Evidence of low-dimensional antiferromagnetic ordering and crystal structure in the R_2 BaNiO₅ (R = Y, Er) oxides

J. Amador, E. Gutiérrez-Puebla,^{*} M. A. Monge,^{*} I. Rasines,[†] and C. Ruíz-Valero^{*} Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas, Serrano 113, 28006 Madrid, Spain

F. Fernández and R. Sáez-Puche Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain

J. A. Campá

Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, 28040 Madrid, Spain (Received 28 December 1989; revised manuscript received 12 June 1990)

Crystals of R_2 BaNiO₅ (R = Y,Er) have been grown, and their structures have been established by single-crystal x-ray diffraction. Both compounds crystallize in the Nd₂BaNiO₅ structure type, with one-dimensional chains of vertex-sharing NiO_6 octahedra in the direction of the **a** axis. These octahedra show an unusual twofold distortion: The Ni-O distances to the two axial oxygen atoms are considerably shorter, 0.3 Å, than those to the four equatorial oxygens, and these oxygens are distorted from the right angles of a regular octahedron to 79.0(2)° or 77.7(6)°, respectively. As a result of this, Ni-O(axial)-Ni distances are very short, 3.76 and 3.75 Å for R = Y and Er, respectively. Xray powder diffraction data and the results of magnetic measurements for both oxides are given. The structural features mentioned elucidate why Ni^{2+} ions in polycrystalline Y₂BaNiO₅ behave as a monodimensional system in which they become antiferromagnetically ordered below 300 K. Besides that, the ferromagnetic interactions that operate below 40 K can be due to tridimensional interchain interactions and/or the presence of ferromagnetic impurities. The estimated Néel temperature for Y_2BaNiO_5 , higher than that reported for Y_2BaCuO_5 , is explained by the promotion of the superexchange Ni-O-Ni interactions along the chains of flattened NiO₆ octahedra sharing corners. In $Er_{3}BaNiO_{3}$ both effects are masked by the strong paramagnetic signal of Er^{3+} , and a maximum observed at 15.6 K for the susceptibility is attributed to tridimensional ordering of the Er^{3+} cations.

INTRODUCTION

Polycrystalline samples of a new family of oxides of general formula R_2 BaMO₅, where R stands for a trivalent rare-earth cation and M represents Cu or Zn, were first prepared and characterized by the group of Raveau^{1,2} in the early 1980s. The Cu compounds with Rfrom Sm to Tm are isostructural,¹ space group (SG) Pnma, and have a framework built up through edge and face sharing of RO_7 monocapped trigonal prisms, with the M atoms showing a pyramidal MO_5 coordination, which has been established^{3,4} in single crystals of two compounds. The R_2 BaCuO₅ oxides, which appear sometimes as impurities of the new high-temperature superconductors of the composition $R Ba_2 Cu_3 O_{7-x}$, have been designed as the green phases, while the isostoichiometric Zn compounds, being light colored, have been studied from the point of view of their optical properties.⁵ As for Y₂BaCuO₅, magnetic measurements and neutron diffraction studies have shown⁶ that copper moments order antiferromagnetically in this oxide at about 28 K.

The first example of a new family of oxides formulated as R_2 BaNiO₅ (R = Nd) was described by Müller-

tetragonal pyramidal Cu or Zn in R₂BaMO₅, Ni in Nd₂BaNiO₅ forms chains of flattened NiO₆ octahedra with four oxygens at a larger distance than the other two. Subsequent studies established 8^{-10} the same crystal structure for the majority of the compounds with R from Sm to Tm. Independently, our group prepared and characterized¹¹ polycrystalline samples of nine R_2 BaNiO₅ oxides (R = Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, or Tm) and, after growing single crystals, determined¹² the structure of the Gd compound following an anisotropic refinement which led to a discrepancy factor of 0.019 and to the following Ni-O internuclear distances: 4 of 2.197(6) Å and 2 of 1.8936(2) Å. This unusual distortion away from the ordinary octahedral coordination about Ni, as well as the existence of one-dimensional (1D) chains of vertexsharing octahedra in the direction of the a axis with extremely short Ni-O-Ni distances (3.79 Å in the Gd compound¹²), suggested interesting physical properties.

