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Correlation length and inverse-participation-ratio exponents and multifractal structure
for Anderson localization
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We perform numerical finite-size-scaling calculations on a standard diagonally disordered tight-

binding Hamiltonian, with a Gaussian site-energy distribution. We find that the localization-length

exponent is v=0.97+0.05. We also find that ~2/v= 1.43+0. 10, where m.
2 is the inverse-

participation-ratio exponent. m2/v can also be interpreted as the fractal dimension of the critical
eigenstates. Finally, by looking at higher moments of the critical wave functions, we show that they
display a multifractal structure.

The problem of Anderson localization' has generated
intense interest for over three decades. It can serve as a
simple model for understanding the dynamics of vibra-
tional or electronic excitons in molecular and inorganic
crystals, as well as the transport of electrons in doped
semiconductors. So far, most studies have been focused
on determining the critical disorder and the correlation
(localization) length exponent v. Although initially there
has been substantial disagreement about the value of the
critical disorder for different model problems, more re-
cently a consensus seems to have been reached, particu-
larly for the original diagonally disordered Anderson
model with a rectangular probability distribution of site
energies, and perhaps for the quantum site percolation
model. ' On the other hand, the case of the
localization-length exponent is less clear. Using an @-

expansion technique (e=d —2, where d is the diinension
of space), Wegner found that v=1/e+O(e ), which
gives v=1 in three dimensions. More recently, Wegner
discovered that this result is in error, and a correct calcu-
lation yields

v= I/e —( —,
' )g(3)e'+ 0 (e'),

where g(x) is the Riemann g function [g(3)=1.202. . .].
This result when evaluated for e= 1 gives an (unphysical)
value of v(0. Indeed, Chayes et al. have shown that in
three dimensions v is bounded from below by —', . In con-
trast, numerical work has led to widely varying results
from 0.6 to 1.95. ' ' Another interesting set of critical
exponents, ~k ( k =2, 3,4. . . ), which will be described
below, and which have received somewhat less attention,
involve the inverse participation ratio and its generaliza-
tions. ' In this paper, we present numerical calculations
of v, m2, m.3, and m4, and comment on the relationship
among the different mz, which in this case implies a mul-
tifractal structure to the critical wave functions.

We consider a modified Anderson model described by a
tight-binding Hamiltonian defined on a three-dimensional
(3D) simple cubic lattice:

H=+ 8;li&(iI+J g lt &&jl,

where ~i & are orthogonal site states, J is the hopping ma-
trix element, and the sum is over nearest neighbors only.
The disorder is introduced by assuming that the site ener-
gies, c;, are uncorrelated random variables described by a
Gaussian distribution with mean zero and variance X .
A dirnensionless disorder parameter, 0, is defined as
o =X/J. For a particular realization of the disorder one
can diagonalize the Hamiltonian and express the eigen-
states, ~p&, as

(2)

For the above Hamiltonian, the density of states is sym-
metric around the band center (E =0). For o )o, (o, is
the critical disorder), all states are localized, and as cr is
decreased below a„extended states appear at the band
center. Therefore, the localization length at the band
center, g(o ), diverges as o ~o,+ with a critical exponent
defined by g(cr ) —(o —o, )

Focusing only at the band center, the inverse-
participation ratio, P' '(cr)= P(o ),—and its generaliza-
tions are defined as'

(3)

where E„are the eigenvalues, and the brackets indicate
configurational averaging for a particular value of the
disorder, cr. The inverse participation ratio is a measure
of the inverse of the number of sites that "participate" in
the eigenstates. ' Let us consider a finite system with
X =b sites, and the corresponding Pb"'(o ). It is clear
that in the infinite cell limit P'„"'(cr ) are zero for extended
states and finite for localized states; the critical exponents
vrk are defined by'

(4)

for o )cr, Convers. ely, for a finite system, Pb (o ) are
finite for all o.. From the finite-size scaling argu-
ment, one expects the finite and infinite system
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values of P'"'(o ) to be related to each other by

Pb"'(o ) =P'„"'(o ) Yk(b/j(i7)), (5)

where g(o ) is the (infinite system) localization length
mentioned above. Generally, the scaling functions Fk are
unknown, but the limiting behaviors are readily deter-
mined. Since Pb '(o ) for the finite system is always finite,

the singularity of P'„"'(cr ) at o =o, must be canceled by
Yk(b/g(o. )), which implies that Yk must behave like a
power law for small argument. In particular, this implies—n.

k /v
that Pb"'( cr, ) —b ", which leads to a convenient
method for determining ir„/v, as will be discussed below.

