious fermions.

The constraint (23) implies that

S @,=0. (35)
I

Using Eqgs. (32)-(35), we easily get the expression for the
densities of the fictitious fermions in the quasiparticle:

=vy —, (36)

where N; =3, M. Note that Q depends only on N,, but
not on each of M, separately. Using Eq. (36), we can
easily find ®;, and q;:

v NN
@,= M+ =L ——L ke, (37)
mp=, my my
b N N
qp=—=My+--3 —-—— . (38)

“he

M, 5 m, my

It is easy to see that the statistics of excitations associated
with each of the species are given by

1
0’:2hc 414)1‘*“2[,‘11/‘1)11
2 vN N} 22
e e el 57 B Ay
mj mj 1 my my
(39)

where C=3;(N,;/m;). The full statistics of the quasi-
particle are determined by

T

e s N
0=36,=|IM—3—+vC
I 1l 1 My

1
=— [ (40)
2 % 9an®n

Note that as far as statistics are concerned, we are in-
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terested only in & mod27. Hence we can rewrite Eq. (40)
in the simpler form:

6= |S N} 1———1— +vC? |7 . (41)
I my

Note that the statistics also depend only on the numbers
N;, not on M, separately. We would like to stress that it
makes no sense to regard the quasiparticle as the one
made of the single type of the fictitious fermions. It fol-
lows from Eq. (36) that even if N; is nonzero only for one
particular I, the densities of the fictitious fermions of all
other species in the quasiparticle are also nonzero and
equal to g;. The physical quasiparticles are labeled by
numbers {M}. Note that sometimes two quasiparticles
labeled by different M;; may have the same statistics and
charge, but are still distinct from each other. The vortex
in the ¢, field causes polarization in the Landau levels of
other species due to the interaction with the auxiliary
field a;,. The electric charge carried by quasiparticles is
equal to

N,
.= 9,=Q=vy — . 42)
I 1 My

Let us consider several important types of quasiparticle
excitations. First, we consider the case N;=1 and N;=0
for J#1I. We find that

™ q,= mLe . 43)
I

v
o= |5 +1——

m, m[

This result looks different from the result of Jain in Ref.
4, where it was argued that 6=(v/m})m for the excita-
tions with the charge given by Eq. (43). Note that for the
case of the integer quantum Hall effect states
(v=m;=1/(1/m)), the number of species is equal to
one. In this case we obtain

0=m, gq,=e . (44)

These excitations correspond to electrons and have Fermi
statistics.

Another important case is when all N;=1. In this case
the quasiparticle contains one fictitious fermion from
each of the species. The charge and the statistics of such
an excitation are found to be

q,=e, O0=1. (45)

As expected, these are just the quantum numbers of an
electron, and the quasiparticle corresponds to the original
electrons.

Let us now check the self-consistency of our approach
and its connection with the microscopic wave functions
proposed by Jain. The general wave function that corre-
sp(znds to the state with the filling fraction (22) is given
by

W(z1,220 -5 2,) =1 X (21 (46)
I

where Xm, are the wave functions of the fictitious parti-
cles I that fill m; Landau levels (LL’s), and we put z;, =z,
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for all I in the final expressions. Note that a product
I17=1 x; corresponds to the Laughlin wave functions.

Let us construct quasiparticles in the Jain wave func-
tions. There are many different ways to construct the
same quasiparticle. A quasiparticle can be constructed
by putting s holes in the LL of the I,th fictitious fer-

mions, one hole in each LL. The corresponding wave
function of the I,th fictitious fermion is given by

anll(zli)zrll(le,_zo)Xm,l(lei) . 47

The total electron wave function for such a quasiparticle
is given by
Viz)= | TT Xm,(21)

X, (21 Dz =2 (48)
[::11 1 1

The same quasiparticle can be constructed by creating
m;, holes in the LL’s of the I,th type of fictitious fer-

mions (again one hole in each LL). From Egs. (47) and
(48) one easily sees that these two constructions lead to
the identical electron wave functions and hence identical
quasiparticle excitations. In the effective theory the first
construction leads to the quasiparticle labeled by the in-
tegers

(49)
M;=0, I+#I, .
The second construction leads to
M’zl =1,
(50)
M,=0, I#I, .