Buschbaum and co-workers⁷ in the SG Immm. Unlike

On the other hand, nearest oxygens to Ni are distorted from the 90° angles of a regular octahedron to $79.6(2)^\circ$. These observations¹² have been recently shown¹³ understandable using a model which combines results from

<u>42</u> 7918

molecular-orbital theory, tight-binding band-structure calculations, and empirical atom-atom potential arguments. In order to apply this combination of methods, x-ray diffraction data are needed from anisotropic refinements as good as possible. In addition, the possibility of obtaining nonstoichiometric samples of these oxides cannot be conclusively discarded: For example, in the case of the Cu compounds, it seems that nonstoichiometric crystals have been obtained.⁴ In these cases precise x-ray diffraction data are also needed for determining the population factors of the oxygen atoms. In the present paper we report the interesting magnetic properties of two of these oxides, R_2 BaNiO₅ (R = Y, Er), as well as their crystal structures and x-ray diffraction data. As far as we know, one of them, R = Y, has been prepared for the first time. Although the crystal structure of the Er compound is known,⁸ it was determined through an isotropic refinement which led to a high discrepancy factor, 0.103.

EXPERIMENTAL ASPECTS

Tiny prismatic crystals, black colored, of composition R_2 BaNiO₆ (R = Y, Er) were grown after adding R_2O_3 to a mixture of an excess of Ni metal with Ba(OH)₂·8H₂O held at 100 °C, heating to 1150 °C, and quenching in air. Er₂BaNiO₅ crystals were polysynthetically twinned. The crystals were mounted in a Kappa diffractometer. A summary of the fundamental crystal and refinement data is given in Table I. The cell dimensions were refined by least-squares fitting the 2θ values of 25 reflections. The

intensities were corrected for Lorentz and polarization effects. Scattering factors for neutral atoms and anomalous dispersion corrections for Y, Er, Ba, and Ni were taken from the International Tables for X-ray Crystallography.¹⁴ The structure was solved by Patterson and Fourier methods. An empirical absorption correction was applied at the end of the isotropic refinement.¹⁵ After anistropic full-matrix least-squares refinement, a final difference synthesis had no significant electron density. Most of the calculations were carried out with the X-ray 80 System.¹⁶ Polycrystalline R_2 BaNiO₅ (R = Y, Er) samples for magnetic measurements were prepared from stoichiometric mixtures of analytical grade R_2O_3 , BaO₂, and NiO, that were ground, pelletized, and heated in air for 12 h at 900, 1000, 1100, and 1200 °C. After each thermal treatment, the products were quenched, reground, and pelletized. The x-ray diffraction data for polycrystalline samples were measured and calculated as indicated elsewhere.¹⁷ For the calculation of the intensities of polycrystalline R_2 BaNiO₅ (R = Y, Er) the atomic positions and temperature factors obtained after solving the crystal structures were employed. Magnetic susceptibility measurements were made in the 4.2-300 K temperature range as pointed out elsewhere.¹⁷ The susceptibility, χ , was independent of the field at all temperatures for Er₂BaNiO₅, while in the case of the Y compound a small susceptibility dependence with the temperature below 40 K was observed. The molar susceptibilities were corrected for ionic diamagnetism using the values,¹⁸ in 10^{-6} emu mol⁻¹, of -12 for O^{2-} , Ni²⁺ and Y³⁺; -18 for Er³⁺; and -32 for Ba²⁺.

TABLE I. Crystal and refinement data for R_2 BaNiO₅ (R = Er, Y).

Formula	BaEr ₂ NiO ₅	BaY ₂ NiO ₅
Crystal system	Orthorhombic	Orthorhombic
Space group ^a	Immm	Immm
a (Å)	3.747(2)	3.7610(6)
b (Å)	5.737(2)	5.7610(7)
c (Å)	11.283(2)	11.323(2)
V (Å ³)	242.5(2)	245.34(7)
Z	2	2
F(000)	520	404
ρ (calc) (g cm ⁻³)	8.36	6.14
<i>t</i> (°C)	21	21
$\mu \ (\mathrm{cm}^{-1})$	465.2	352.3
Cryst. dimens. (mm ³)	0.1×0.1×0.25	$0.04 \times 0.04 \times 0.2$
Diffractomer	Enraf-Nonius CAD4	Enraf-Nonius CAD4
Radiation	Graphite-monochromated	Graphite-monochromated
	Mo $K\alpha$ ($\lambda = 0.71069$ Å)	Mo $K\alpha$ ($\lambda = 0.71069$ Å)
Scan technique	$\Omega/2 heta$	$\Omega/2\theta$
Data collected	(0,0,0) to (5,8,16)	(0,0,0) to (5,8,16)
Unique data	250	254
Unique data $(I) \ge 2\sigma(I)$	249	228
Std. rflns.	3 rfins.	3 rflns.
Decay	\leq 1% variation	
$R_F^{b}(\%)$	4.4	2.3
Average shift/error	0.006	0.002
Maximum shift/error	0.03	0.01

