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The well-known two-dimensional octagonal quasilattice is realized by means of dualization and

Klotz construction. We discuss the geometric properties and the extended symmetry of the pattern.
The concept of geometric defects is introduced, and an elastic energy measure b E is presented that
allows a simple sequencing of the forbidden vertices. After a sketchy comparison with Lennard-

Jones calculations, some thermodynamic consequences of bE are discussed. It turns out that the

specific heat should show a significant increase in comparison with the crystallographic case.

I. INTRODUCTION

Quasiperiodic patterns as obtained by projection from
higher-dimensional periodic structures have proved use-
ful for the description of quasicrystalline materials, pro-
viding the noncrystallographic counterpart of the cell
models of ordinary crystallography. Additionally, they
have also attracted considerable research activity from
the geometric point of view. This geometry, however, is
not an esoteric part of the game but an extremely power-
ful method for the analysis of structure models. Not only
effective algorithms for the explicit construction of quasi-
lattices can be obtained that way but also their local
structures like possible vertices and their frequencies,
their configurational neighborhood, ' and, last but not
least, a straightforward approach to the kinematic factor
of the Fourier theory. '

An essential tool is provided in the form of the dualiza-
tion method together with the Klotz construction, '

where the perpendicular space plays an important role
for the determination of geometric properties. However,
this structure can only fully determine the case of ideal
quasilattices, i.e., defect-free ones. Since real material
shows significant defect contributions, the latter have to
be included in the description. The standard approach
uses the Landau theory of phase transitions' '" via the
additional degrees of freedom of the free energy, called
phasons, and treats the pattern either as an ideal one with
phasonic defects or directly as a random tiling' with
configurational entropy.

Although this procedure seems to be quite successful,
we would like to present a complementary picture based
on the geometry or, more precisely, on the dualization
that is herited from the defect-free case and turns out to
be much more powerful than expected. The advantage of
this procedure is the reduction of the basic assumptions
renouncing the (phenomenological) Landau theory.

In order to explain our approach, we have chosen the

well-known planar octagonal quasilattice' because it
combines an easy description with a good graphical
presentability but does not suffer from the degenerate
properties of 1-D patterns like the Fibonacci chain, e.g. ,
the lack of nontrivial symmetries and real matching con-
ditions. Obviously, several results that are well-known
from the literature' ' are rederived in what follows, but
this time merely for pedagogical reasons because we hope
that the understanding of the dualization scheme is facili-
tated that way. An additional treatment of another oc-
tagonal phase that can be linked to the dodecagonal one
is planned to be presented in the future. '

The paper is organized as follows. In Sec. II, we
rederive the primitive octagonal quasilattice with use of
the dualization scheme and Klotz construction. Special
attention is paid to the symmetry and the local properties
of the pattern. A very efficient tile-by-tile production al-
gorithm is presented. The vertex configurations of the
ideal pattern and their frequencies are derived, followed

by a treatment of the ten forbidden vertices —called
geometric defects of the first kind —within the dualiza-
tion scheme in Sec. III. Based on the geometric analysis
in perpendicular space, an elastic measure for the vertices
is proposed that can be interpreted as a mean-field ap-
proach to the contribution of defects to the total energy.
This energy measure is justified by a comparison with sta-
bility calculations for a simple two-atom decoration with
truncated Lennard-Jones potentials.

In Sec. IV, the elastic energy measure serves as input to
some simplistic thermodynamics in a canonical ensemble.
The degrees of freedom that stem from the geometric de-
fects of the first kind result in an additional contribution
to the specific heat that, depending on the fundamental
excitation energy, should be seen as a measurable effect.

In the Appendix, we brieAy perform the same program
for the Fibonacci chain with use of an exact mapping to a
one-dimensional (1D) antiferromagnetic Ising model with
a transversal magnetic field that is exactly solvable. That
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way, one can get some insight in the approximations that
are necessary for the treatment of the 2D example.

