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We discuss the diffraction patterns and other characteristics of the critical current as a function
of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for SIS
junctions but for all types of Josephson links, including SNS junctions, which may be present at
grain boundaries in high-T, superconductors. We discuss the generality of the Airy diffraction pat-
tern, which is expected to characterize grain-boundary barriers in bulk material more accurately
than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-T,
superconductors has a power-law dependence on very low magnetic fields, characteristic of aver-
aged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which
may result from the material properties of the barriers.

I. INTRODUCTION
Our modeling studies"? of critical current density in
granular high-T. superconductors assumed that the prin-
cipal barriers to transport current at low magnetic field
are connected Josephson weak links (JWL), that is, bar-
riers which are characterized by the Josephson sing rela-
tion. The principal fitting parameter in these studies was
the average barrier length normal to the applied magnetic
field. This scaling length originates in the diffraction pat-
terns common to all such weak links. For a wide variety
of samples prepared in several different laboratories, we
found that these average lengths were comparable to the
grain dimensions. Moreover, they scaled approximately
with the grain dimensions in samples having more than
an order of magnitude of variation in grain size. These
two results suggested that JWL dominate the low-field
dependence of the transport critical current in these bulk
samples and that the weak links are at the grain boun-
daries.

Recent experimental work on isolated grain boundaries
in thin films has shown current-voltage curves charac-
teristic of resistively shunted Josephson junctions,* and
(ragged) diffraction patterns,’ giving good confirmation
for the existence of grain-boundary JWL.

Yet it seems not to be fully appreciated that the
critical-current diffraction patterns are characteristic of
more than just SIS’ (superconductor-insulator-
superconductor) junctions. Other varieties of JWL, for
example SNS' (N is normal metal), SS'S"”, and SNIS’
junctions, can show diffraction behavior. Many studies
of SNS junctions have shown Fraunhofer-like patterns,
from the early study by Clarke,® to the more recent stud-
ies by Paterson’ and Hyun et al.?

Thus one purpose of this paper is to reemphasize the
broad foundation for these patterns. We also present a
new and more general derivation of the Airy diffraction
pattern, and show how it is to be preferred to the
Fraunhofer pattern when considering barriers in granular
materials. Finally, we relate the results of Hsiang and
Finnemore’ to the granular materials. These authors pre-
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dicted and observed an exponential magnetic field depen-
dence of the critical current in SNS junctions with very
thick (15-100 pum) and clean normal-metal barriers.
Such barriers are not likely to occur in the granular or
thin-film high-T, superconductors.

I1I. BASIS OF THE DIFFRACTION PATTERNS

The sketch given in this section will be familiar to
many, but is presented to emphasize the generality of the
diffraction patterns. The derivations of the Josephson
sing equation show its suitability to a wide variety of bar-
riers between superconductors. A good reference to non-
tunneling (that is, non-SIS) Josephson barriers is that of
Likharev.! The phenomenological treatment of Barone
and Paterno!! generally follows the derivation of Joseph-
son'? and considers both SIS’ and SNS’ junctions. Com-
menting on all classes of barriers, Likharev has stated,!?
“Rigorous theory shows that, in most cases, all terms ex-
cept the first one can be neglected,” referring to the most
general case

J= 3 J,sin(n¢), (1)

n=1

where J is the supercurrent density and ¢ is the phase
difference of the order parameters across the barrier.
That is, the simple Josephson equation,

J=J,sing , )

applies in most practical cases, including tunnel and non-
tunnel sandwiches of any composition, and other types of
weak links such as microbridges whose length does not
greatly exceed the coherence length of the link material.
Even point-contact junctions, the geometry of which
make a rigorous theoretical treatment impossible, are
very well described by Eq. (2) when the point contact is
considered shunted by a resistance, as shown by De
Waele and De Bruyn Ouboter!* and many others.

The material composition and thickness of the barriers
determines the magnitude, temperature dependence, and

Work of the U. S. Government
8014 Not subject to U. S. copyright



42 CRITICAL-CURRENT DIFFRACTION PATTERNS OF GRAIN-. ..

magnetic field dependence of the maximum current den-
sity, J,,. But the mere existence of the barrier, provided
that it is thin enough to allow phase coherence across it-
self, is sufficient to generate the sing relation together
with its generally small distortions, if any.'® For the ex-
istence of this phase relationship, it matters not whether
the barrier is a conductor, an insulator, or other material,
and the barrier need not be planar. Thus, the magnetic-
field dependence contained in sing applies quite generally
to a large class of JWL, not just the SIS structure.

