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Hydrodynamics of an antiferromagnet with fermions
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The long-wavelength description of a doped two-dimensional antiferromagnet (AFM) is con-
sidered. By assuming the existence of local AFM correlations, the hydrodynamics of the AFM and
fermionic degrees of freedom is given. The broken time-reversal symmetry in the AFM leads to the
spinor nature of doped fermions, and we find that the total "pseudospin" of fermions is conserved.
This leads to the existence of additional hydrodynamic diffusive modes. This pseudospin index
leads to possible "singlet" and "triplet" superconducting condensates in magnetically correlated
materials. At low temperatures we find nonhydrodynamic damping of spin waves due to scattering
by fermions.

INTRODUCTION

After the discovery of high-T, superconductivity, ex-
periments were made that showed the importance of lo-
calized spins to the whole picture of superconductivity. '
It is commonly believed that the magnetic properties of
copper oxides are important for possible mechanism of
superconductivity. Apart from the microscopic
analysis of the Hubbard model and its generalizations
(see, for example, Refs. 3 and 4), the phenomenological
approach, based on the symmetry consideration of the
ground state can be used. An important step in this
direction was made by Chakravarty, Nelson, and Halpe-
rin, when they showed, using experimental results, that
an s= —,

' two-dimensional (2D) quantum antiferromagnet

(QAFM) is well described by a nonlinear a model (NLo ).
This mapping leads to a description of the long-
wavelength dynamics of the QAFM in terms of only a
few collective variables, i.e., staggered and net magnetiza-
tion. Shraiman and Siggia constructed the semiclassical
Hamiltonian for holes in a 2D QAFM, suggesting that
the doped state of a QAFM can be described in terms of
these collective variables and a fermionic wave function.
These results can be obtained from the strongly correlat-
ed Hubbard model, using the slave-boson technique. Nu-
merical calculations showed that the minimum of the
effective band for holes lies at the X point of the Brillouin
zone, i.e, at k=(m. /2, m. /2). At that time the electron
doped superconductors with quite different band struc-
tures were discovered (see, for a review, Ref. 8). Recently
it was pointed out, that a Fermi-liquid description of the
doped antiferromagnet requires an explicit statement
about the number of carriers involved in the Fermi sea.
It seems that the picture with the minimum of the band
at the X point corresponds to x number of carriers in the
Luttinger theorem, while 1+x corresponds to the Fermi
sea, centered at the I point (here x is the doping concen-
tration). These two situations can correspond to the
same AFM ground state. So, from a general point of
view, it is important to distinguish between the symmetry

statements and the consequences of the position of the
minimum of the band of doped particles, concentration,
etc. In fact, the position of the band minimum is not a
universal feature and varies from model to model. For
the t-t'-J model at large t', the band minimum is at the I
point. ' So we will consider these two possibilities (I
versus X point), and I will argue that the properties of the
doped antiferromagnet are sufficiently the same. In this
paper we shall examine a doped antiferromagnet using
primarily the symmetry of the ground state (which is sup-
posed to have strong AFM correlations). I will show that
local AFM correlations lead to a double-valued (spinor)
representation of the fermion wave function for the
doped particle in an antiferromagnet. This fact, in com-
bination with the symmetry properties of the co11ective
variables of an antiferromagnet, leads unambiguously to a
hydrodynamical Hamiltonian for fermions, which is iden-
tical to the Hamiltonian derived from the Hubbard mod-
el. An initial low-energy description of an undoped anti-
ferromagnet is given in terms of the AFM order parame-
ter n, n = 1, and the magnetic moment m, which is the
conjugate momentum. The vector n lies on the unit
sphere S =SU(2)/U„(1), where SU(2) is the group of ro-
tations in the spin space and U„(1) is the unbroken group
of rotations around n. It fo11ows that the rotations
around n in the pure antiferromagnet do not generate a
new state, whereas the fermion wave function does
change under these rotations. Indeed we 6nd that a spi-
nor representation leads self-consistently to opposite
charges for the two components of the spinor with
respect to rotations around n. This fact is a general
consequence of the uniaxial anisotropy in the spin space
(n vector) and broken time-reversal invariance (double
valuedness). I argue that this will take place even in the
weak coupling limit for the spin-density wave (SDW)."
It is shown that in the AFM correlated metals the total
group consists of U„(1)+UEM(1), where the UEM(1) is
the electromagnetic group. So we observe that there can
be two types of superconducting condensates: One is the
analog of the spin-singlet condensate and the other is the
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analog of the spin triplet, depending on their transforma-
tions under U„(1).