II. THE OCTAGONAL QUASILATTICE

V(0)—= {xEIR ~~x, ~

~
—,', i =1, . . . , 4j (2.1)

and
(b) the closed primitive unit cell

Ix&R ~0~x, & l, i =1, . . . , 4j, (2.2)

together with their images under the translation group
I

Although the octagonal quasilattice and its construc-
tion from the grid method or the cut-and-project
prescription is well-known in the literature' ' we will
start with a description of this quasilattice that is based
on the rigorous dualization scheme and Klotz construc-
tion. ' Considering the 4D primitive hypercubic lattice
Z the octagonal pattern is derived from, one finds two
natural tilings of 4D space by congruent hypercubes

(a) the central Voronoi domain

T 4. Including the hierarchy of the boundaries, one ob-

tains the Voronoi complex V and the dual complex V',
respectively. It is an important feature of this construc-
tion that to every boundary P of V of dimension
0 m ~ 4 there exists a uniquely determined boundary P '
of dimension 4—m with the properties (i) P and P are
perpendicular to each other and (ii) P and P* intersect
each other at precisely one point.

For more details on the dualization method see Refs. 8

and 9. Here, the 2D boundaries of V and V', which all
have the shape of squares, are important because they are
the preirnages of the cells of the quasicrystal. Since V
and V' are congruent as cell complexes, it does not
matter which complex we start from for the construction
of the pattern —both versions will be congruent.

Before we can proceedw, e have to choose a 2D physi-
cal space by the demand of eightfold symmetry. The
holohedry of the lattice Z is the hyperoctahedral group
Q(4) (Refs. 18, 19) that does not admit a proper invariant
subspace. However, the dihedral group Ds, generated by

(gs) =s =e with

1
R(g, )—=

0
L

0 0 —1 1 0 0 0
0 0 0 0 0 0 —1

10 0 "=0 0 —1 0
0 1 0 0 —1 0 0

(2.3)

does. The characters of Ds (Ref. 20) are given in Table I.
In fact, the representation R splits into two inequivalent
2D irreps,

with

UR (g)U '=R"' (g), gEDs,

c —s 0
s c 0 0

R (gs)= 0 0, , )

0 0 s' c'

R" (s) =diag(1, —1, 1, —1),

(2.4)

(2.5)
and

2~ = 2~
c =—cos,s—:sin

8

6~, . 6m.
c =cos

8
'

8
,s':—sin

TABLE I. The irreducible characters of the dihedral group Ds.

Class
irreps

k —
kj

k= 1,2,3 ts, sr', . . . , sr'j rsr, sr', . . . , sr'j

Pl

( 1)k

( 1)k

2'2cos k
8

p2 2 cos 2k
2'
8

p3 2cos 3k
2m

8
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0

0
1

2

0

v'-,'

v'-,'

v'-,'

(2.6)

The representation spaces are called K~~ and Kj, respec-
tively. The projection of the 4D basis vectors into these
two subspaces is shown in Fig. 1. We identify K~~, where

the eightfold element appears as rotation by 45', with the
physical space. It turns out that the D8, which has 16
elements, is the maximal subgroup of A(4) compatible
with the decomposition R =Ki+Ki (a different statement
in Ref. 14 is incorrect).

Now, that K~~ is fixed by group theoretic demands, we
can define the pattern as follows. Fix a vector cj EKj.
Whenever a 2D boundary P of the Voronoi complex in-
tersects with K~, +ci [which is tantamount with
ci&mi(P)], we have to project P", the dual 2D bound-
ary, into Ki, i.e., the pattern 8 is

8(ci)= tn~~(P")~P a 2D boundary of V and cia~, (P) I . (2.7)

[~„(q)~q Z",c, ~,( V(q (2.8)

where V(q) is the Voronoi domain of Z around the lat-
tice point q. Since V(q)= V(0)+q the vertex set takes
the form

[~„(q)lq&l, [c,—~,(q)]&~ ( V(0)) I . (2.9)

The next step is the determination of the vertex
configuration around a vertex point. Obviously, the tiles
surrounding ~~~(q) are those or~~~(P'), P E V with
dim(P)=2, which obey P —qC V(0) and

If ci is not contained in the projection image n j(P ) of
a 1D boundary P' of V, 8(ci) is a proper space filling of
K~~, i.e., without gaps or overlaps. ' They all belong to
the same local isomorphism class of the so-called planar
octagonal quasilattice as introduced by Beenker' via the
grid method.