^aReference 14, Vol. IV, pp. 314–315. ^b $R_F = \sum_{\text{refl.}} (|F_{\text{obs}}| - |F_{\text{calc}}|) / \sum_{\text{refl.}} |F_{\text{obs}}|.$

<u>42</u>

TABLE II. Atomic coordinates and isotropic temperature factors for R_2 BaNiO₅, with standard deviations in parentheses.

Atom	x /a	y /b	z/c	$U_{\rm eq}{}^{\rm a}$
Y	0	0	0.2027(1)	1.8(3)
Ba	0	0.5	0	5.1(3)
Ni	0.5	0	0	2.7(5)
O (1)	0.5	0.2408(8)	0.1487(3)	5(1)
O(2)	0	0	0	4(2)
Er	0	0	0.2031(1)	3(1)
Ba	0	0.5	0	7(1)
Ni	0.5	0	0	6(1)
O (1)	0.5	0.2385(29)	0.1507(13)	14(4)
O(2)	0	0	0	13(9)

 ${}^{a}U_{eq} = \frac{1}{3} \sum_{i,j} [U_{ij}a_{i}^{*}a_{j}^{*}a_{i}a_{j}\cos(a_{i},a_{j})] \times 10^{-3}.$

RESULTS AND DISCUSSION

Crystal structure

Atomic coordinates for R_2 BaNiO₅ (R = Y, Er) are shown in Table II. Table III includes bond lengths and angles. For R = Er all the dimensions are very similar to those of the Y compound. There are three slightly different R-O distances, as Table III shows. RO7 polyhedra share different elements in each direction of the space giving rise to two kinds of interstices. Those in the a direction (Fig. 1) show the form of flattened octahedra with four equal NiO(1) equatorial distances and two NiO(2) apical, 0.3 Å shorter. The NiO₆ flattened octahedra share O(2) vertices with each other, being the Ni-O-Ni distances 3.76 and 3.75 Å, respectively, even shorter than in the Gd compound.¹² The interstices formed in the b direction are bicapped quadrangular cavities which house the Ba^{2+} cations. These three kinds of polyhedra converge at the O(2) atoms, and the structure consists of blocks of RO7 polyhedra sharing two edges of their largest quandrangular faces, in the a direction. Two of these blocks are opposite each other in the c direction, as Fig. 2

TABLE III. Bond distances (Å) and angles (°) and principal interatomic distances in BaR_2NiO_5 .

			$R = \mathrm{Er}$	R = Y
Ba	O(1)	[8]	2.941(12)	2.933(3)
	O (2)	[2]	2.869(1)	2.8805(3)
R	O (1)	[4]	2.394(10)	2.416(3)
	O (1)	[2]	2.229(15)	2.250(4)
	O(2)	[1]	2.292(1)	2.2952(8)
Ni	O (1)	[4]	2.183(15)	2.182(4)
	O (2)	[2]	1.874(1)	1.8805(3)
R	R	[4]	3.586(1)	3.6029(4)
		[2]	3.747(2)	3.7610(6)
Ni	Ni	[2]	3.747(2)	3.7610(6)
O(1)-Ni-O(1)		[2]	180.0(3)	180.0(5)
		[2]	102.3(6)	101.0(2)
		[2]	77.7(6)	79.0(2)
O(1)-Ni-O(2)		[8]	90.000(1)	90.000(2)
O(2)-Ni-O(2)		[1]	180	180

FIG. 1. View along the c direction (rotated 10°) showing the chains of NiO₆ octahedra.

shows, and share the vertex occupied by the O(2) atom. The set formed by two blocks is joined along the **b** direction to the other two sets, one placed above it and the other below. This second set is also shown in Fig. 2.