The next piece in the development of the diffraction
pattern is the expression for the variation of the Joseph-
son phase difference ¢ along the plane of the barrier. An
excellent treatment is given by Van Duzer and Turner.'?
The variation of ¢ is

(D"v —fixB 3
2y VETRXB, 3)

where B is the flux density, from applied and self-fields, in
the plane of the barrier, / =A,+A;+¢ is the total field
penetration distance, and 7 is the unit vector normal to
the plane of the barrier. If B is constant (in practice this
means that the critical current is low enough that the
current-generated field is negligible, or equivalently that
the barrier dimension is less than about two Josephson
penetration lengths), integration of Eq. (3) and substitu-
tion into Eq. (2) gives

J(x)=J, sin(27BIx /Dy + b;) 4)

for B in the y direction. This is the usual equation from
which the diffraction patterns are obtained. If B =B (x),
we must use the Maxwell equation VXH=J together
with Egs. (2) and (3) to get a more general equation,'?'®
which must be solved numerically. In either case, the to-
tal current found by integrating the current density over
the area of the barrier shows a diffraction pattern as a
function of magnetic field.

In the derivation of Eq. (4) or its generalizations, the
properties of the barrier are not invoked, except that the
barrier must be thin enough that the two superconduc-
tors have a coherent-phase relation. Conducting barriers
cannot be much thicker than the coherence length in the
barrier. Even if the sing relation is not exact, a
diffraction pattern will still result, though not as simple
as those obtained from Eq. (4). The basis for the
diffraction patterns is thus quite general.

III. THE DIFFRACTION PATTERNS

The shape of the barrier determines the specific form of
the diffraction pattern. If the barrier is planar and has
the shape of a rectangle of sides L and W, with a constant
magnetic field normal to the side of length L, the integra-
tion is straightforward. The constant ¢, in Eq. (4) is
chosen to maximize the critical current, resulting in

LB)=J sin(7B /B,)
T 7B /B,

b (5)

m

where
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FIG. 1. Illustration of boundary shapes resulting from over-
lapping rectangles.

__________________________

By=®,/(IL) . (6)

This expression is commonly called the Fraunhofer
diffraction pattern, although in optics that term refers to
a class of diffraction patterns, not just |sinx /x|. If J,, is
not constant, and it may not be for grain-boundary junc-
tions, it must be included in the integration determining
I.; the Fraunhofer or other type of pattern will then be
distorted. Barone et al.!” have studied how random vari-
ations in J,, affect the diffraction pattern of a rectangular
junction.

In a granular material, the interface between grains
will seldom be rectangular, even if the grains have rec-
tangular cross sections. The contact area between two
rectangular faces of contacting rectangular paral-
lelepipeds (the basic grain morphology in the current
high-T, superconductors) is generally an irregular
polygon having from three to eight sides. Figure 1 illus-
trates this. In addition, many of the grains in a bulk-
sintered sample have irregular shapes in spite of the basic
tendency toward platelet growth. Thus a more appropri-
ate barrier shape than rectangular needs to be considered.
Further, the magnetic field will not generally be parallel
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FIG. 2. Comparison of Fraunhofer and Airy diffraction pat-
terns.
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to a principal axis of a rectangle or other type of polygon.
The Fraunhofer pattern is thus not an adequate basis for
the boundaries expected in a granular material.

Barone and Paterno'' show that for a circular planar
barrier, the diffraction pattern is of the Airy type

J(7B /By)

LB)=Jn A= 5o,

’ (7)

where A is the area of the barrier and J, is the first-order
Bessel function. B, has the same expression as above,
where L is now the diameter of the circle. Figure 2 com-
pares the Fraunhofer and Airy patterns; the principal
difference is the field dependence of the envelopes.

But Eq. (7) holds true also for an elliptical barrier, as
we now show. The elliptical shape is of particular in-
terest not just because it can be used to simulate the po-
lygonal shape of the contact area between two grains but
because Eq. (7) is valid for all orientations of the magnet-
ic field in the plane of the ellipse and is not confined to a
principal axis.