From the above considerations, we see that the quasipar-
ticles in the effective theory labeled by Egs. (49) and (50)
must be identical.

Using Egs. (36) and (40), we immediately see that the
charge and statistics of these excitations are the same and
are given by

qu=v, 0=(m; —m; +v)=vm, i=12. (51)

Therefore, our results are consistent with the microscopic
theory. Moreover, the quasiparticle with the charge
q.;=*v can also be obtained from the microscopic wave
function by adiabatically turning on a unit magnetic flux.
The statistics of such a quasiparticle is §=vm.*?' This
further confirms the self-consistency of our approach.

Let us now compare the scheme discussed in this sec-
tion to the “composite” fermion approach that was con-
sidered in Sec. II. The two effective theories given by
Egs. (8) and (24) were constructed using different physical
ideas and have different Lagrangians. Nevertheless, both
theories have the ground states described by the same
wave functions. Hence they must correspond to two
different ways of describing the same FQHE states.

Let us consider the theory (24) in the case of the filling
fraction:
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i=1
Now, m, in (24) are given by m;=1, I=1,...,p, and

m, =m. The most general excitations of thlS theory
are labeled by integers M,.,; and M, =N,
(I=1,...,p). The charges and statistics of these excita-

tions are equal to

q=

[2 +1’,+m§N,] )

mp+1

0=

2
T | [Z Mo N

The spectrum of the charges and statistics given by Eq.
(53) coincide with those given by Egs. (8) and (19). The
quasiparticles labeled by L; in the “composite fermion”

approach correspond to the quasiparticles with
M, ., =L, and all N;=0 in this framework. Note that

the integer labels N; are redundant in this particular
case. The quasiparticles labeled by M, ;=L;, N;=0,
and M, ,,;=L,—3;n;, N;=ny, are actually equivalent
(i.e., they have the same electron wave function).

We conclude that both theories (8) and (24) describe
the same ground state despite their different appearances.
The spectrum of low-lying excitations of the first theory
is identical to that of the second theory. Both theories
are actually equivalent as long as the redundancy of N, is
taken into account.

It would be very interesting to check both numerically
and experimentally whether the excitation spectrum dis-
cussed in this section can or cannot be realized in nature.

IV. DUAL EFFECTIVE THEORY
OF THE HIERARCHY FQH STATES

In Sec. III we have studied the fractional statistics of
the quasiparticles in the hierarchical FQH states using
the effective GL theory. As pointed out in Refs. 7 and
22, the GL theory has a dual form. In this section we are
going to rederive the previous results using the dual
theory. Some physical properties of the FQH states are
more transparent in the latter approach.

As before, we decompose electrons into P kinds of ficti-
tious fermions, each with electric charge e;, =1, ..., P.
The fictitious fermions are described by the Lagrangian

L= |¢i(3y+ie; o)y + -Z%n—¢f(ai+ie,Ai)2¢,
1

(54)

The fictitious fermions all have the same density, which is
the density of the electrons. For the electron filling frac-

tion v=(3; 1/m;) ", if we choose
elz_"_ , (55)
my

the Ith fictitious fermions will have a filling fraction
v;=m;. The ground state of ¥, is described by |m;,|
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filled Landau levels. Here we allow m; to be negative in-
tegers.
The effective theory (in the dual form) for the charge
* fermions with m filled Landau levels is studied in Refs.
7 and 20. the Lagrangian of this theory has the form

e *
L= 2 a;,0,a,,€"" &
=1 le |
f/,w A p 0,26
+3 | @fi(8y+ia)®,+ 21n ®/(3, +ia, 2D,
=1
(56)
The fermion number current is given by
=2 'zl;avaue“‘* (57

=1

in the effective theory. @, is a bosonic field that describes
the hole excitations in the /th Landau level. Because of
the Chern-Simons term, the hole described by ®; has fer-
mionic statistics even though ®; is a bosonic field. The
chemical potentials for ®,’s are such that it costs finite
energy to excite a hole.