By means of the dualization scheme, we can immedi-
ately conclude the set of vertices of 8(ci) to be

ci —~i(q)Kiri(P) —q. Constructing a concrete pattern
now means (1) find all q C Z such that
cj —n.i(q) E mi( V(0) ), i.e., the vertex points. (2) For each
vertex point, take every 2D boundary P of V(0) with
ci —mi(q)Gnj(P); then n~~(q)+a~~(P") belongs to the pat-
tern. We see that for the whole analysis of the pattern
8(ci) it suffices to investigate the projection images of
the Voronoi domain V(0) and its boundaries in Ki.

One "onsequence of this analysis is immediate: all
mi(P) for which the corresponding ~i(q)+iri(P") belong
to the same vertex configuration [around ~i(q)] must
have a common overlap in K~. The possible overlaps are
convex polygons, called elementary polygons, which sub-
divide n.i( V(0)). Furthermore, they represent the possi-
ble vertex configurations of the ideal quasiperiodic pat-
tern one to one. An inspection of ~i( V(0)) together with
the projected boundaries in Fig. 2 yields, up to D8 opera-

e3ll

eall eall

eall

e2L

e4J

el'

e3J.

FIG. 1. Projection of the 4D basis into (a) K~~ and (b) K,.

FIG. 2. Projection of the Voronoi domain of the Z lattice
and its boundaries into K,. The numbering of the representative
elementary polygons refers to the vertex configurations of Fig.
3.
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tions, just six different elementary polygons each of
which stands for one of the six possible vertex
configurations in Fig. 3.

One can go even further. The space 1E~~ is not contained
in a net plane of the lattice Z . Hence, the projection im-
ages of the lattice points are dense and uniformly distri-
buted in K~. Consequently,

rci —mi(q)~qCZ I A~i{V(0))

is dense and uniformly distributed in n.t(V(0)), so pre-
cisely the fraction A (8)/A (rrt( V(0)), where /I (x) is the
area of x, of all vertices of the infinite pattern 6(ct) are
from the class represented by the elementary polygon
6 Cn.t( V(0)). These areas are easy to determine analyti-
cally, the resulting relative frequencies of the vertex
configuration classes are listed in Table II (we have added
up all contributions from the corresponding Ds orbits).

A very simple but effective algorithm for the construc-
tion of {t)(ct) can be extracted from the procedure ex-
plained above. This algorithm has been introduced in
and applied to patterns with fivefold symmetry. It is, in a
natural way, adapted to the dualization scheme and
works very economically. As this procedure is very gen-
eral, we will demonstrate it for the octagonal pattern in
some detail. The transcription to other examples will
then be obvious.

Without loss of generality, we may assume one vertex
to be positioned at 0&1K~~. Then, the following prescrip-
tion provides arbitrarily large patches of the pattern
6(ct) as in Fig. 4. (1) Choose ciEni(V(0)), so that
indeed the initial vertex configuration surrounds 0 in K~~.

(2) If mt(q) (qE I ) is a vertex of the pattern obtained so
far whose configuration is not completely known, one

TABLE II. The relative frequencies of the six allowed ver-
tices. The numbering refers to Fig. 3, A, =1+&2 is the silver
number.

No. of vertex Relative frequency

2+ A.

10—4A,
—24+ 10K,

58 —24K,
—70+ 29K,

29—12k,

Approximate value

0.414
0.343
0.142
0.059
0.012
0.029

finds the elementary polygon in nt(V(0)) that contains
ct —mt(q). This determines the vertex configuration
around rrt(q) and yields new vertices of the pattern to-
gether with their preimages in I . (3) Proceed with step
(2) with all incompletely known vertices until the tiling
reaches the size desired.

The set of forbidden ct (see above) is of measure zero in
m t( V(0) ) and does not contain the points
~t(Z )Airi{ V(0)), the latter guaranteeing patterns with

global Ds symmetry. (In fact, Fig. 4 is obtained from
et=0). It should be mentioned that every member of the
local isomorphism class that 8(0) belongs to possesses
generalized Ds symmetry, for details see Refs. 9 and 21.

Although we will not discuss the matching rules for
the octagonal quasilattice (they can be found in Refs. 15
and 16) we would like to spend some time on a certain
kind of symmetry of the pattern that has not yet been
mentioned in this article: the deAation-inflation transfor-
mation. Let us consider the linear transformation

XAE

E 3K

0::K

FIG. 3. The six vertex configurations of the ideal octagonal
pattern as obtained from Z on the left and their dual polygons
in the shadow of the Voronoi domain in K& on the right. All po-
lygons have a common overlap, the areas of which correspond
to the relative frequencies of the vertex configurations in the
ideal pattern.