Figure 3 shows the geometry. The lengths of the semi-
major and semiminor axes are a and b; the area A of the
ellipse is 7ab, and its equation is

x2 2

o+ # =1. (8)
The applied field is along the direction y’ at an angle 6
from a principal axis; x' is the dimension to be used in
Eq. (4). The current through the barrier is then

a 4| . ,
I1=J, f_adx f*y,dy sin(kx'+d,) , 9)

where  y,=b(1—x2/a®)'"? k =2wBl /P, and
x'=x cos@—y sinf. Before proceeding with the integra-
tion, we determine the “length” L of the ellipse as seen by
the field B, that is, in the direction normal to the field;
this length appears in the result. It is found by calculat-
ing the slope dy /dx of the ellipse at the point (xg,y,)

where the slope is equal to cotd. This gives
xo=(a*/S)cosd and y,= —(b*/S)sin6, where
S =(b’cos*0+a’sin’0)'/? . (10)

L
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FIG. 3. An elliptical Josephson barrier. A magnetic field lies
in the plane of the ellipse at an angle 0 from a principal axis.
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Because x, =x,cos6 —y,sin6, we find L =2x,=2S.
Integration over y in Eq. (9) and substitution of
X =a cosa gives

_al, o ) .
I= —ks fo dasina[cos(k, a cosa—k b sina+¢,)

—cos(k.a cosa+ kb sina+d,)] ,

(1n
where k; =k sinf and k. =k cosf. The simplest way to
proceed from here is to use

k.a cosatkb sina=kS sin(yta) , (12)

where tany =(a /b)cot6, and S is given in Eq. (10). Then
the two cosine terms in Eq. (11) can be expressed as an
infinite series of Bessel functions. Only the first-order
terms survive the integration on a. Thus

J(KS)
I =2mabJ,, XS sindy, . (13)
Since
2Bl L _ ©wB
kS=——_—=——, 14

Eq. (7) results.

This is a useful result, not so much because many of
the polygonal contacts between grains in bulk samples
will approximate ellipses, but because it shows that for
any orientation of the applied field in the plane of the
barrier, the same expression—the Airy pattern—may be
used as the starting point in an averaging process in
granular materials. The field orientation appears only in
L, the projection of the ellipse normal to the field.

The field dependence of the envelope of the Airy pat-
tern at large B is B 7372 as contrasted with the B! of
the Fraunhofer pattern when B is along a principal axis.
But this falloff is by no means the most rapid of the possi-
ble diffraction patterns. When the field is along the prin-
cipal axis of a lens-shaped barrier, the pattern generally
falls off yet more steeply,'® and is sensitive to the details
of the shape. Thus we expect that in a bulk granular ma-
terial, the averaged diffraction pattern will have an ex-
ponent in a power-law field dependence of about —3 or a
little greater in magnitude.

IV. FIELD DEPENDENCE OF A JOSEPHSON
WEAK-LINK NETWORK

Every percolation path in a network of Josephson bar-
riers has a weakest link that will control J, for that path.
Cross linking these percolation paths still results in the
weakest links controlling the network J,. Our modeling
and fitting studies"? showed that the planes of these
weakest links must be within a few tens of degrees from
the direction of the applied field, as would be expected.
The field dependence of these weakest links, which will
have a distribution of areas, then characterizes J,.(B) for
the network of barriers. Area and field-angle averages of
the basic diffraction patterns showed that at B > B, the
field dependence of the critical current density based on
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the Airy pattern varies as B /% whereas that based on
the Fraunhofer pattern varies as B!, consistent with
their envelopes. The difference is significant; the former
is found to fit the J.(B) dependence of a wide range of
bulk sintered superconductors much better than the
latter.?

For thick SNS junctions, the factor J,, has been
shown® to vary as exp(—K ydy ), where dy is the thick-
ness of the normal metal barrier and K, ! is the decay
length of the order parameter in the normal metal. For
SNS barriers which are not thick, and for the SNS-type
barriers which may exist at grain boundaries, the thick-
ness dependence of J,, is less certain.'® Hsiang and Fin-
nemore’ have made an often-referenced calculation for an
SNS junction in which the normal-metal barrier was very
thick (much greater than the decay length of the order
parameter in the normal metal), and ‘“‘clean” (electron
mean free path much greater than the coherence length).
They argued that K, should vary approximately as the
applied field in this case, and indeed observed an approxi-
mate exponential dependence of J,, on field in such junc-
tions, in which the thickness of the normal-metal barrier
ranged from 15 g to 100 pm. It is noteworthy that
Clarke,® Paterson,” and Hyun et al.? saw only the
diffraction pattern in their SNS junctions that had
normal-metal barriers well under 1 um thick.