According to the above discussion, we see that the
effective theory for the fictitious fermions has a form as
follows:

1 €
417'!

1 anuavamf

uvA

fIlpv A avaﬂ}\e (58)

The hole excitations for the Ith fictitious fermion are de-
scribed by

Im |

L=3

=1

. . 1 L
¢},l(ao+la”0)¢1, + E‘D}[(al +l(111[ )2(1)”

(59)

Equations (58) and (59) are just the effective theory of the
fictitious fermions. To obtain the effective theory of the
electrons, we must recombine the fictitious fermions into
electrons. This is achieved by imposing the constraint
that the currents of the fictitious fermions are equal to
each other, which in turn is equal to the electron current:

Im,|

=% L 3g, =) =j 60)
]Iy 1§1 27 VA€ .]J;L .]ey (

Such a constraint can be easily realized in the effective
theory by requiring that

[m | Im |

> a;=2 ay - (61)

=1 =1

Therefore not all a;, are independent. There are only



1+3, (Im;|—1) independent gauge fields. From Ref. 8
we see that the number of the independent gauge fields
happens to be the number of the branches of edge excita-
tion. Each independent gauge field corresponds to one
branch of the edge excitations. In Sec. V we will derive
those edge excitations directly from the effective theory
(58).

The electrons are bound states of the fictitious fer-
mions. The electron excitations are described by field
@, =], Py, where 1<1I,<|m;|. The Lagrangian for

the electron excitations is given by

P
dt+i 3 ano
1=1

L= P,

2

P
a,+12 a][,‘ b

+-L o
2m I=1

.. (62)

It is clear that the gauge fields generated by ®, automati-
cally satisfy the constraint (61).

Now we are ready to ask what the allowed quasiparti-
cle excitations are in the FQH state. In general, the
quasiparticle excitations are described by the following
effective Lagrangian:

LZCDZi [ao+i2 a0 ]<I>q
Tl

1+
+-—o!

2
D .
2m (63)

q

[alh"’iz qnay;
T

The central issue is to determine the allowed charges ¢q;.
First, the charges should satisfy

Im, |

> ai=q, (64)
I=1

where g is a constant independent of the I. Equation (64)
ensures that the gauge fields generated by @, satisfy the
constraint (61). Second, and more important, the phases
induced by moving an electron around the quasiparticle
must be multiples of 27. Note that because of the
Chern-Simons term, the charges g, induce flux of the
gauge fields which causes a nonzero phase as the electron
goes around the quasiparticle. We find that in addition to
Eq. (64) the charges g;; should also satisfy the condition

er .
27, T4n, =int - (65)
1 1€

Notice that there are many different electron operators
(similar to the electron operators in different Landau lev-
els in the IQH states). This corresponds to the different
choices of /;. Therefore, (65) should be satisfied for arbi-
trary choices of /;. The condition (65) has a simple physi-
cal interpretation in the microscopic theory. Equation
(64) just implies that, after acting by the quasiparticle
operator on the ground state, the resulting electron wave
function is single valued. For example, we can act with
the operator []; (z; —z;)“ on a Laughlin wave function of
a state with a filling fraction 1/m. This operation creates
a quasiparticle of charge a/m. The single-valuedness of
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the electron wave function requires a to be an integer. In
this case the quasiparticle charge is quantized as multi-
plies of 1/m. The quantization condition on a precisely
corresponds to the quantization condition given by Eq.
(65).

In the following we will solve Eqgs. (64) and (65). Equa-
tion (65) implies that g, —gq, =int. Therefore, taking
into account (64), we may write

1 q
by=M,;——3S M, +——, (66)
1l 1l |m1|§ n |m1|
where M, are integers. Substituting Eq. (66) into Eq.
(65), we find that g must satisfy the equation

g=v (67)

My
M0+2~—

n mr

where M, is an integer. Therefore, the quasiparticles are
labeled by the integers M, and M;;. The statistics of the
quasiparticle can be obtained from the charge g;:

0= 77'2 1 ‘ qll
e
q’ 2 1
—+>N — , 68
v 21: ! my " (68)
where N; =3, M;;. The electric charge of the quasiparti-

cle is given by g. Equations (67) and (68) completely
agree with the results obtained in Sec. III. (Note that M|,
is redundant.)