Magnetic measurements

Tables IV and V show the x-ray diffraction data for polycrystalline samples of the Y and Er compounds, re-

FIG. 2. Perspective of the packing of RO_7 polyhedra in the crystal structure of R_2 BaNiO₅.

spectively. The temperature dependence of the magnetic susceptibility for Y₂BaNiO₅ is shown in Fig. 3. A progressive decreasing in the susceptibility can be observed with decreasing temperatures until 60 K. Below this temperature the susceptibility remains almost constant until 20 K. At the lowest temperatures down to 4.2 K a sharp field dependence increasing is observed. The susceptibility at room temperature is 1.093×10^{-3} emu mol⁻¹, a value rather smaller than that expected for Ni²⁺ with two unpaired localized electrons and S=1. This behavior can be attributed to the superexchange interactions due to the strong O-e_g-O overlapping at 180° of

the oxygen p orbitals and the Ni²⁺ d orbitals giving rise to strong antiferromagnetic interactions. These interactions are more intense than those present in La₂NiO₄, although Ni²⁺ ions have two magnetic neighbors in linear Y₂BaNiO₅ and four in layered La₂NiO₄. The shorter Ni-O-Ni distances in Y₂BaNiO₅, 3.76 Å, as compared with those¹⁹ in La₂NiO₄, 3.86 Å, justify for the Y oxide a more effective O-e_g-O overlapping, stronger superexchange interactions, and the ordering of the Ni²⁺ ions along the chains of NiO₆ flattened octahedra at room temperature. The increase of susceptibility observed below 20 K could be due to two possible causes. At these low temperatures

TABLE IV. X-ray diffraction data for polycrystalline Y₂BaNiO₅. k l h k l $I_{\rm obs}$ h $d_{\rm obs}$ $d_{\rm calc}$ I_{obs} I_{calc} $d_{\rm obs}$ $d_{\rm calc}$ $I_{\rm calc}$ 5.68 5.67 1.1434 1.1434 > 5.15 5.14 1.1433 > 3.572 3.568 1.1332 1.1332 3.160 3.159 1.1029 > 2.881 2.880 1.1018 1.1021 > 2.834 2.833 1.0969 1.0968 2.753 2.752 1.0909 1.0909 2.653 2.665 1.0814 1.0814 2.5686 2.5677 1.0603 1.0602 2.2415 1.0546 1.0545 2.1090 1.0338 1.0338 >2.1072 2.1060 1.0320 > 1.0320 2.0198 2.0198 1.0280 1.0276 1.9564 1.9561 1.0249 1.0250 1.9416 1.9411 0.9783 0.9781 1.8891 1.8886 0.9706 0.9705 1.8804 1.8801 0.9600 0.9602 1.7118 1.7118 0.9507 0.9508 1.6371 1.6372 0.9400 0.9400 1.6199 1.6196 0.9389 0.9387 1.6156 1.6156 0.9271 1.6097 1.6097 0.9266 0.9264 1.5794 0.9196 0.9197 1.5749 1.5744 0.9192 1.5667 1.5665 0.9094 1.5584 1.5585 0.9046 0.9045 1.4882 1.4869 0.9011 0.9010 1.4651 0.8937 0.8937 > 1.4644 1.4641 > 0.8906 0.8906 1.4409 1.4402 0.8725 0.8726 1.4037 1.4034 0.8696 0.8696 1.3760 1.3762 0.8605 0.8606 1.3355 1.3359 0.8586 0.8586 1.3325 1.3324 0.8551 1.2918 0.8523 0.8523 1.2839 1.2839 0.8488 1.2657 1.2657 0.8435 0.8433 0.8394 1.2377 1.2377 0.8398 1.2093 1.2093 0.8390 0.8388 1.1998 1.1998 0.8266 0.8267 1.1971 1.1971 0.8240 1.1939 0.8186 0.8186 1.1565 1.1566 0.8049 1.1452 1.1452 0.8049 0.8048 0.7959 0.7960

it is possible that some interchain ferromagnetic interactions could be operative, giving rise to a tridimensional magnetic order; however, the presence and/or some ferromagnetic impurities cannot be discarded.