V V/'X
A. X/' /'X /'4I 1% %1 ) Il 1L \1K t)

1\ L1 1% L1L X11%11\ L1 IL
X X/'

A. XJ' /'4 6 A. Xl /'X A. X
%1 1% L.1% %1 1%11%L(

A. X /'X /'4
) ) Il 1\ L./ 1%) IL L1L L.)' 1IL1% LV V XV V V/' V V

(XL1L.L1IL 1\L1 1% ) LL1 111111%11LL1 %11LL1 %1 1N L1L L
J'X X /'N

V /' V' V V V111 1L Ll ) L1 1L XJ(L L1 )'I
XX/ O'J'XV V V/'XV Vl

A. X/ /XXl rh Li 1%11L LIL. Ll 11L1
A AL Ll 1L L1L Ll IL1 ] L LI I

VX V /'V

FIG. 4. Quasiperiodic octagonal pattern as obtained from the
lattice Z . The start parameter, with respect to the construction
algorithm (cf. Sec. II) is c~ =0.
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1 1 0 —1

1 1 1 0
e,.~e,'- =e -M.;, M—:

—1 0 1 1

(2.10)

which leaves the lattice Z invariant because
M E Gl( 4, Z ), the group of unimodular 4 X4 matrices. '

A special property of M is

UMU =diag
—

]. 1 1
7 (2.1 1)

where A, = 1+&2 is the silver number, and, consequently,

[R(g),M"]=0, gcDs, kEZ . (2.12)

8= [M"lk HZ] —=Z forms an infinite abelian subgroup of
Gl(4, Z) the transformations of which have a certain
meaning for the octagonal pattern because they act as re-
scaling transformation in K~~ and K~ separately. It turns
out that

C =—cent&~~4 z~(Ds )/cent(Ds ), (2.13)

i.e., C is isomorphic with the factor group of the central-
izer of Ds in Gl(4,Z) divided by the center of Ds Of.
course, even more general transformations could be im-

portant, namely the group

S= IM ~G1(4,Z) l[~„,M] =0]

No« that [~ii M] 0 ~mpli~s [~„M]=0si~~e ~~~i+

Obviously,

D,C CQ,

(2.14)

(2.15)

and, moreover, Dsg C is a real subgroup of Q. The latter
additionally contains elements like

M =diag(A, , 1/2, ,
—1/k, —k)

or M =diag( l, l, , 1, —1/A, )

(2.16)

and powers, given in the reduced basis, cf. Eq. (2.5).
There is even an interesting group in between, JV, which
is

JV-=norm&(Ds ) /Ds

and one has

(2.17)

D,gCcD, e,A'cQ, (2.18)

~=[ „(q)lq&z'] (2.19)

is a free module, generated by four elements over Z. As
much, Ai has an invariant group isomorphic with Gl(4,Z)

where Ds, A' is the largest subgroup of Gl(4,Z) that is
compatible with splitting into K~~ and K] and with the
generalized point symmetry of the pattern obtained from
the Klotz construction. The group DsC (or the group
D8, JV') might be considered as an extension of the ordi-
nary point symmetry of the quasilattice (the 4D origin is
left fixed), while 9 takes over the role of the unimodular
group. In fact,

itself, but not all of its elements are compatible with
linear continuation in Kll. The subgroup of those which
are is isomorphic with 9 and characterized by Eq. (2.14).
In the case of an n-D lattice with the holohedry instead of
Ds, C becomes trivial and 9 the unimodular group of
that lattice that is isomorphic with Gl(n, Z).

The additional deflation-inflation "symmetry" has
played an important role in the theory of quasicrystals
because it is deeply connected to finding a consistent in-
dexing for the diffraction spots that live on a module in-
variant with respect to the group C. For the octagonal
quasilattice discussed in this article, one has also local
deflation-inflation rules, ' ' ' which in general are not
guaranteed by the existence of a linear transformation
like M in Eq. (2.10). Let us now come back to the main
path of the article, turning to the introduction of a cer-
tain class of defects.