Let us conisder a simple example. We choose m; =1,
I=1,...,p(piseven), and m, ;= —m. The filling frac-
tions for such states are m /(mp —1). They included %

2 2 3 31 etc. The effective action takes a form as fol-
7 T1°°5 ll
lows:
- = 1 puvA
;-L_ < a,'ua‘,a”ﬁ +;Auava”_6
“ vA
2 al/,tava/ A€
_ - 1 HvA p,\)
= 2 Au a;,0,a,€""" + 2 A 1 0,a12€
L= 4 =1
(69)

where the matrix A has integral elements, which are
given by

=08y —p . (70)

Note that in Eq. (69) we have already solved the con-
straint (61). The fields g,, in Eq. (69) are all independent.
The spectrum of the quantum numbers of the quasiparti-
cles is given by

N
mp—1’

g=

1+—2 — |#N2. (71)

mp — 1

In particular, for the v=2
is given by

FQH state (p =2, m =2), A
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-1 =2

A=y

’

which has eigenvalues 1 and —3. After properly choos-
ing the gauge fields, the effective theory of the v=2 FQH
state takes the following simple form:

1 A

Hv.
alyaval)\e

3 . V2
o —Eazyavaue“ A4 ?auavaz,\e’“'* .

(72)

The charge ¢ =1 quasiparticle has a statistics 6=,
The above effective action is consistent with the picture
that the v=2 FQH state can be regarded as a v=1 IQH
state plus a v= — 1 FQH state (the minus sign in v means
the opposite signs of the charges).

V. EDGE STATES

In the previous sections we have considered the
effective theory of the fractional quantum Hall states in
the bulk of the sample. Let us now consider the excita-
tions of this theory on the edge.

The QH states, as incompressible states, are very
different from another kind of incompressible states—
band insulators. The excitations in the band insulators
always have finite energy gaps, even when they are on the
boundaries of the insulators. But in the QH states, the
excitations on the edges are always gapless because of the
requirement of the gauge invariance.'»!'> These gapless
edge excitations play a very important role in the under-
standing of many low-energy properties of the QH
states.!>1416-18.23 The dynamical properties of the edge
excitations are found to be described by the chiral Kac-
Moody algebra (which is “one half” of the Tomonaga
model).!>!° The electrons on the edge are strongly corre-
lated and form a new kind of states—chiral Luttinger
liquid.!® In this section we will derive the low-energy
effective theory of the edge excitations directly form the
bulk effective action of the FQH states. Our derivation
demonstrates that the edge excitations are closely related
to the bulk properties (or, more precisely, to the topologi-
cal orders) in the FQH states. In addition, to recover the
results in Refs. 8, 15, 18, and 19, we show that the FQH
states in general contain both left-moving and right-
moving edge excitations. In particular, the v=2 FQH
state have one branch of left movers and one branch of
right movers. We also discuss the correlation functions
of the quasiparticles on the edges.

We will start from the dual form of the effective
theory. This form is defined by Eqgs. (58) and (61). In this
case, the vortices (quasiparticles) of the theory are in
one-to-one correspondence to the Wilson lines of the
Chern-Simons theory. These Wilson lines represent
world lines of the quasiparticles of the effective theory
considered above. Thus our effective GL theory (24) is
equivalent to the topological Chern-Simons theory, and
quasiparticles are flux sources in this theory.’