The reciprocal susceptibility for $\text{Er}_2\text{BaNiO}_5$ is displayed in Fig. 4. In the 300-40 K temperature range a Curie-Weiss behavior can be observed, since $\chi = 11.50/(T+0.94)$. Below 40 K the experimental data exhibit a strong deviation from the Curie-Weiss law and the curve bends upward showing a minimum at 15 K. The magnetic moment calculated from the Curie-Weiss law is $9.59\mu_B$ which fairly agrees with that expected, 9.6 μ_B , for the free Er³⁺ ion.²⁰ The contribution to the susceptibility of Ni²⁺, expected to be antiferromagnetically ordered as in isostructural Y₂BaNiO₅, should be very small and will be masked by the strong paramagnetic signal due to the *f* electrons of the Er³⁺ ions. The low-temperature data are better illustrated in the χ versus *T* plot, as shown in the inset in Fig. 4. The maximum observed in χ at 15.6 K can be attributed to tridimensional antiferromagnetic ordering of the Er³⁺ ions. Below this temperature the susceptibility sharply falls in such a way that the magnetic moment of Er³⁺ at the liquid helium temperature only reaches about $3\mu_B$. This is unusual and

 h	k	l	d _{obs}	d _{calc}		I lay unit	I _{calc}	h	$\frac{poly}{k}$	l	d _{obs}	d _{calc}		I _{obs}	I _{calc}
0	0	2	5 68	5.65		19	20	3	2	1		1 1406			14
0	1	1	5.08	5.05		19	20	2	4	0	1 1 3 9 9	1 1 3 9 3		47	44
1	0	1	3 571	3 561		103	102	0	0	10	1 1292	1 1293		13	15
0	1	3	3 177	3 147		356	344	1	2	9	1.12/2	1.0991	>	15	13
0	2	0	2.874	2.868		304	304	0	5	3	1.0977	1.0974	>	22	14
0	0	4	2.829	2.823		123	105	3	0	5	1.0945	1.0942		26	22
1	1	2	2.749	2.744		1000	1000	1	3	8	1.0870	1.0870		32	40
1	0	3	2.663	2.658		19	14	1	5	2	1.0772	1.0769		38	46
1	2	1		2.2336			148	2	4	4	1.0565	1.0562		14	18
0	1	5	2.1028	2.1016		80	72	0	2	10	1.0508	1.0508		26	35
1	1	4		2.0995			10	1	4	7		1.0306	>		10
0	2	4	2.0115	2.0120		162	155	2	3	7	1.0304	1.0303	>	36	28
1	2	3	1.9512	1.9493		85	80	3	3	2	1.0295	1.0292		40	42
1	0	5	1.9362	1.9351		157	153	3	2	5	1.0224	1.0223		29	35
0	0	6	1.8828	1.8822		62	44	2	4	6	0.9749	0.9747		15	18
2	0	0	1.8775	1.8761		140	141	2	0	10	0.9678	0.9676		16	21
0	3	3	1.7050	1.7047	>	65	52	0	6	0	0.9564	0.9560		9	11
1	3	0		1.7036	>		11	2	5	3	0.9477	0.9473		17	22
1	3	2	1.6315	1.6310		188	198	4	0	0		0.9381	>		15
1	1	6		1.6144			15	0	5	7	0.9352	0.9349	>	20	12
2	1	3	1.6115	1.6115		96	94	3	1	8	0.9240	0.9239		30	32
1	2	5	1.6047	1.6041		161	151	1	6	1		0.9233			10
0	2	6		1.5736			24	2	2	10	0.9168	0.9168		47	58
2	2	0	1.5709	1.5701		92	95	1	4	9		0.9158			14
2	0	4	1.5633	1.5626			34	0	6	4	0.9059	0.9055		11	÷ 12
0	1	7	1.5531	1.5531		52	48	1	1	12	0.9014	0.9015	>	59	43
1	0	7	1.4822	1.4821		20	19	4	1	3	0.8992	0.8990	>		22
0	3	5	1.4596	1.4593		22	20	4	2	0	0.8919	0.8916		16	22
0	4	0	1.4348	1.4340		51	52	0	4	10	0.8875	0.8872		18	22
2	1	5	1.3998	1.3996		35	33	3	4	5	0.8699	0.8701		18	37
2	2	4	1.3723	1.3721		61	74	1	5	8	0.8667	0.8662		23	35
1	4	1	1.3310	1.3302		19	12	1	6	5	0.8574	0.8571		26	37
2	0	6	1.3289	1.3287		29	23	4	1	5		0.8566			11
1	1	8	1.2877	1.2875			71	2	6	0	0.8525	0.8518		18	24
0	4	4	1.2791	1.2785		17	17	4	2	4	0.8503	0.8502		25	27
2	3	3	1.2617	1.2620		39	34	3	2	9		0.8464			12
0	3	7	1.2333	1.2330		19	23	3	3	8	0.8410	0.8408		25	37
3	1	0	1.2100	1.2220		8	3	2	5	7	0.8368	0.8368		31	30
2	2	6	1.2059	1.2057		22	19	3	5	2		0.8361			45
2	1	7	1.1965	1.1964		44	40	1	3	12	0.8238	0.8238		30	55
3	1	2	1.1946	1.1944		57	63	2	6	4	0.8158	0.8155		18	33
1	0	9		1.1900			11	4	1	7	_	0.8029			41
1	4	5	1.1524	1.1521	>	54	50	2	4	10	0.8022	0.8021		32	69
2	3	5		1.1519	>		15	1	7	2	0.7929	0.7926		27	73
0	4	6		1.1407			13								

