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Nonuniversal anisotropy dependence of critical-wetting exponents in a vector model
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A Landau theory of critical wetting is discussed for two anisotropic vector models of a semi-

infinite ferromagnet. In one case (cubic anisotropy) the existence of two competing length scales
leads to mean-field critical exponents which are nonuniversal and depend on the anisotropy con-
stant. This behavior is determined by the form of the tails of the magnetization profiles at the free
interfaces of the model. In the second case, a model with uniaxial anisotropy, the particular form of
the free interfacial profiles is governed by a single length scale and yields only universal wetting be-
havior at the mean-field level.

I. INTRODUCTION

A wetting transition' may be described as the intrusion
at the interface between two bulk phases 8 and C of a
third phase, A, as some thermodynamic field is varied at
bulk three-phase coexistence. It is often convenient to
consider C to be an inert, spectator phase which simply
exerts a potential on the A-8 system. In the present con-
text we employ magnetic terminology and C is a flat sub-
strate, taken to exert a localized magnetic Geld on the
spins in the surface layer of a semi-infinite ferromagnet,
so as to favor one of the bulk phases A. The system is
prepared such that the bulk phase far from the substrate
is B. On raising the temperature in zero applied bulk
field the thickness of the layer of A "wetting" the
substrate-B interface may diverge at some (wetting) tem-
perature T~. Depending on the particular system this
transition may be either first order or continuous (critical
wetting), in which case it is accompanied by a diverging
transverse correlation length g~~, associated with
capillary-wave-like fluctuations in the depinning A-8 in-
terface. ' Critical wetting has been the subject of consid-
erable theoretical attention, although the difficulties in-
herent in experimental studies mean that there has so far
been no unambiguous observation thereof.

Wetting is commonly encountered in the study of fluids
in contact with solid substrates, where A and 8 refer to
bulk-liquid and gas phases, respectively. In such situa-
tions the order parameter associated with the bulk transi-
tion is a scalar quantity. A mean-field analysis of wetting
transitions in a system with a two-component order pa-
rameter has been provided by Hauge, wherein it was
shown that the existence of two competing length scales
provided a regime in which v~~, the exponent associated
with the divergence of g~~, was nonuniversal. In particu-
lar, v~~ was shown to depend on the ratio of the two length
scales.

The purpose of this communication is to draw atten-
tion to a model in which this ratio depends on a single
temperature-independent parameter, the anisotropy
coefficient. This is the case for a semi-infinite two-
component vector model with cubic anisotropy, although

the arguments could easily be applied to models with
more components. In Sec. II we introduce the model
concerned and demonstrate, following the arguments of
Hauge, the anisotropy dependence of v~~ at the level of
Landau theory. Section III then contrasts this case with
that of a model with uniaxial anisotropy, for which an in-
crease in temperature is accompanied by a change in the
nature of the A-8 interface which precludes the possibili-
ty of nonuniversal mean-field exponents.

II. CUBIC ANISOTROPY

The model we consider has been studied in the context
of free interfaces in a system of infinite extent by Sub-
baswamy and Trullinger. In applying it here, we simply
include some plausible surface-free-energy terms along
the lines of those usually derived from a lattice-gas (Ising
model) treatment of a fluid in contact with an inert sub-
strate. '

If we take the surface of the substrate ("the wall" ) to be
the z =0 plane, then, provided surface and bulk magnetic
fields do not depend on the transverse position (x,y), a
mean-field analysis will yield extremal solutions for the
magnetization which depend only on the coordinate z
perpendicular to the wall. It is then convenient to con-
sider the one-dimensional problem described by the fol-
lowing functional, the minimum value of which is the ex-
cess free energy per unit area:

o, [M(z)]=u f "dz fo d M(z) +f(M(z))
0 2 dz

f(Mb) +(of, (—M(O)), (l)

where

f(M) (M +M )+ ~(M +M )+ M My H M

oc
f, (M)= (M„+M )