Let us now consider the simplest case of the filling frac-
tion v=1/q. Such a FQH state is described by U(1)
Chern-Simons theory with the following action:’
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-9 vA 13
=L [a,8,a,6d (73)

[see Eq. (69) with m =1]. This Chern-Simons theory is
called to have level q. The statistics of the quasiparticles
are m/q. Suppose that our sample has a boundary. For
simplicity we shall assume that the boundary is the x axis
and the sample is the lower half-plane. The Chern-
Simons action is not invariant under gauge transforma-
tions due to the boundary effects. We must choose
boundary conditions for our gauge fields that cancel this
noninvariance. For the Chern-Simons theory with the
action given by Eq. (73), we obtain?* an effective confor-
mal theory on the edge with the action

S=Scon= [ 0,68,6dx dr . (74)

Here a, =9;¢ (i =t,x). This result is derived by choosing
the gauge condition a;,=0 on the boundary. This ap-
proach, however, has a setback. It is easy to see that a
Hamiltonian associated with the action (74) is zero and
that the boundary excitations described by Eq. (74) have
no dynamics (i.e., their velocity is zero). Hence this ac-
tion cannot be used to describe any physical edge excita-
tions connected with the FQHE. The edge excitations in
the FQH states always have finite velocities.

The appearance of finite velocities and of nontrivial
dynamical of edge excitations is a boundary effect. The
bulk effective theory defined by Eq. (58) does not contain
the information about the velocities of the edge excita-
tions. The reason is that the Chern-Simons action given
by Eq. (73) contains no dimensional parameters and has a
zero Hamiltonian. Therefore, the vortices in the bulk of
the sample have no dynamics (or, equivalently, an infinite
mass). Hence the notion of velocity has no meaning for
these excitations. The inclusion of the Maxwell terms

fw makes the total Hamiltonian in the bulk of the sam-
ple nonzero. The vortices have finite gap and and acquire
dynamics. This, however, does not help, since the
Maxwell terms contain higher derivatives and cannot
generate the linear dispersion relations on the boundary
of the sample. The edge velocities in the QH states are
actually determined by the edge potentials. To determine
the dynamics of the edge excitations form the effective
theory, we must find a way to input the information
about the edge velocity. The edge velocities must be
treated as the external parameters, and the problem is
how to put these parameters in the theory.

Let us now note that the condition a,=0 is not a
unique choice of the boundary conditions that cancel
gauge noninvariance on the edge. There are many other
choices of boundary conditions different from a,=0 that
also cancel the gauge noninvariance on the boundary.
The noninvariance of the Chern-Simons action on the
boundary comes from the terms

8S =0&a'a’e" , (75)

where i,j labels the components of the gauge field in the
x-t plane. It is easy to see that we can satisfy the condi-
tion 8S =0 if we choose the boundary conditions in the
form



42 EFFECTIVE THEORIES OF THE FRACTIONAL QUANTUM ... 8141

a.=ay+va,=0. (76)

Here, a, is the component of the vector potential parallel
to the boundary of the sample, and v is a parameter
which has a dimension of velocity.

It is convenient to choose new coordinates that satisfy

X=x—ut,
~ (77)
I=t, y=y .

In these coordinates the components of the gauge field
are given by

a=a, . (78)

a.=a,+‘va,, a,=a,, ,=a,

It is easy to see that the form of the Chern-Simons action
is preserved in the new coordinates:

.S'=::1;fd3xallavake‘”)"—‘ﬁfd"‘xZiﬁEiv’dxef‘M . (79
This action can be rewritten as
9 (50 G 4 (a2
S= yym fa;a?ajefd x df + ry fa;afa]efd X df .

(80)

We recognize that @; is just a Lagrangian multiplier
which enforces the constraint

88 _ g 7 5
ba = Tpel=0. (81)

This constraint is solved by introducing a new scalar field
#, a;=03-¢ (i=X,y). Substituting this into Eq. (79), we
get the edge action:

S= L [didx0.63.4 . (82)

In terms of the old physical coordinates the above action
acquires a form

—_ 9
S—Efdtdx(a,+vax)¢ax¢. (83)

It is easy to see that the theory (83) contains only left-
moving excitations. The equations of motion of the
theory (83) have two solutions. The first solution has a
form ¢(x,t)=¢(x —vt) and satisfies an equation
(38, +vd,)p=0. This solution corresponds to the left-
moving chiral bosons. The second solution satisfies the
equation 9, ¢ =0, i.e., ¢ is a function of time ¢ only. Such
solutions correspond to the gauge fields on the boundary
a,=0 (i=t,x). The physical Hilbert space on the edge is
labeled by the fields a,. Hence the second solution does
not correspond to any physical excitations and shall be
excluded. Another way to see that the second solution
must be excluded is to demand the consistent quantiza-
tion of the theory. Then, it is easy to see that if we take
the solutions of the form ¢(¢) into account, the Poisson
brackets will become degenerate.