TABLE V. X-ray diffraction data for polycrystalline Er₂BaNiO₅.

FIG. 3. Temperature dependence of the magnetic susceptibility per mole of Ni^{2+} of Y_2BaNiO_5 .

indicates strong interactions which mask the expected crystal-field effect ordinarily present in the Er mixed oxides at this lower temperature.^{21,22} Although antiferromagnetic order has been recently reported in some R_2MO_4 oxides, R being a rare earth and M equal to Ni or Cu, in all cases the Néel temperatures are^{23,24} below 15.6 K.

In summary, the oxides formulated R_2 BaNiO₅ (R = Y, Er) exhibit very interesting structural and magnetic properties. In the Y compound, chains of NiO₆ flattened octahedra and extremely short Ni-O-Ni distances explain the behavior of Ni²⁺ ions as a monodimensional 1D system, in which they become antiferromagnetically ordered below 300 K. Moreover, in the Y oxide some ferromagnetic interactions are operative below 40 K as a consequence of tridimensional interchain interactions and/or the presence of ferromagnetic impurities. The estimated Néel temperature for this oxide is comparatively higher than the value of 28 K reported⁶ from neutron diffraction data for the analogous Y₂BaCuO₅. The mentioned structural differences between both compounds should be responsible for such distinct behavior. Whereas in Y₂BaNiO₅ the superexchange Ni-O-Ni is clearly promoted along the chains of sharing-corners flattened NiO₆ octahedra, the low Néel temperature of 28 K for Y_2BaCuO_5 is due to the absence of a direct network

FIG. 4. Temperature variation of the reciprocal magnetic susceptibility per mole of Er^{3+} in Er_2BaNiO_5 . In the inset, plotting of the magnetic susceptibility per mole of Er^{3+} in Er_2BaNiO_5 , as a function of the temperature.

Cu-O-Cu superexchange path in its structure. In the case of the Er oxide, both effects are masked by the strong paramagnetic signal of Er^{3+} , and the maximum observed for the susceptibility at 15.6 K can be attributed to a tridimensional ordering of the Er^{3+} ions.

Although the key factor of the interesting properties exhibited by the R_2 BaNiO₅ oxides appears to be the presence of chains of flattened NiO₆ octahedra with short Ni-O-Ni distances, we have grown crystals of the Nd, Sm, Eu, Dy, and Ho compounds and we are performing magnetic measurements on polycrystalline samples of these oxides to further elucidate the nature of the antiferromagnetic order which they exhibit. We are also currently undertaking neutron diffraction measurements to explore their magnetic structure. Listings of anisotropic thermal parameters for Y₂BaNiO₅ are Er₂BaNiO₅ and of observed and calculated structure factors are available.²⁵

ACKNOWLEDGMENTS

The authors are indebted to the Spanish Comisión Interministerial de Ciencia y Tecnología for financial support under Project No. MAT 88-0250-C 02.