—H' M,
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and r is the usual reduced temperature ( T —T, ) /T, . H is
a uniform bulk magnetic field, while go and u are con-
stants with dimensions of length and energy per unit
volume, respectively. A, is a measure of the anisotropy
and equals unity in the isotropic limit. A. ) 1 favors align-
ment of the spins along a crystal axis, as opposed to along
a body diagonal, which is preferred for A, (1. The sur-
face terms may be interpreted as follows. That involving
c accounts for a possible enhancement {or dehancement,
according to the value of c) of the interaction between
spins in the surface layer (i.e., at z =0), while H' is the lo-
calized field acting on spins in this layer. In the Ising
case it is the value of c which determines the order of the
wetting transition, which, if continuous, occurs as
r=gocMb H'~—0+. We shall see that the anisotropy
parameter k also plays an important role in the present
model.

Notice that in the intgrand of Eq. (1) we have subtract-
ed the free-energy density of a uniform bulk magnetiza-
tion Mb so that o, is a functional representing the excess
free energy over and above that obtained if the bulk
phase approached right up to the wall.

On minimization o, [M(z)] yields

My )(

%M ~t

FIG. 1. Schematic contour map of V(M }=f{Mt, ) —f(M)
for the model with cubic anisotropy, and for H=O. The peaks
at A, B, D, and E correspond to the coexisting bulk phases. The
dashed line denotes a typical projection of M(z) just below T&.

d M 8 (a=x,y),
dzz 8M~

with the boundary conditions

dM 8f,
dz, o 8M (0)

lim =0 .
Z~oo a

(4)

V(M) = —
—,'g 0

where

from Mz is finite.
Clearly, as pointed out by Hauge, the forin of M(z) is

decided in the vicinity of peak A. One is therefore
prompted to expand V about Mz, where the principal
axes are M and M . To quadratic order this gives

'2

(M —M„)

The solution of these could be achieved on obtaining two
separate first integrals of Eq. (4). Unfortunately, these
equations are coupled owing to the term involving A, in

f(M). However, one integral obtainable for all values of
k 1s

2
ko 82f

BM M„
+3M' & +AMg

In terms of this approximate V(M), solution of Eq. (4)
yields

=f(M(z)) —f(Mb ) .
M (z)=M„+a e +b e

Z /(rz
—Z /g~

(10)

At best one can hope to proceed further for a specific
value of k by a judicious change of variables. Indeed, we
have shown previously that, for A. =3, using
P—:M„+M and Q=M„—M~, one may decouple the
equations into forms identical to those previously ob-
tained in the Ising model case.

For general A, we employ a different approach. Figure
1 is a schematic contour map (for H=O) of
V(M) =f(Mb) —f(M). T—he four peaks 3, B, D, and E,
correspond to coexisting uniform bulk solutions, for
which V =0. To be specific, let us consider wetting of the
wall-8 interface by phase A. When the wall is complete-
ly wet by A, the projection of the profile M(z) onto the
M M -plane passes through the peak at A, where, by Eq.
(7), dM/dz =0. Hence, M(z) maintains the value M„
over an infinite distance. For partial wetting by A the
projection of Mj,'z) no longer passes through, but only
close to A, and the distance over which the profile differs

The coefficients a and b may be determined from the
boundary conditions. However, those at z = ~ lie out-
side the region over which the above approximation is
valid, and one must therefore find some alternative
prescription for imposing the condition that the solution
approaches Mz as z ~. If the profile took the form of
part of a free A-8 interface, this would be guaranteed. In
general, this will not be the case. However, just below
T~, M(z) will approach sufficiently close to A, so that
beyond some finite distance zo one may, to a good ap-
proximation, replace it by Mo(z —I). This represents the
profile of a free interface centered at z = I, where I is the
(yet to be determined) thickness of the wetting layer.

For the purposes of determining the exponents associ-
ated with a critical wetting transition, we are interested
in the large-I asymptotics of Eq. (1). In particular, the ex-
ponents depend on the direction of approach (in the
M„M -plane) of M(zo) to M„. Hence, approximating
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the entire profile by Mp(z —I) should not alter the critical
exponents, although it will affect the actual wetting tem-
perature.