After eliminating the unphysical degrees of freedom, it
is straightforward to quantize the theory (83). [We need
to use Dirac brackets in order to take into account a con-

straint 7=(q /4m)3,¢.] The canonical momentum (x)
is equal to 7=08L /8¢,=(q /4m)3,¢. The coordinate ¢
and momentum 7 obey the commutation relations:

[m(x),d(p)]=b6(x—y),

[7(x),7(»)]=-L8(x —y) , (84)
41

[¢(x),¢(y>]=—2q£sgn<x —y).
The Hamiltonian of the theory (83) is given by

H=—%fdx 9,60.6 . (85)
The Hilbert space contains only left-moving degrees of
freedom (or right-moving degrees of freedom if v <O0).
Equations (84) and (83) describe chiral bosons, i.e., free
left- (or right-) moving phonons (edge density waves).

The velocity of the edge excitations are given by v,
which enters into our theory through the gauge fixing
condition. Note that the Chern-Simons action is gauge
invariant only for those gauge transformations which are
zero at the edge. Under those gauge transformations the
gauge fixing conditions (76) with different v cannot be
transformed into each other. They are physically ine-
quivalent. This agrees with our result that v in the gauge
fixing condition is physical and actually determines the
velocity of the edge excitations.

The Hamiltonian is bounded from below only when
vg <0. The consistency of our theory requires v and g to
have opposite signs. Therefore, the sign of the velocity
(the chirality) of the edge excitations are determined by
the sign of the coefficient in front of the Chern-Simons
terms. This result implies that the v=2 FQH state de-
scribed by (72) have two branches of the edge excitations
with opposite velocities.

Note that this result is consistent with the following
observation made in Ref. 25. Suppose that the Chern-
Simons theory with the action (73) describes the left
movers on the edge. Then, the Chern-Simons theory that
can be obtained from Eq. (73) by the transformation
k — —k, a(x)— —a(—x) describes the right-moving de-
grees of freedom.

A relativistic form of the edge action can be obtained
by choosing new coordinates as

vr=uvt+x ,
T=—vt+x , (86)
y=y.

We also choose the components of the gauge fields as

a.=aytva, ,

T 0 x (87)
a.=—va, +a, ,
and a,. Note that this transformation conserves the form
a;dx'. The effective action in the new coordinates ac-
quires the form given by Eq. (80) (after the change of x to
7). Integrating a_, we get the constraint f?y =0. This

constraint can be solved by introducing a bosonic field ¢:
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a-=04¢, a,=d,4. In terms of this field the action (80)
becomes

_— -
s=-L [(2,60.4)drdr7 . (88)

Returning to the physical coordinates (¢,x), we immedi-
ately see that all choices of the gauge condition
ay,+va, =0 (v7#0) lead to the nonzero Hamiltonian on
the edge and to the standard action of the relativistic bo-
son:

18 ’

at

9%

-4
s=.L[dxar »

(89)

Here we explicitly wrote a speed of sound waves v. Note
that when we quantize the theory (89), we must restrict
ourselves to the same Hilbert space we used in order to
quantize the action given by Eq. (83). Hence the theory
describes only left movers. In the field theory language
the action (89) is just the action of the U(1) Wess-
Zumino-Witten model.

The model has a conserved current J%(x —uvt) given by

J,=V21qePdpp, a,B=tx . (90)

The Fourie modes J, of the current J=J, form a U(1)
Kac-Moody algebra of level k =¢q /2:

[, 7, 1=kns, ., . 91)

The Hamiltonian given by Eq. (85) can be easily rewrit-
ten in terms of the generators of the Kac-Moody algebra:

Hz%Z:J;,,J,,: : 92)

where L is the length of the edge. Equations (92) and (91)
describe one-dimensional free phonons. Thees phonons
are created by the generators J, of the Kac-Moody alge-
bra and propagate only in one direction.'®! Let us note
that the analogous algebra describes density fluctuations
in the case of Tomonaga model of the one-dimensional
interacting electronic gas.?®

We see that the results obtained in Refs. 15, 17, and 19
can be derived from the effective Chern-Simons action of
the FQH states.