III. THE ELASTIC ENERGY MEASURE
FOR GEOMETRIC DEFECTS OF

THE FIRST KIND

The description of ideal patterns that are free of defects
is rather complete, the description of real patterns is still
to be done: usually they are full of defects. An exhaus-
tive treatment of this problem, especially with realistic
decorations of the tiles, is far beyond the scope of this ar-
ticle (the interested reader is referred to Refs. 22 and 23,
where topological classifications of defects by means of
higher-dimensional crystallography are presented). But
already the purely geometric structure gives rise to
several defect models, one of which will be discussed in
what follows. To this end, we introduce the notation
"geometric defects. " If we find in a pattern vertex
configurations not contained in Fig. 4 we call them
geometric defects. If they are still built from the tiles of
the ideal pattern, we call them "geometric defects of the
first kind, " otherwise, if new tiles occur, "geometric de-
fects of the second kind. " Of course one might see simi-
larities with the treatment of quasicrystals via the method
of random tilings, where Ref. 24 is an example for a
scenario with only geometric defects of the first kind,
while Ref. 12 also includes the second kind. Neverthe-
less, our approach makes no reference at all to the liquid
phase or a phenomenologic ansatz for the energy and,
thus, seems to be more elementary. If what follows, we
present an approach to the geometric defects of the first
kind for the octagonal quasilattice and derive first ther-
modynamic consequences.

Let us start from the two tiles of our pattern, the
square and the 45' rhomb, combinatorically: modulo
orientation or reflection, one finds 16 possibilities to com-
plete a vertex surrounding without gaps and overlaps.
Six of them are those of Fig. 3, the ten missing ones are
shown in Fig. 5. It is easy to see that all of them can be
integrated into a patch of the octagonal quasilattice using
local rearrangements without using tiles of a different
shape. Hence, these ten objects are the candidates for the
geometric defects of the first kind. Let us consider such a
vertex configuration, i.e., any out of the list of the 16 pos-
sible ones, and let us assume this vertex to be part of an
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octagonal pattern without gaps or overlaps. Then, each
tile of our vertex configuration has a uniquely defined
preimage, i.e., a 2D boundary of the dual complex. All of
them share a common 4D lattice point, the preimage of
our vertex point. Consequently, the set of dual 2D boun-
daries, which are 2D boundaries of the Voronoi complex,
must lie within the same Voronoi cell, namely that one
dual of the 4D lattice point just mentioned. Therefore,
one can geometrize the scenario of the geometric defects
of the first kind within the ordinary Voronoi cell that is a
nontrivial result and would not be at all valid for the
geometric defects of the second kind. The next step is the
transition from the geometric picture to energetic con-
siderations.

By means of the dualization scheme, we will now intro-
duce an elastic measure which, locally, gives the amount
of energy one has to pay for the "forbidden" vertices.
From the geometry, we know that the whole analysis can
be carried out within n~(V(0)). Every vertex
configuration of Fig. 5 can be seen as the projection of
appropriate 2D boundaries P;*, 1 i r, where r is the
number of tiles surrounding the vertex point. Now, we
consider the set Irr~(P, )~1&i & r I of tiles in the perpen-
dicular space. Without loss of generality, we may assume
the whole set to belong to the 2D boundaries of V(0),
and this is shown in Fig. 5 as well. Obviously, not all the
n~(P, ) can have a common overlap because this would

give us back the vertices of Fig. 3.
Now, the question is what can this geometric scenario

tell us about the degree of deviation from the ideal pat-
tern. A combination of pairwise overlaps of the n~(P, )'s,
as proposed in Ref. 25 for the icosahedral phase, does not
result in a differentiation between ideal vertices and de-
fects. Hence, we go back to a function, first proposed by
Kramer, which measures a specific type of minimal
square distance in perpendicular space:

(3.1)

where a is the lattice constant and Eo a free-energy pa-
rameter. hE vanishes for the allowed vertices: one can
take all x~, from the common overlap. AE &0 for all
other vertices, as can be seen from Fig. 5. AE can be cal-
culated analytically, the results are listed in Table III. A
typical example of a minimizing point configuration xj;
is given in Fig. 6.