- *Also at the Grupo de Difracción; Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid, Spain.
- [†]Author to whom correspondence should be addressed.
- ¹C. Michel and B. Raveau, J. Solid State Chem. 43, 73 (1982).
- ²C. Michel and B. Raveau, J. Solid State Chem. 49, 150 (1983).
- ³S. Schiffler and H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 540-541, 243 (1986).
- ⁴J. A. Campá, J. M. Gómez de Salazar, E. Gutiérrez Puebla, M. A. Monge, I. Rasines, and C. Ruiz-Valero, Phys. Rev. B 37, 529 (1988).
- ⁵M. Taïbi, J. Aride, E. Antic-Fidancev, M. Lemaitre-Blaise, P. Porcher, and P. Caro, J. Solid State Chem. 74, 329 (1988).
- ⁶T. Chattopadhyay, P. J. Brown, U. Köbler, and M. Wilhelm, Europhys. Lett. 8, 685 (1989).
- ⁷S. Schiffler and H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 532, 10 (1986).
- ⁸S. Schiffler and H. Müller-Buschbaum, Monatsh. Chem. 118, 741 (1987).
- ⁹H. Müller-Buschbaum and C. Lang, J. Less-Common Met. 142, L1 (1988).

- ¹⁰H. Müller-Buschbaum and I. Rüter, Z. Anorg. Allg. Chem. 572, 181 (1989).
- ¹¹J. Amador, Doctoral thesis, Universidad Autónoma de Madrid, 1989.
- ¹²J. Amador, E. Gutiérrez Puebla, M. A. Monge, I. Rasines, J. A. Campá, J. M. Gómez de Salazar, and C. Ruiz Valero, Solid State Ion. **32-33**, 123 (1989).
- ¹³J. K. Burdett and J. F. Mitchell, J. Am. Chem. Soc. 112, 6571 (1990).
- ¹⁴International Tables for X-ray Crystallography, edited by C. H. Macgillavry and G. D. Rieck (Kynoch, Birmingham, England, 1983), Vol. III, pp. 210–216.
- ¹⁵N. Walker and S. Stuart, Acta Crystallogr. Sect. A **39**, 158 (1983).
- ¹⁶J. M. Stewart, F. A. Kundell, and J. C. Baldwin, *The X-ray 80 System* (Computer Science Center, University of Maryland, College Park, Maryland, 1980).
- ¹⁷F. Fernández, R. Sáez-Puche, C. Cascales, C. M. Marcano, and I. Rasines, J. Phys. Chem. Solids **50**, 871 (1989).
- ¹⁸Theory and Applications of Molecular Paramagnetism, edited by E. A. Boudreaux and L. N. Mulay (Wiley, New York, 1976), p. 494.

- ¹⁹J. B. Goodenough and A. Ramashesa, Mater. Res. Bull. 17, 383 (1982).
- ²⁰Boudreaux and Mulay (Ref. 18), p. 307.
- ²¹M. D. Guo, A. T. Aldred, and S. K. Chan, J. Phys. Chem. Solids 48, 229 (1987).
- ²²Y. Laureino, A. Jerez, F. Fernández, R. Sáez-Puche, M. L. Veiga, and C. Pico, J. Less-Common Met. 157, 335 (1990).
- ²³J. Rodriguez-Carvajal, M. T. Fernández, J. L. Martinez, F. Fernández, and R. Sáez-Puche, Europhys. Lett. 11, 261 (1990).
- ²⁴R. Sáez-Puche, M. Norton, T. R. White, and W. S. Glaunsinger, J. Solid State Chem. 50, 281 (1983).
- ²⁵See AIP document No. PAPS-PRBMD-42-7918-06 for listings of anisotropic thermal parameters for Y₂BaNiO₅ (1 page) and Er₂BaNiO₅ (1 page); and listings of observed and calculated structure factors for Y₂BaNiO₅ (2 pages) and Er₂BaNiO₅ (2 pages). Order by PAPS number and journal reference from American Institute of Physics, Auxiliary Publication Service, 335 East 45th Street, New York, NY 10017. The prices are \$1.50 for microfiche and \$5 for photocopies. Airmail additional. Make checks payable to the American Institute of Physics.