We suggest the existence of a characteristic relaxation
time ~~, and build the hydrodynamic description of cou-
pled magnetic and fermionic degrees of freedom. Sym-
metry analysis enables us to find a new hydrodynamic
diffusive mode in the doped antiferromagnet, which cor-
responds to the conserved fermion "pseudospin. " We
also consider the coupling of spin waves to the fermionic
degrees of freedom. This coupling produces extra damp-
ing of the spin waves, which can be measured experimen-
tally. At low temperatures, when ~z diverges, we find
nonhydrodynamic damping of spin waves due to the
imaginary part of the fermion polarization operator.

The plan of this article is as follows: In the next sec-
tion we consider the symmetry properties of pure and
doped antiferromagnet, and in the section following that
we construct the hydrodynamics of an AFM with fer-
mions. Some of the results of this article were published
previously in Refs. 11 and 12.

SYMMETRY PROPERTIES

Here we shall consider the symmetry properties of fer-
mionic excitations in an AFM using the established map-
ping of a 2D QAFM on a NLO model. For this purpose
we need to use the symmetry of the ground state of the
2D QAFM (henceforth we set T=0). Fermions, doped
into an antiferromagnet, destroy long-range AFM order.
It is clear, however, that locally they feel the AFM corre-
lations, and these correlations put strong restrictions on
the possible local symmetry properties of the fermions.
Another important issue is that in the symmetry con-
siderations, of course, the only important symmetry is the
symmetry of the ground state. So this approach is valid
not only for the Hubbard model, but also for any micro-
scopic model with long-range AFM order in the ground
state. Since we know that the ordered state of the anti-
ferromagnet in the long-wavelength limit is well de-
scribed by NLcr, we will keep this correspondence in the
doped case as well. Then, from the symmetry properties
of two sublattice Heisenberg antiferromagnets, we get the
group of invariances of the ground state:

G~nc=t~ ~~ ~' U(1)n}

where P is the point group of the crystal, AT is the com-
bined element of translation on one site (T) and the
time-reversal operator (R), conserved in the AFM, as
well as T .' ' The order parameter n is the point on the
sphere S =SU(2)/U(1)„, where SU(2) is the initial group
of rotations in the spin space and U(l)„ is the unbroken
group of rotations around n. So, formally, any rotations
around n do not produce changes in the state of the
AFM. For any nonfermionic quantity U(1)„ is unimpor-
tant. Any excitations of the ground state are described
by some irreducible representation (IR) of G&FNi. From
what follows, if we dope fermions with antiferromagnets
and do not destroy the ground state of the AFM, then
fermions are described by the IR of G&F~. As can be
easily seen from a microscopic approach to the Heisen-
berg AFM, ' ' ' the fermions in an AFM organize a

two-component object f=(g, , gz) where the subscripts 1

and 2 correspond in microscopic calculations, using the
Schwinger boson decomposition, to A and B sublattices.
What should be noted is that the two-component nature
of fermion excitations is already seen in the weak-
coupling Hubbard model with a SDW." So, as we shall
see, the two-component structure of g is a general result
of the RT symmetry of an AFM. Indeed, one can find
the double valued or spinor IR of the R T group

g7 g
—eik age

RT, P = —e'"'P*
(2a)

(2b)

U(1)„/~exp(ir. nq&)g, (4)

where y is the angle of rotation in the spin space around
n, and r are the Pauli matrices. ' ' In (4) the anisotropy
in spin space, i.e., the existence of n, is taken into account
as well as the two-component nature of g. So we find

that fermions in the AFM have charge with respect to
U(1)„. This fact was first noted by Wiegmann, but he
considered only the case of local U(1)„, which naturally
leads to the appearance of a gauge field in the AFM. In
contrast, we shall suggest that this group is global, i.e., q
is constant, and thus we can put y=O in further con-
sideration.