Solving for Mp(z —I) near A and substituting the re-
sulting approximation for M(z) in (1), we readily find

I I(ao (l) o A +o AB Ogpu(gpcMg H )ap e

(12)

where we have used M„=(& t,0). Th—is provides us

with three distinct regimes which will be discussed in
Secs. II A —II C.

A. A, &9

In this region of large anisotropy the tail of the free in-
terfacial profile approaches M„(in the M„M plane )

along a path exponentially close to the M„axis, and the
behavior is governed by one length scale g„. We have for
b,o, (l)—:[cr, (l)—cr „—o „s]/u,

Ecr (I) gp(gpcMg H )ap e

2
gp i g

—2I /g„+—(c —
g )a e "+

2 x Ox (13)

We assuine here, and in the remainder of Sec. II, that
c & g„. This then implies a critical wetting transition as

=gpM& „H„'~—0+ (cf. th—e Ising case'). It is a simple
matter to show that the equilibrium thickness lp of the
layer of phase A wetting the wall diverges as

IO
——ln~, (14)

—Pi.e., Ip -(T~ T) * with P, =0—. The transverse correla-
tion length

g~~
associated with fiuctuations of l(x,p) is

given by

(15)

which implies

(16)

The predominance of only one length scale in this regime

2

a

where o „and o „~ are the excess free energies per unit
area of the wall-A and A-8 interfaces, respectively, and
ao are positive constants.

This constitutes a restricted Landau theory, in terms of
the scalar order parameter 1. The equilibrium solution
will be obtained by minimizing with respect to I. The im-
portant terms will be the leading two, a critical wetting
transition being characterized by the vanishing of the
coeScient of the leading term. However, which of the
above constitute the leading two terms depends on the ra-
tio of the two lengths g„and g . For our choice of wet-

ting by phase A, we have from Eq. (9)

thus yields exponents identical to those obtained in the
one-component Ising case.

B. 3&1,&9

P, =0 ( logarithmic growth ),
„=—,

' [1—&2/(X —1)] (18)

In other words one obtains exponents which vary con-
tinuously with the anisotropy k.

C. A, (3
Provided that H'%0, the leading term is now

-I/g,
(pH'ap e (19)

which does not change sign with temperature, thus pre-
cluding the possibility of a continuous transition. The
global nature of ba, (1) is required to determine the de-
tails of any wetting transition, which, if it exists, must
necessarily be first order in nature.

The special case of k=3 would then represent a tricrit-
ical point. In any case, whatever the nature of the transi-
tion for A, &3, the exponents for A, =3 are found to be
universal and equivalent to those of regime A.

Let us now briefly consider how the aforementioned is
modified for the special case H„'=0. Regimes A and 8
now both exhibit the same (universal) mean-field ex-
ponents, while critical wetting becomes possible in regime
C. The exponents in this latter case are

P, =0 (logarithmic),

v( = [2—&2/(A. —1)] (20)

i.e., nonuniversal but with a modified dependence of A, .
As mentioned earlier, H'aoy (0 requires any wetting

transition to be first order in regime 8. It is of interest to
note that if H' makes a suSciently small angle with the y
axis, the transition involving wetting by phase A may be
followed, on further increasing the temperature, by a
second corresponding to wetting of the wall-A interface
by phase E (see Fig. 1). Above the temperature at which
A wets the wall-8 interface, one has a situation wherein
there is an A-8 interface infinitely removed from the
wall. Thus, the growth of a new phase at the wall can
essentially be viewed in terms of wetting of the wall-A in-
terface. If one now subtracts out from Eq. (1) the contri-
bution from a free A-8 interface, wetting by phase E can
be considered in the presence of an effective bulk A. The
above analysis then follows with the roles of the x and y
components interchanged, and with ao now a negative
constant. The large anisotropy regime A permits this
second transition to be critical. However, one now has
0'ao 0 and, unless the equality holds, such a phase