For a fractal object such as a percolation cluster, the
number of sites on the cluster inside a volume b goes
like X-b, where D is the fractal dimension of the clus-
ter. Since the inverse participation ratio is the inUerse of
the number of sites that participate in the eigenstates,
from the above scaling of Pb '(o, ) it is natural to associ-
ate a fractal dimension D =nz/v wi.th the critical eigen-
states. There have been several suggestions as to the
value of D for three-dimensional localization problems.
It is believed that for two dimensions or fewer, even
with very small amounts of disorder, all states are local-
ized, except under unusual circumstances. This result
leads to the conjecture that D =2. In fact, numerical
work by Soukoulis and Economou shows that
D =1.7+0.3, in agreement with this conjecture. Their
approach, however, has recently been criticized.
Schreiber also used the value D =2 as a criterion for lo-
calization in determining the critical disorder. Finally,
the e expansion gives

D =2 a+3((3)e +O—(e'),
which in three dimensions leads to D =4.6.

Once nz/v is known, from the finite-size-scaling hy-
pothesis one can define a generalized phenomenological
renormalization transformation by

'

k =2, 3, and 4 as defined above. For these calculations
we replaced the 5 function in Eq. (3) with a rectangular
distribution centered at E =0 with unit area and width
26E. We chose AE =0.8J for b =4, 6, and 8, and
DE=0.6J for b =10 and 12, thus decreasing the energy
range as the cell size increases, since in the infinite cell
limit the rectangular distribution should become a true 6
function.

From other numerical work, it is known that for this
model o, =6 (o, =6.03+0.14 ). We therefore calculated
Pb"'(6) for the cell sizes listed above; a plot of lnPb"'(6)
versus lnb is shown in Fig. 1. (In all figures and tables the
error bars are two standard deviations. ) For each value
of k the data points lie on a straight line whose slope
gives mk/v. In addition to the intrinsic uncertainty in
these slopes from the linear fits, we can include a contri-
bution to the error estimates from the uncertainty
in o, . This analysis yields D =n z/v = l.43+0. 10,
ir3/v=2. 16+0.19 and ir4/v=2. 62+0.27. This value for
D is in agreement with the numerical result of
D =1.7+0.3, but in strong disagreement with the con-
jecture that D =2, and in stronger disagreement with
the e-expansion result of D =4.6.

In fact, other numerical evidence supports the con-
clusion that D & 2 exists. Schreiber calculated the
inverse-participation ratio for the same model, and plot-
ted 1nPb versus 1nb for different values of the disorder,
finding straight lines in each case. However, in his
analysis of the data he assumed that D =2 was the fractal
dimensionality at criticality, from which he calculated
that the critical disorder at the band center is
cr, =4.79+0.10. More recent work shows that this value
of cr, is substantially lower than the correct value. '

Indeed, Schreiber found that D is a monotonically de-
creasing function of o., so that at cr =6, D would be sub-
stantially less than 2. The disagreement of our value with
the e-expansion result of D =4.6 is not altogether

Pb(ir ) Pb.(o')
(6)

The fixed point of the above transformation gives an esti-
mate of the critical disorder, and the correlation length
exponent v is obtained from

1n(b/b')
1 (i,nb /kb. )

where

Ab
a Pb(o)

b a& b
-~~-

For each pair of finite-sized systems with cell sizes b and
b', this equation can be used to find an estimate for v.