This symmetry consideration enables us to make some
prediction about the nature of superconducting transition
in AFM based materials. Indeed, fermionic excitations
are then described by two U(1) groups:

U(1)„XU(1)E~,

where U(1)E~ is the electromagnetic group. Then, quite
generally, one can imagine two types of superconducting
states: (a) A, =(g,@,), which breaks both U(1)„and
U(1)Eivi and (b) bb = (1(i,gz), which breaks only U(1)E~.
The state of type 6, is analogous to triplet pairing, and
the state of type hb is analogous to singlet pairing. So,
generally, the properties of these superconductors are

Representation (2) is analogous to the double-valued rep-
resentation of usual time reversal for spin- —,

' particles. '

It is (RT) = —1, and components f, and 1(2 are analo-
gous to the Kramers doublet. ' Note also that any field
in AFM, braked R T (e.g. , m denoting magnetization vec-
tor) lifts the double degeneracy (Kramers theorem) be-
tween 1(i, and tlrz.

For an AFM without spin-orbital coupling, the IR of
another subgroup of G&F~ is

y 2tti &2ik ay y2n —Pn —n

RTm= —m, RTn=n .

Of course g transforms under some IR of P also, but we
are interested in the consequences of magnetic ordering,
so we fix some IR of P. Note, however, that the IR of P
at different points of Brillouin zone (BZ) are different,
which can bring extra effects. '

The only representation of U(l )„ for two particles 1(i,

and $2 can be written as
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quite different, but we shall not consider this question
here.

HYDRODYNAMICS

[m;(x)rn (y)] =e,"kmk5(x —
y ),

[m, (x)n, (u)] =e„„n„fi(x y), —

[n, n, )=0. (6b)

To build up the hydrodynamics we must make some
assumptions. First of all we shall consider only the me-
tallic regime of electrons in an AFM, and thus the con-
centration of particles must be larger than the critical
concentrations are for the metal-insulator transition. '

On the other hand, we assume that even in the disordered
phase (without long-range order) the AFM coherence
length is large. This enables us to use the local AFM or-
der, which feels the particle in the vicinity of its position. .
So, the second condition that should be satisfied, is
keg)&1, where kF is the Fermi wave vector for doped
particles and g is the AFM coherence length. We also as-
sume that the adequate long-wavelength description of
the AFM in these conditions can still be given in terms of
the NLo. model, as in the undoped case. It has been
shown that in the 20 AFM with the attraction between
doped particles and spin waves a polaron state can be
formed. ' So, in principal, we should avoid the problems
with localization of particles, as well as phase separation.
Here we assume that this is not the case in our model.
The main assumption is that the long-wavelength dynam-
ics of a doped AFM is described by only a few degrees of
freedom: m the local magnetization, n the local value of
the order parameter, p= ( f g ) the density of particles
(angular brackets ( ) indicate thermodynamic average),
since the total number of doped particles is con-
served, J„=—(I/2m )(P iB„Q +c c )m. a.ss current,
p=(g r &P&) "pseudospin" (henceforth we shall omit
the "pseudo"), and the corresponding spin current
J„=—(I/2m)((f riB„Q+c c )); the r. ea. son for consid-
ering p as the hydrodynamic variable is that in linearized
approximation p is locally conserved, i.e., in the lowest
order in gradients and neglecting nonlinearities there is
no coupling between the fluctuational part of spin density
and NL0. degrees of freedom so that the total excess of
spin g= Jpd x is conserved and is the generator of spin

rotations for fermions (see below). Of course in the com-
plete theory only total spin should be conserved.

So, under some perturbation of the system, and after
some characteristic relaxation time ~z, one can describe
the state of the system by local values of these hydro-
dynamic variables. This suggestion provides enough in-
formation to construct the closed hydrodynamics of
AFM with fermions. In zero doping the AFM is de-
scribed by the NLo model with the Hamiltonian,

HNL =
—,
' J y, 'm, m +"p, (B„n) d x, (6a)

where m; =(rn„m, m, ) are components of the generator
of rotations in the spin space, g, '=y~~ 'n, n +y~ '5, is
the susceptibility tensor, 6~~=(5" n;nj ), p=x, y—, and m
and n form the algebra of Poisson brackets (PB's):

[g (r)P&(r')]=o P(r r'), —jg (r)P&(r')j =0 .