It turns out that AE is degenerate only for the ideal
vertices, the defects are brought into a unique sequence.
Partially, this sequence seems to be plausible since
strongly crystallographic configurations like No. 7 cost a
lot, but this simple picture is too naive and has to be re-
placed by a more reliable calculation that simultaneously
justifies the choice of AE as energy measure. This will be
achieved by some simple first-step stability calculations
based on a truncated Lennard-Jones potential as used in
Ref. 27:

VLJ(r) =

' l2 ' 6
0 0
r r

2
n. 1 r

cos 2Po
r

if 0«—P0
(3.2)

where r denotes the distance ~r, r, ~
between the ato—ms i

and j and P a truncation factor (here, P=2). The
minimum of the potential can be positioned by means of
0.. E is an arbitrary energy scale factor. For a diatomic
system, P, o, and E have to be replaced by I3,b, rJ,b, 8',

q

etc. , for more details see Ref. 27. To compare this
Lennard-Jones system with the elastic measure AE intro-
duced above we proceed as follows.

The first step is to choose a decoration of the planar
octagonal picture. A simple decoration of the vertices
with one sort of atoms leads to unsatisfactory results, i.e.,
the defective patterns sometimes are energetically more
favored than the ideal ones. But this is no surprise since
every 2D pattern with a monoatomic decoration and an
isotropic, scalar potential like VLJ will relax to the ordi-
nary honeycomb lattice. On the other hand, the forbid-
den eightfold symmetry was discovered in the binary al-
loy NiCr. ' So it is more reasonable to take a two-atom
decoration. To this end, one sort of atom is placed at the
center of the squares, the other one at the center of the

0 ' —rg +rg ~ 0'tery
—rg +rb, 0 yb

—rb +rb (3.3)

where r, are the radii of the "single potential" belonging
to the two different atoms. The possible energy scale fac-
tors E;, and the truncation factors P, are chosen to be

equal, respectively. With the optimized parameters, the
potential energy of the decorated ideal and the defect pat-
terns are calculated. The difference hVLJ of both is to be
compared with AE for the different defects. Unfortunate-
ly, it is not possible to place a geometric defect of the first
kind into the pattern separately without incorporating
additional ones in the neighborhood (except No. 15).
Therefore, only defect clusters can be compared.

As there are two energy scale factors E, Eo in both cal-
culations only the relative values AVLJ/E and hE/Eo

rhombi. For this decoration, the free parameters cr„,
0.

bb are optimized on the ideal pattern by means of
Monte Carlo calculations. Only two of the three possible
e, are linearly independent because of
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are shown in Table IV. Despite remarkable similarities
in both cases the order of precedence in Table IV is not
equal. This is due to the fact that the elastic measure
takes only one vertex into account, whereas the
Lennard-Jones potential is sensitive to the next-to-
nearest-neighbor vertices. In a sense the elastic energy
measure hE can be seen as a mean-field approximation of
the contribution of the forbidden vertex configurations to
the total energy.

Nevertheless, this simple approach justifies the
definition of the energy measure AE. The discrepancy
between both measures can be interpreted in two different
ways. On the one hand, it can be seen as a lack of the
elastic measure AE introduced above. It is obvious that
AE can only be seen as an average contribution for the
single defects that nevertheless should well described the
qualitative behavior away from any phase transitions.
On the other hand, it is possible to question the reliability
of isotropic, scalar potentials like VLJ for two-component
systems like alloys, but it is far beyond the scope of this
section to derive more subtle and more realistic models
that had to incorporate molecular-dynamics calculations.

No. of vertex
Approximate

value

9

10

11

12

13
14

15

16

6—2k
1

3
—(5 —2X)
-'( 5 —2X)

—„' {27—10K)
—'(132—54K, )

2(5 —2A. )

—'(5 —2k)
—,
' (29—12K, )

—'(5 —2A, )

1.17

0.33

0.11

0.14

0.36

0.23

0.34
0.21

0.01
0.26

IV. THERMODYNAMIC CONSEQUENCES
OF 6E FOR THE SPECIFIC HEAT

TABLE III. The energy measure AE of the ten forbidden
vertices. The numbering refers to that of Fig. 5. The 40 lattice
constant is a= 1.