Our calculations are performed on five different cell
sizes with b =4, 6, 8, 10, 12, and for o. =4.5, 5.0, 5.5, 6.0,
6.5, 7.0, and 7.5. For each value of o, we generate many
random configurations for the e;. For each configuration
we diagonalize the Hamiltonian (assuming periodic
boundary conditions) and then calculate the Pb"'(o ), for

20
1n

3.0

FIG. 1. The data points are lnPq '{6)vs lnb for b =4, 6, 8, 10,
and 12, and k =2, 3, and 4. The solid lines are the best linear
fits to the data.
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TABLE I. Estimates of v for different pairs of finite cells.

6
8

8

12
12
12

0.92+0.07
1.03+0.09
1.19+0.30
0.98+0.09
1.01+0.16
0.89+0.21

FIG. 2. ~z/v vs k for k =2, 3, 4. The solid line is the rela-
tion m.k/v=(k —1)D, which would be valid for a homogeneous
fractal.

surprising, since in this instance the expansion does not
appear to be converging nicely. Expanding the series to
first order in e, one obtains (for three dimensions)
D =1+0(e ), while retaining the quartic term, one ob-
tains D =4.6+0 (e ). However, a Pade-Borel resumma-
tion of the e expansion as suggested by Paladin and Vul-

piani, but with the corrected fourth-order term, yields
a value close to our numerical result.

One can define generalized fractal dimensions by
D„=m.„/v(k —1), with Dz=D, as defined previously.
For a homogeneous fractal D& =D for all k.' ' In Fig.
2, we have plotted ni, /v versus k, as well as the line
n k/v=D (k —1). One sees that this linear relation does
not hold, implying a multifractal structure to the critical
eigenstates. ' One should also note that the @-

expansion results of Wegner

n k /v=2(k —1)—e'(k —1)

+(—,')k(k —1)(k —k+4)g(3)e +O(e ),
also predict a multifractal structure, although as in the
case of D, the numerical estimates from the above
(n3/v=18. 0;a4/v=54. 7) are not accurate. We also note
that in the multifractal language D2 is known not as the
fractal dimension but the correlation dimension.

An estimate for the exponent v was calculated by em-
ploying the generalized phenomenological renormaliza-
tion transformation defined in Eq. (6). Pb(o)was calcu-.
lated for b =4, 6, 8, and 12 and the seven values of o. de-
scribed above. For each cell size the data for different o.

was fit to a second-order polynomial, which for each pair
of cells crossed at o. =6, as expected. The slopes of the

fitted curves at the crossing were then used to determine
v for that pair from Eq. (7). These estimates are shown in
Table I. The error in each value reflects the statistical
uncertainty of the Monte Carlo sampling, and also has a
contribution from the uncertainty in mi/v. Although
there is some scatter in these values, they appear to be
clustered near v=1. A weighted average of these values
yields v=0.97+0.05. The error estimate of 0.05 must be
considered a lower bound to the true error since it is con-
ceivable that underlying the apparent random scatter in
our values for v lies a trend that would become manifest
for larger cell sizes, and an extrapolation rather than an
average would be appropriate. We also note that a recent
numerical analysis by Schreiber has yielded a value of
v=1.0+0. 1.' Experiments on compensated or highly
disordered doped semiconductors also suggest that

1
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At this point it is appropriate to comment on our pre-
vious work, ' which used the concept of "quantum con-
nectivity" to calculate critical thresholds and v for vari-
ous models —our values for the latter ranged between
1.63 and 1.95. We have subsequently used the same tech-
nique to study the model discussed in this paper, finding
good agreement with other results for the critical disor-
der. For small cells we also confirm our previous esti-
mates for v. However, for the largest pairs of cell sizes
we have found that v decreases systematically with cell
size. Thus our previous high estimates were apparently
due to finite-size artifacts. From the above work, it
would appear that finite-size corrections to scaling are
less important for the inverse participating ratio than for
the localization length, at least as determined from the
quantum connectivity.

Note added in proof Amore tho.rough treatment of
the material discussed herein and other numerical results
for the Anderson localization problem are forthcoming.
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