We also assume that f commutes with m, n: [g,m]
=[/, n]=0. We can distinguish between fermions and
NLO degrees of freedom only in the linearized limit,
which allows us to use these commutators. The equa-
tions of motion for NL~ are given by PB's: [H, m j, etc.
Using the above, we come to the system of equations of
motion:

=p, B„V„+g,(p hm) —g2B„J„+y 'E B„m,
at

av„"=q, 'a„m g, a~+—&,rC„a„a„V„,at

(8a)

(8b)

= —2g, (p h m )
—

2g2 (J„hV„)—B&J„+B„V~

Bp = —B„J„+B„(g2/m V~),
a

(8c)

(8d)

where we omit higher-order gradient terms. CoeScients
E and K, described the diffusion of magnetization and
the damping of the spin waves in the pure AFM. In the
limit g, =g2 =0 we recover the hydrodynamic equations
for the pure antiferromagnet (see the classic articles' ).
We omit from our consideration the energy diffusion
equation, since it is decoupled from the other degrees of
freedom.

The system (8) is nonlinear, and it follows that evolu-

The Hamiltonian (6a) describes the long-wavelength dy-
namics of the AFM and reproduces the spectrum of spin
waves (SW's): co=(p, y~ ')' k.

After adding fermions in the small doping limit, we re-
strict the consideration to the first order in concentra-
tions and to the second order in gradients. The possible
nonsuperconducting fermionic configurations in the real-
space representation are p, f B„g,p, J„,J„. It is not too
hard to see that in accordance with the IR [(2) and (3)]
the first two terms are pure scalars, the third transforms
as m (i.e., RTm= —m), and the last two transform as
scalar gradients under G~F~, except that the spin current
is also a vector in spin space. " Therefore, one can write
the hydrodynamical Hamiltonian for fermions (see, for
example, Ref. 7):

H =HNL~ +Ho g& g rfm g2 J.Vp+g3tjPQV~, (7)

where Ho is the Hamiltonian for the pure fermionic sub-
system, containing only even powers of 8„, which we
choose to be Ho = —P (8„/2m )g and V„=n h B„n is the
standard magnetization current in the NLO. model. '

To find the equations of motion for the Hamiltonian (7)
we use the PB method' for m and n, and use the Heisen-
berg equation ig=[H, Q] for fermionic operators. We
suggest that the PB's between classical variables remain
as in (6b) and tP operators obey the standard anticommu-
tation rules:
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Pc= (9a)

tion of m and V„depend on the fermionic degrees of free-
dom. The fermion density and spin density can be
changed not only by a divergence of the correspondent
current, but also by coupling to a magnetic subsystem.
For example, the spin density p rotates around m, but
these rotations are described by nonlinear terms in (8).
The next step is to limit ourselves to the linearized hydro-
dynamic equations. This system is still incomplete in the
sense that we need the equation of motion for the
currents. In order to get this we will use the linear
response theory. Decomposing the spin current and spin
density into two pieces,

J~ J~ +J~f

p pc+pf ~

we can get J„„p,from the linear response theory (see the
Appendix) and their dynamics are governed by the NLa
variables:

icoU=

p—g2K k p, ik —ig, k g—2K k

iky~ 0 0 —ig k
U, (1 la)

—Pg, K k 0 —K k
P

U=(m', V', J',p'), (1 lb)

As we can see at a =p=O the spectrum consists of two
modes:

and we choose fluctuations in the spin space along the z
axis. In the leading order the eigenvalue equations are

C =C +Qg)

(~+/Kpkz)( ~2+—c2 i~Pg—2Kpk2)+i- Pg I
Kpk4=0

(13}

J„,= —av„—K a~, (9b) (a) SW with dispersion,

and a= g2nj—m, p=g, min. We also add the diffusion
term K in J„. The reason for doing this is that in the
first term of the Hainiltonian (7) the nonequilibrium spin
density can be transported away by the emission of the
magnons. Since pure magnetization cannot propagate in
AFM, we suggest that p propagates diffusively.