The quantum field theory defined by the action (83) or
(89) has a conformal invariance. It is easy to see that the
Hamiltonian H given by Eq. (92) is equal to the generator
L, of the corresponding Virasoro algebra. (See, e.g., Ref.
27 for the detailed description of the properties of the
conformally invariant systems.) To find the structure of
low-lying excitations, we can use the general results of
Ref. 28 where the author established the connection be-
tween the conformal field theories and corresponding
(1+ 1)-dimensional quantum systems.

The low-energy excitations of the theory are in one-to-
one correspondence with the primary vertex operators of
the conformal theory and their descendants. The low-
energy excitations are gapless with the energies given by

A, +n
E, = I 2mv , (93)
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where L is the length of the boundary and A,, =m?2/2q
are the conformal dimensions. Note that the quasiparti-
cles with m =0 correspond to the density waves and can
be created without adding external charge to the system
(they are created by the Kac-Moody current J). On the
other hand, in order to create the quasiparticles with
m >0, we must add to the system a finite charge m /q or
to create a particle-antiparticle pair. The propagator of
the quasiparticles is given by a correlation functions of
two corresponding vertex operators of the conformal
theory and has a power-like behavior:
1

G(z) G oo (94)
Here, 0=m?/2q+n. Note that § mod27 is the statistics
of the corresponding quasiparticle in the bulk.

We conclude that in the FQH state with filling fraction
1/q has one branch of edge excitations. The quasiparti-
cles on the edge have energies given by Eq. (93) and prop-
agator given by Eq. (94).

In the important case of an electron, i.e., m =g (this
means that the electron can be composed from m elemen-
tafg quasiparticles), we get the scaling behavior obtained
in

Glx)~ -1 . 95)

xm

This result has been confirmed by numerical calculations
using Laughlin wave functions for the case v= %.29

We thus see that the dynamical properties of edge exci-
tations directly follow from the topological theory that
describes the quasiparticles inside the bulk.

All these results can be extended to the case of the gen-
eral FQHE states proposed in Secs. II-IV. The relevant
Chern-Simons theory was constructed in Sec. IV. From
the general analysis given above, we immediately see that
there are precisely 3, (|m;|—1)+1 branches of edge ex-
citations. Each branch corresponds to an independent
gauge field that induces a chiral boson theory on the
edge. The full-edge Hamiltonian is equal to

H=7
n,s

21,
L

Jndn s 96)

where index s labels different branches. There is again a
one-to-one correspondence between the quasiparticles on
the bulk and on the edge. The propagator of quasiparti-
cle is given once again by

1

G(x)~——,
x6/1r

97)
where 6 is given by Eq. (40). A detailed proof of these
statements and a description of edge excitations of the
general FQHE states constructed in Secs. II-IV will be
given elsewhere.

VI. CONCLUSIONS AND DISCUSSION

We have found that the FQHE states constructed by
Jain have a natural description in terms of the GL
effective theory. The relevant effective theories are given



42 EFFECTIVE THEORIES OF THE FRACTIONAL QUANTUM ...

by Egs. (8) and (24). These theories also have a dual
description given in Sec. IV. The effective theories we
have constructed permit the one to find a structure of
low-lying excitations of the FQHE states constructed by
Jain and to calculate the charge and statistics of these ex-
citations. We have shown that the effective theories
given by Egs. (8), (24), and (58) [with a constraint (61)] de-
scribe the same FQHE state, although they were con-
structed using different physical approaches.

Our approach provides an easy way to calculate the
charge and statistics of all low-lying quasiparticles of the
theory, even without knowing the exact form of the wave
functions of the excitations. The charges and statistics of
the quasiparticles in the generic FQH states are given by
Egs. (40) and (42) (where m; can be negative).