Here,
—I /g„ho, (l) = rj—pa p„e "+gpH'ap„e '+

As Hauge notes, Hy'ao„~0 is necessary for a continuous
transition. Leaving aside the equality for the moment,
one finds the following exponents:
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transition must be first order in regime 8. %e thus have
the possibility of a system which exihibits a continuous
followed by a first-order wetting transition. The only
case in this regime for which wetting by phase E may
proceed via a continuous transition is when H„'=O.
However, the lack of a symmetry-breaking field in the x
direction leads to the existence of only one wetting transi-
tion, viz. , that corresponding to wetting by phase E of the
wa11-8 interface. For A, =3, on the other hand, it is not
difficult to demonstrate the possibility (for suitably
chosen c) of two critical wetting transitions, provided
0& 8, & m/4, where 9, is the angle between H' and the y
axis.

M„"'(z)=0,

M„' '(z) =v'( —t —~)sech —&~/2z

M' '(z) = +v' t tan—h —&a/2zy' (23)

M"'(z)=+v' —t tanh —&—t/2z

the sign depending on the boundary conditions at
z=+ao. The class-2 solutions come in two hornotopic
varieties (chiralities}, and exist only for x & t—:

III. UNIAXIAL ANISOTROPY

We now turn to a model given by the functional (I),
but with

and

M„' '(z) = —&( t —tt)—sech — v'~/2

f(M) =—(M„+My )+—,'(M„+My ) +—M„—H.M . My '(z) =6v' —t tanh —v' /s2
0

(24)

(2l)

For H =0 there are only two coexisting bulk states given

by M& (0, +&—t ).
It has been previously shown that the free interfaces

of this model adopt forms in one of two possible classes.
The class-1 solutions involve variation of only My.

Thus for a given ~ there will be a chiral-symmetry-
breaking transition as the temperature is lowered. The
important point to note, in the present context, is that
within each class the solutions are governed by a single
length scale.

Performing the analysis of Sec. II for each class of
solution (with the added advantage of an explicit form for
the entire free interface} one finds

Acr, (l) = 2(ov' t (j—oc& t—H')e —' ~+—2gov' t [(2(o—c v 2t )v' —t —H—']e-
with (=go/v' 2t and—

ho, (1)= 2)0H„'&( —t a)e '—~ —(0[2(ocx—v'2a(x+—t ) v' t H—']e-
+2(OH,

' v'( t tt )e —' ~—+ (0[4(oca v'2x(t +3—x ) 2V tH' ]e— —

(25)

(26)

with /=$0/v'2v for class I and 2 solutions, respectively.
Hence, for the class-1 solutions, there exists the possibili-
ty of a critical wetting transition with universal ex-
ponents. On the other hand, for the class-2 solutions, the
leading order term is

—2$0H„' v'( t —a )e—

This vanishes only at —t =~, at which point the class-2
degenerates to a class-1 solution. Thus, in the regime
where class-2 solutions are stable, any wetting transition
must have a first-order character (unless H„' =0}. In con-
clusion then we have found for this uniaxial model, the
particular form of the free-interfacial profiles reduces the
number of relevant length scales to 1, and leads to only
universal mean-field wetting exponents.

Finally, in view of the fact that for continuous wetting
with short-range forces d =3 is known to be the upper
critical bulk dimension we should mention how the be-
havior in Secs. II and III is expected to be modified by
fluctuations. From the analysis of Subbaswamy and Trul-
linger, one can deduce that the lowest-lying band of exci-

tations associated with the free interface are of a
capillary-wave-like nature. Indeed, the only relevant

q =0 mode is the Goldstone mode associated with the
breaking of translational invariance in the z direction.
Spin-wave-like fluctuations may be expected to change
the shape of the magnetization profile, but the associated
spectrum exhibits a gap due to the presence of anisotro-
py. These excitations are thus noncritical at the wetting
transition. Hence, capillary waves may be expected to be
the only relevant critical fluctuations, and one expects
that renormalization of the critical exponents will be
along the lines of that found previously by Hauge and
Olaussen in terms of an interface displacernent mod-

1
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