Then, as we mentioned above, the spin density pf
obeys the conservation equation a,pf =a&K (a~). The
quantities J„f,pf described the fluctuations around the
value, given by (9) and caused, for example, by quantum
fluctuations. In order to get the equations of motion for
the fluctuating part of current J„f, we will use the
Heisenberg equations for operator Jpf,

(14a)

(b) fermion spin-diffusion mode (FM),

co —lK k (14b)

(a) SW

2=C2 (15)

(b} FM

This result can be anticipated from Eqs. (10), since at
a=P=O liinit the spin diffusion mode completely decou-
ples from SW sector. The solution of the reduced eigen-
value problem for nonzero a, P is

a,J„f=a„mp +2g, (mh J„f) .",m a= —iX 1—
p

g &Ps

C2
(16)

The linearized system of hydrodynamic Eqs. (8) and (9)
can be written then as

a, m=p, a„V„+giK a~+Pg K a„m gia„Jq, —

a, v„=g, 'a„m —g, a~,
(10a)

(10b)

B,J„=B„mp
m

(10c)

a,p=K, a~+PK, a„'m, (10d)

where p, =(p, +agz), fi '=pi ' —
pg&, and we omit the

subscript f for the fluctuating part of spin density and
spin current. We shall omit coefficients K =K, =O,
since they lead to higher-order corrections. For example,
in the case of the SW mode, the damping of spin waves is

given by D =y 'K +p, K, .'
System (10) is the central result of this section. Note

that in the linearized limit the fermion density decouples,
and we do not consider it further. In the matrix form
the equations of motion after Fourier transformation are

The damping of SW is always proportional to k and is
modified by the presence of the K term:

D= —,'PK (g,P, lc +g—z) . (17)

Since we do not know exact expressions for the
coefficients g, ,g2, the quantitative consideration can be
given in the asymptotic region of strong softening of the
SW c ~0, providing that the second term in (17) is small-
er than the first one. Then noting that pg, =pi ' —fi '

we get

D= —,'K (co —c )Ic (18)

and the effective spin-diffusion constant is Kpco/c . This
formula allows us to estimate the effect of fermions on the
damping rate of SW in terms of experimentally measured
quantities.

So we find that for an antiferromagnet in the presence
of fermions an additional hydrodynamic mode, FM, ap-
pears. This mode corresponds to spin diffusion. As fol-
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lows from (15) and (17), the spectrum of SW's is modified
due to interaction with fermions. This fact is in quantita-
tive agreement with the results of Ref. 12 where it was
shown that the SW spectrum softens due to particle-hole
polarization, and the effect of fermions is presented in
both stiffness and in the susceptibility. Note that we get a
new type of hydrodynamic damping of the SW*s due to
interaction with fermions. When the spectrum of the
SW's becomes very soft, e.g. , C ~0, the window for
SW's shrinks, since D ~~. This means that for strong
interaction between fermions and SW's, the propagation
of SW's is strongly damped due to particle-hole polariza-
tion. This damping of SW s is proportional to the con-
centration of particles n, since a n-, and P is nonzero
due to deviation of the Fermi surface from the X point in
the BZ and thus is also proportional to density.

The results for the damping coefficient of SW's and for
the spin diffusion coefficients do not depend on the loca-
tion of the minimum of the band, since they are formulat-
ed in terms of hydrodynamic coefficients C, C, Kp, etc.
The values of these coefficients depend, of course, on the
microscopic model and on the location of the minimum
of the band. In Ref. 7 it has been argued that the single-
particle excitation spectrum of the t-J model is unstable
towards the spiral instability even on the level of one
doped hole. This is the artifact of the mean-field approxi-
mation, and the normal Fermi-liquid state should be
stable in some interval of doping, as is clear from the ex-
periment. From this it follows that, for the band
minimum at the X point at small doping, our results ap-
ply as well as to the I -point case, since we consider only
the fluctuations around the ground state irrespective of
the location of the minimum of the band.