Since Kydy~=B /By according to Hsiang and Fin-
nemore’ (HF), the characteristic field of the exponential
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FIG. 5. Critical current density of another granular sample
of Y-Ba-Cu-O, plotted on a log-log scale, showing J. over a
large range of magnetic field. Two straight lines showing B !
and B ~*/? are also shown.

variation By would vary inversely with the barrier thick-
ness dy. To a good approximation it also depends only
on the properties of the normal metal, and not the adja-
cent superconductors.” The “decoupling” field B, of the
diffraction pattern for their thick junctions would have
been of the order of 1 uT, as they pointed out, whereas
their By was of the order of 1 mT. Since grain-boundary
weak links in high-T, superconductors should have

JC(B)/JC(O)

FIG. 4. (a) and (b) log-linear plots of J, vs B measurements on six different granular samples, showing no linear regions, that is, re
gions in which the current is exponential in B. (c) and (d) log-log plots for the same samples, plotted over the same field range; the
data in (c) are those of (a); the data in (d) are those of (b). The three samples of (a) and (c) have decoupling fields B, [see Eq. (10)] o
0.3-0.4 mT. The three samples of (a) and (d) have decoupling fields of 0.5-0.7 mT. The straight solid lines of (c) and (d) are draw1
with slopes of — 2 to show that the data vary approximately as B ~*/* for B > B,,.
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thicknesses of one to a few tens of nanometers, the
thicknesses which HF considered are 3 to 4 orders of
magnitude greater than expected in granular samples.
Thus unless the material properties of the junctions at the
boundaries in a granular sample are quite unusual, SNS
barriers there would be far too thin to see an exponential
field dependence at the low fields B, where decoupling is
observed, even if the HF analysis applied. The charac-
teristic field By of the exponential decay in the granular
samples should be of the order of 1 T, which is orders of
magnitude greater than the observed low-field drop in J,
that occurs in the 0.1-10mT range. Still, we should
mention that England et al.'® observed an exponential
decay of J. with a By on the order of 1 T in single-
grained epitaxial thin films of YBa,Cu;0, (Y-Ba-Cu-O).
In order to make connection with the HF theory, they
postulated the existence of microscopic SNS defects
within the films, even though the measured temperature
dependence of J,. did not agree with SNS theory.

The shapes of the J.(B) curves in granular high-T, su-
perconductors fit a power-law dependence at low fields.
We have plotted in Fig. 4 the transport critical current
data taken previously? on six different bulk granular sam-
ples to see whether they could be fitted with an exponen-
tial magnetic-field dependence. As is seen in Figs. 4(a)
and 4(b), the data do not follow such a form in the decou-
pling regime. Instead they conform well to a B 3/?
power law, as seen in Figs. 4(c) and 4(d), before leveling
off at higher fields. In Fig. 5 we show the measured
transport critical current in a different sample of Y-Ba-
Cu-O through the whole magnetic-field range up to 1 T.
It too shows the power-law decrease over almost 3 orders
of magnitude of J. in the range of the decoupling field.
The decrease observed is slightly steeper than B ~3/2 and
may be due to the influence of some lenticular shaped

boundary interfaces,'® as discussed earlier. At larger

fields (0.1 7) a nearly field-independent percolation
current through non-Josephson connections takes over
before the final drop at about 1 T signifying the approach
to B,,.

V. SUMMARY AND CONCLUSIONS

The magnetic-field dependence of the critical current
through JWL enters in two ways. First, it comes from
the quantum interference effect common to all Josephson
barriers, including SIS’, SNS’, SS'S", and SNIS’ junc-
tions. If the barrier is not precisely described by a sing
relation, a diffraction pattern will still result but will not
be as simple as those described above. The specific form
of the critical-current pattern depends on the shape of the
barrier. We have shown here that for the interfaces ex-
pected in the granular high-T, superconductors, the pat-
tern should be closer to the Airy type than to the
Fraunhofer type, and we have shown the calculation
leading to the Airy pattern for elliptical barrier shapes.

Second, the magnetic field can make itself felt through
the properties of the parameters which go into the ex-
pression for the maximum critical current. The analysis
of Hsiang and Finnemore’ for clean, thick SNS junctions
would not seem to apply to the thin grain-boundary junc-
tions characterizing high-7. superconductors; if it does,
its predicted exponential decay constant would likely be
of the order of 1 T. Further, an exponential magnetic-
field dependence does not fit the low-field ( <10 mT) de-
crease of J.(B) in the samples we have measured.

The field characteristic obtained from the averaged
Airy diffraction pattern is consistent with the observed
J.(B) curves in granular high-T, superconductors, both
in the magnitude of the decoupling field as well as in the
power-law dependence.
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FIG. 3. An elliptical Josephson barrier. A magnetic field lies
in the plane of the ellipse at an angle 6 from a principal axis.