10

x l

Because of the higher-dimensional background, it is
plausible that quasicrystals should have additional de-
grees of freedom in comparison with ordinary crystals.
This is usually described by means of phasons in the Lan-
dau theory of phase transitions from the liquid-to-solid
phase. ' " However, as mentioned in the Introduction,
we would like to avoid this phenomenologic description
and start from the classification of the geometric defects
of the first kind together with the energy measure AE in-
stead. This way, we do not make reference to the liquid
phase, except the idea that performed clusters might be
an explanation for the preference of the ideal tiles. Note

12

lV
13 14

16

FIG. 5. The ten forbidden vertices (geometric defects of the
first kind) of the octagonal pattern (left) and their dual polygons
in the shadow of the Voronoi domain in K, (right), respectively.

FIG. 6. The dual polygons of vertex No. 11 in the shadow of
the Voronoi domain in K& and the minimal point configuration
of the elastic energy measure AE connected by lines.



8098 M. BAAKE AND D. JOSEPH 42

Vertex
configuration hE/Eo b VU/E

TABLE IV. The difference b VL& of the potential energy be-

tween the ideal and defective vertex configurations using a trun-

cated Lennard-Jones potential in comparison to the results of
the energy measure hE. The 4D lattice constant is a=1. The
vertex configurations (numbered from 1 to 13) are different
patches that do not occur in the ideal octagonal pattern. They
consist of allowed (Fig. 3) and (up to 14) forbidden vertices {Fig.
5) and are placed into the ideal pattern. A11 defects of Fig. 5 are
incorporated. The configurations Nos. 1 and 2 only consist of
allowed vertices, whereas No. 3 consists of only one defect of
the first kind (No. 15 of Fig. 5).

that an ordinary crystal that is built from a single funda-
mental cell cannot show geometric defects of the first
kind. Hence, these defects reflect the additional degrees
of freedom possible in quasicrystals. Nevertheless, these
structures can be seen in a unified way by means of
higher-dimensional crystallography and defects, but
that does not help for our purposes.

Let us now introduce the Boltzmann factor for a vertex
configuration U of X vertices, e ( ' ' " 1, where b,E(C)
is the energy measure of Eq. (3.1). Regarding the vertex
configuration within a canonical ensemble, the partition
function can be written down:

1

2
3
4
5

6
7
8

9
10
11
12
13

0
0
0.01
0.51
0.74
0.78
1.27
1.28
1.41
1.56
2.31
2.53
3.58

0.00
0.07
0.56
1.10
1.99
2.24
2.79
3.38
3.86
2.86
4.36
4.33
5.42

Z ~ e
—pbE(c)

C

(4.1)

AE(C)= Q bE„; P=1 lkT, (4.2)

i.e., for a given X, as a sum over all possible arrangements
of X vertices. Of course, only those arrangements are
taken into account, the vertices of which are pairwise
connected by bonds.

Following the canonical way we can now calculate
the thermodynamic variables like the free energy f, inter-
nal energy u, and the specific heat cv for our defect sys-

tern,

1.20

1.00

0.80

CV, de f

0.60

0.40

0.20

o.oo '
0.00

I

50.00 100.00
I

150.00

T(K)

I

200. 00
I

250. 00
I

300.00

FIG. 7. The defect contribution c~d,& of the specific heat corresponding to Eq. (4.5) obtained from the N=2 canonical vertex en-

semble (Eo =0.1 eV, a =40 lattice constant).
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fd,f
= —p 'ln(Z& ), (4.3)

(4 4)

2 ~
c~d,f=kp

2
ln(Z~) .

a 2
(4.5)

For a given N, the number of all possible vertex
configurations that contribute to Zz is very large. To get
a first impression of the behavior of the thermodynamic
variables we calculate the N= 2 configurations as a rough
approximation of the 2D octagonal quasicrystal. Even in
this case there are more than 200 different combinations
of the 16 vertices possible. Of course, N=2 is only a
crude approximation of a real quasicrystal, wherefore the
results will only have a qualitative meaning. But experi-
ence with other nearest-neighbor models (like the Ising
model) and the finite-size investigation of the Fibonacci
quasicrystal (cf. Appendix) show that even at %=2 a
qualitative understanding of the behavior of the physical
system can be achieved.