Until now we have considered only the hydrodynamic
regime of our model. In the case T~O, when the relaxa-
tion time ~z diverges and we can neglect the collisions, or
in high frequency, we come to the nonhydrodynamic
domain of SW and FM, analogous to the zero sound. In
this region the damping of SW becomes linear in momen-
tum. The dispersion of SW is given by Eq. (15), where
a,P are imaginary (see the Appendix):

cu=ck(cosP/2+i sing/2),

P =P, +$2, tang, =Im(ag2)/Re(p, + agz ), (19)

tan/2=Im( —Pg, )/Re(y~ ' —Pg, ) .

If we set P=O and neglect the effect of the SW softening,
we come to the estimation of the nonhydrodynamic
damping, mentioned by Shraiman and Siggia,
Imc =(g2n /m )(coluFp, ). When Co/VF~ 1, the system
is close to resonance, which leads to the divergence of the
damping of SW. It follows that spin waves become over-
damped and cannot propagate, and, as follows from the
formula (A6), the damping of SW's is linear for any a at
small frequencies.

COMPARISON WITH EXPERIMENT

As follows from our results, the interaction of SW's
with fermions leads to the SW softening
C =Co+agz —g, Pp, and to the new mechanism of the

k D=k K (Co —C )/2C K =5.365 A eV .

Since Kp described the spin diffusion, we can estimate

(20)

KP 3 UFlsP (21)

where UF is the Fermi velocity and l,„ is the mean free
path for the spin scattering. Since by assumption the
main contribution to the damping comes from the
scattering of fermions by magnons, it is natural to assume
that the interaction of carriers with magnons leads to the
mass mean free path of the same order, i.e., l =l, . Then
we find the relaxation time

7 = I /uF =I /(3K ) =0.41 X 10 ' sec, (22)

where we assume that I is of order of two lattice sites
0

(a =5.37 A) as is known from the electron transport
measurements, and our estimate for the relaxation time is
in the good agreement with the scattering time v = 10
sec, ' especially if we take into account uncertainties in
the l, , in the value we used of D and relation between D
and K . Note also that both relaxation times are close to
the characteristic time of fluctuations of the Cu spins
with the exchange constant J=0. 16 meV, '

~=h /J=2. 58X10 ' sec. Thus we showed that relaxa-
tion processes in the spin scattering and the electron
transport channels turn out to be close for the samples
with small doping. Assuming that all SW damping
comes from the interaction with fermions via Eq. (18),
and using a characteristic mean free path, the interaction
with fermions can explain strong SW damping, observed
experimentally.

CONCLUSION

Using the symmetry properties of the short-range Neel
ground state of an AFM we obtain the properties of

damping of SW's. Since there is clear experimentation
using inelastic neutron scattering in pure La2Cu04 and in
5% doped La2 o05Ba005Cu04, we can compare the ex-21

perimental measurements of the SW velocity and the de-
cay rate with our results.

Experimentally it has been shown that in pure
La2Cu04 the SW spectrum with negligible damping pro-
vides a good fit to the measured cross section for neu-
trons with energy 30 meV with the SW velocity Co =0.85
eVA, in the whole range of temperatures from 5 to 200
K. In the doped case the broadening of the scattering
peak was observed. Analysis of the effect of doping by
two fitting procedures was proposed in Ref. 21: In one
the fitting parameter was the SW velocity assuming negli-
gible damping, and this approach gives C=0.63 eV A, or
they fit the decay rate of SW's at initial SW velocity Co.
In the latter case the decay rate Imco=k D =22 meV at
the characteristic wave vector k=0. 1 A ' at 5 K. Of
course these results do not clarify the mutual interplay
between the softening and damping of the SW's, but we
will assume that actual values of renormalized velocity
and damping rate are given by the numbers close to those
obtained in the experiment. Then by using Eq. (18) we
get
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doped fermions in the AFM. We find the long-
wavelength Hamiltonian for fermions, which coincides
with the one derived from the one-band Hubbard model.
This Hamiltonian provides a useful framework for study-
ing different kinds of instabilities, such as spiral instabili-
ties. It follows from our results that the normal Fermi-
liquid state in the AFM correlated metals contains non-
trivial effects. For example, we find a new hydrodynamic
mode that corresponds to the conserved pseudospin of
the doped particles. We also find that mutual interaction
of fermions and magnetic degrees of freedom lead to the
additional damping of SW's. This damping can be large
enough to make SW propagation impossible. Indeed, our
analysis applies at wave vectors k& & k & kD, where k& is
defined as the wave vector of the AFM coherence length,
and kD =csw/D is defined as the wave vector of strong
damping of SW. Since, as we have seen, the corrections
to D can be large, it means that in principal the window
for SW propagation shrinks to zero as D increases. Of
course, any real estimate of kD depends on the values of
the unknown hydrodynamic coefficients g&,gz, E . Ex-
perimentally, the effect of doping on the SW can be stud-
ied by measuring inelastic neutron scattering. The
doping-dependent contribution to D can be observed.