Let us note that in the microscopic theory developed in
Refs. 3 and 4, it is relatively easy to calculate the quan-
tum numbers of the quasiparticle induced by turning on a
unit flux. The wave function of such a quasiparticle is
given by (47) and (48). In this case our results for the
charge and statistics [see Eq. (51)] coincide with the pre-
diction from the microscopic theory. For the quasiparti-
cle with the electric charge v/m; the statistics is given by
Eq. (43). This result differs from that obtained in Ref. 4
by a term 1—1/m;. For the IQH states our theory also
reproduces the standard results.

The effective-field theories studied in this article de-
scribe the FQHE states constructed by Jain. However
Jain’s states may not include all the possible FQH states.
Let us given an example of the states that cannot be real-
ized using Jain’s scheme. Namely, we shall construct the
FQH states with v=1 by assuming the electrons form
charge 2e pairs. The effective filling factor for the charge
2e bosons is v* =1v=L (a factor 1 comes from the in-
crease of the charge, and the other factor 1 comes from
the decrease of the particle density). The FQH state of
the electron pairs can be described by the Laughlin wave
function:

Y~3(Z,—Z) " exp

i<j

) (98)

1 B
— =S 2|2,
421." eﬁc‘ /|

where Z; are the center-of-mass coordinates of the elec-
tron pairs. The GL effective theory of the FQH state (98)
is given by

L,=i¢"(3, +iag+i2ed,)d+ ~21—¢*(a, +ia, +i2e A, ¢
m

1 1 )
4+ — — CMUVA
10 47 ayavalge V( ‘d’i ) ’ (99)

where a,, is the “fictitious” U(1) gauge field and ¢ is the
field corresponding to the charge 2e electron pairs. The
charge e /5 quasiparticles in the FQH state described by
Eq. (98) [or (99)] have fractional statistics 6= /10. The
edge states for such a FQH state contain one branch. It
costs finite energy to create an electron even at the edges
due to the pairing between electrons. However, it costs
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infinitesimal energy to create an electron pair on the
edges. The electron pair creation operator W can be
shown to have the following propagator:

10

! , (100)

—ut

(¥i(x,1)¥(0,0)) « ‘x

along the edges. The v=2% FQH states described by Eq.
(99) are definitely different from the ones described by Eq.
(8) or (24).

We also showed that the effective theory (24) has a nat-
ural dual description. There are 3, (|m;|—1)+1 in-
dependent gauge fields in the dual theory. The corre-
sponding Chern-Simons theory naturally gives rise to the
edge excitations. The number of the branches of edge ex-
citations is equal to the number of the independent gauge
fields. The dynamics of edge excitations in our approach
arises from the need to impose a special gauge condition
on the boundary of the sample to preserve gauge invari-
ance. Other approaches to edge excitations can be found
in Refs. 13-19.

The propagators of the quasiparticles have a powerlike
behavior:

1
b
x@/ﬂ

G(x)~ (101)

where 0 is the statistics of the quasiparticles given by Eq.
(43). In the case of the filling fraction v=1/3, (1/m,),
where all m, are positive, and all edge excitations are left
movers and have definite chirality. In the more general
case when some of the integers m,; can be negative, the
edge excitations contain both left and right movers.

Let us note that in our approach both theories in the
bulk and on the edge are described by the same action.
The action (83) [or (89)] of the edge theory is equal to the
action (73) of the Chern-Simons theory in the bulk. As it
was shown in Sec. V, the latter depends only on the
values of the gauge fields on the boundary of the sample.
This naturally suggests that both the bulk and edge states
are described by the same microscopic wave functions.
This in turn means that the scaling behavior of the quasi-
particle propagators given by Eq. (101) can be obtained
using microscopic wave functions. The numerical calcu-
lations carried out in Ref. 29 for the case of the filling
fraction v =1 indeed support this suggestion.

Finally, we must note that it is yet not clear what is the
relation between the FQHE states studied in this paper
and those obtained by the standard hierarchy construc-
tion of Refs. 1 and 2. In order to answer this question,
we must find the charges and statistics of the quasiparti-
cles in the states constructed in Refs. 1 and 2.
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