Figure 7 shows the result for the defect contribution to
the specific heat cv per site. The parameter Eo in the en-

ergy measure, which corresponds to a local excitation en-
ergy in the perpendicular space, was chosen to be
E0=0.1 eV, the parameter a is the 4D lattice constant.
The first small maximum of cv is due to the existence of
vertex No. 15, which is by far the cheapest to be builtin
(cf. Table III) and has, therefore, a large contribution to
the specific heat at low temperatures. It is most probably
a finite-size effect. Unfortunately, it was not possible to

make calculations of the behavior of cz in the thermo-
dynamic limit E~ ao (cf. Appendix).

The ansatz for the energy measure contains only one
free parameter, Eo, which determines the strength of the
defect specific heat (assuming a is fixed by the lattice con-
stant). In order to see whether this contribution is a
detectable effect or not one has to compare it with the or-
dinary phonon term as realized in a simple manner by the
Einstein ansatz

2 x Q~E
e V, phon

X= (4.6)

V. CONCLUSION

For the 2D primitive octagonal quasilattice, we have
presented a rigorous geometric approach to the combina-
torically possible vertex configurations. Within the duali-

Here, we suppose that the phonon contribution is well
approximated by the formulas well known from the crys-
talline phase. Figure 8 shows cv~h, „ for SE=180 K,
cvdef (as above) and the sum cv=cvphon+cvdef assum
ing approximately the independence of the phonon and
the defect term. Taking the parameters as quoted above,
the defect term of c~ results in a significant rise with
respect to the phonon term alone that should be detect-
able. As mentioned at the beginning of this section, this
might be a consequence of the higher number of degrees
of freedom possible in quasicrystals that are well estab-
lished in other branches, e.g., neutron scattering.

1.20

1.00

O. BO

0.60

0.40

0.20

o.oo
0.00 50.00

I

100.00 150.00

T (K)

200. 00
I

250. 00 300.00

FIG. 8. (a) The phonon term of the specific heat corresponding to the Einstein ansatz in Eq. {4.6) (OE =180 K). (b) (The defect
term of Fig. 7. (c) The sum of (a) and (b).
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configuration C, the expression b,E„,(C) is to be seen as
its total energy. The structure suggests a mapping to the
exactly solvable Ising model:

N ~ N

E (cr ) = —J g o,o +, ——g (o +o., +, ), (A3)

where

and

K+h —K

—K K —he e
(A8)

tr tt+ &

= tr
& tTt 'E

I + 1 (A4) )l, , 2=e cosh(E)+[e sinh (h)+e ]' (A9)

Here, every interval between two vertices hosts a spin
variable with value + 1 for S and —1 for L, and the num-
ber of intervals equals the number of vertices due to
periodic boundary conditions. The idea is now to exactly
replace the contribution b,E(v} of a vertex v by the in-
teraction energy of neighboring spins. The vertices LL,
LS, and SL must be represented by the same value that
results in the condition H/2J =+ 1. We may add a con-
stant contribution to Eq. (A3) and find the partition func-
tion

hZ~= +exp E g o 0 +,+—(o 1+0 +, ) e
CT J

which coincides with Eq. (A2) if

—=K = PE d/4 . —h
0

(A5)

(A6)

Z =e trv =e'(A, +A, ) (A7)

Note that this approach is difFerent from a model for
magnetic behavior (like Ref. 33) because the technique of
spin variables is only used to calculate some geometric
contributions. With the technique of transfer matrices,
one obtains

Since k, A,2 with equality only if h =0 and K ~~, we
may use (A,2/A. , ) ~0 for N~ ao and simplify the expres-
sion for the thermodynamic limit

f= ——(ink, +E)1

p I ) (A10)

1

t)p

as@

ap
' (A 1 1)

t) A, lcv=k
t)p2

(A12)

for f, U, ct, the free energy, interval energy and specific
heat per site, respectively. Figure 9 shows the specific
heat that resembles that of the octagonal quasilattice. Of
course, Eq. (A5} is exact also finite size, which allows the
investigation of finite-size influences. For various param-
eters (E, T), our calculations showed that for any realistic
parameter choice the thermodynamic limit was reached
at N=5 within deviations of less than 10%%uo. Even at
N=2, the deviation did not exceed 20go. Looking back
to the octagonal lattice, this finite size behavior indicates
that the N=2 approximation of Sec. IV can be seen as
qualitatively reliable because the correlation length is
suSciently small.
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