In the low-temperature limit, when collisions are negli-
gible, the excitations become nonhydrodynamic. The
damping of SW becomes linear in momentum, and spin
waves become overdamped at VF/Cp=1 due to Landau
damping. Experimentally the most interesting changes in
the properties of SW and FM can be observed at the reso-
nance condition VF=Cp. We also estimate the lifetime
for the fermions from the decay rate for SW due to in-
teraction with fermions. We find reasonably good agree-
ment with the lifetime found from the conductivity mea-
surements, which implies that the damping of the SW in
doped case comes from the interaction with fermions.

We also find that there are two different possibilities
for the superconducting order parameter in these metals.
One is the analog of the spin singlet and the other is the
analog of the spin-triplet superconductors. The singlet
superconductor corresponds to the pairing of + and
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APPENDIX

In this appendix we shall show that from linear
response theory follows unambiguously the relation be-
tween u and the spin current-current correlation. The
linear coupling between J„and V„ is given by term with

g2 in the Hamiltonian

H =Hp —g2J„V„, (A 1)

where Ho does not contain linear coupling between J„
and V„. Then we find (see Ref. 23)

5(J„(r,t)&= —f a'J, (r, t~r', t')

X5VJ(r', t')d(r')dt', (A2)

where

RT%' in analogy with the pairing of 4' and time-reversal
R%' in the usual superconductors. Using the analog of
the Anderson theorem for the R T type of pairing one can
find that nonmagnetic impurities are as strong as magnet-
ic for the usual R type of superconductors. This is prob-
ably the reason why the doping interval for superconduc-
tors is so narrow, especially in the electron-doped super-
conductors Nd2 Ce Cu04. ' Among the unanswered
questions should be noted the question about the descrip-
tion of the doped paramagnetic state, when k& &1, i.e.,
when particles really are in the paramagnetic state. Prob-
ably, the analogous hydrodynamic description of the
spiral states can be done, and it should show new effects.

K
a„'„(rt~r't')=g2( ,'[J„'(r,t ),J, (U', t')]—)= — 5'5„, f Ilo(q, co)e' '" " ' ' " ' 'dq dao,"' m'

(A3)

and where Ilo(q, co) is the usual 2D fermion polarization
bubble. At co«UFq, q &2kF we get Hp-—m/2. Then,
since for hydrodynamical description we can take the

limiting value of IIO (co~0, q ~0) in (A3), we find

a'~„= —g2( n /m )5„,5,1
=a5„,5, (A4)

This expression for a leads exactly to the expression for
the SW velocity renormalization due to interaction with
fermions [see Eqs. (15), and see also Ref. 12]:

c =pi '(p, g2n/m) . — (A5)

n a
2 1/2 ' a =Cp/VF

m (1 2)li2 ' (A6)

In the same manner we can find for P:

count the imaginary part
m a

ImIIO(q, co) =
(1 g2)li2

where a =co/(qVF). This part is nonzero only for a ( l.
For Cp/V+~1 the imaginary part becomes dominant.
In this case we can consider the imaginary 0.:

In the case of low temperatures we should take into ac- P=g, llo(q, co) =gi m /m+ig, lmlIO(q, co) . (A7)
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