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Atkins' theory of third sound in thick films of superfluid helium-4 has been extended to include a
heat source for excitation. Calculations based on the resulting equations reveal the physical struc-

ture of third sound, and it is shown that this structure is not consistent with the standard descrip-

tion, which is based largely on qualitative analysis. Calculations also predict the existence of soli-

tary waves, a new type of third-sound signal excited by very short heat pulses. They have not yet

been observed experimentally. Additional calculations show in detail how such waves are generated

at a localized heater. Results of various observations of third sound reported in the literature dur-

ing the past 30 years are studied with the aid of the more complete theory. This study indicates a

number of factors that complicated interpretation of the observations and suggests that large

discrepancies between theoretical and experimental results that have been reported may be largely

due to inappropriate comparisons. Conditions favorable for observing individual normal modes of
third sound, where interpretation of the results should be particularly transparent, are investigated

and could serve as a useful basis for new experiments. A direct method for accurately measuring

the vaporization coefficient utilizing results in this article is described. This coefficient is of central

importance in accounting for third-sound attenuation. Failure to account for that attenuation was

believed to be a major deficiency of the theory in the past. Also, an energy conservation law is de-

rived and then used to help explain the physical nature of third-sound attenuation.

I. INTRODUCTION

Third sound is a long-wavelength surface disturbance
on a liquid-helium film in which the normal component
of the fluid remains stationary while the superfluid com-
ponent oscillates mainly in a direction parallel to the
wall. This motion produces ripples at the free surface of
the film similar to water waves in a shallow channel.

Atkins' published the seminal paper on third sound in
1959. Despite the impressive insight and relatively sim-
ple concepts underlying Atkins' original theory, the un-

derstanding of these surface waves is still incomplete and
an explanation of certain features that have been ob-
served experimentally still stands as a challenge to
researchers today. Progress in this effort promises great
reward, for history shows that third sound is a highly
valuable tool in probing a variety of fundamental proper-
ties of liquid- He films. A number of examples of such
properties will be enumerated and discussed later in this
introduction. Sharpening the theory of third sound will

open up new uses for it as a probe. Furthermore, it seems
likely that some of the shortcomings of the existing
theory will find explanation in mechanisms and phenome-
na that are of considerable interest in their own right.

We have extended Atkins' basic theory' to include a
source for heat that can excite third sound. Then we
have applied the resulting equations to a one-dimensional
model obeying periodic boundary conditions. Such a
model can represent a variety of experimentally impor-
tant configurations, including an annular track, a
cylinder, and a flat plate, provided that the heater and
detector are arranged appropriately. General formulas

for solutions of those equations have been found which
give a complete description of third-sound waves in terms
of displacement of the film surface, superfluid velocity,
and temperature change as functions of space and time.
Algebraic expressions for quantities that occur in the
general formulas are found for special excitation signals.

Calculations based on those new results are then used
to elucidate a number of features of third sound.

One of the most interesting new phenomena revealed
by the theoretical calculations is a solitary wave, basically
a single ripple on the film surface, that can be excited by
a very short pulse at a localized heater and which subse-
quently propagates with almost constant velocity. (The
term "solitary wave" used here refers to a propagating
disturbance accounted for by linearized equations, like
those in our treatment. "Solitary wave" should not be
confused with "soliton, "which is a term usually reserved
for certain disturbances accounted for by a nonlinear
theory. ) Under some conditions the waves travel with lit-
tle distortion, but under certain conditions the wave form
changes substantially as it travels along the surface. The
origin of the distortion of the shape is found to be
significantly different from the well-known mechanism of
wave-packet spreading in a dispersive medium. The pro-
cesses involved in formation of the wave at the heater are
studied and evolution of the surface disturbance in space
and time is exhibited. Correlations in the space and time
distributions of surface displacement, temperature
change, and superfluid velocity are found to be quite
different from those expected on the basis of earlier dis-
cussions of the structure of third-sound waves. This
discrepancy was found not only for solitary waves, but
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for all of the wave forms that we have investigated so far.
Calculations based on the new formulas have been used

to help analyze and explain experimental results that oth-
er researchers have reported in the literature. Also, cal-
culations have been made to aid in the search for
methods and arrangements that are particularly favorable
for observation of third sound in its most elementary
form, that is, as an excitation of an individual normal
mode, or resonance. In addition, calculations have been
made to study uniform evaporation of a film as a means
of directly measuring a coefficient of vaporization that is
of major importance in the theory.

The numerical results show that contributions to the
surface disturbance by the normal mode at wave number
k =0 can be important in some instances and must have
affected certain earlier experimental observations. Those
contributions have not been taken into account in previ-
ous treatments of third sound. Furthermore, in the cases
we have examined so far, more than one normal mode
with finite wave numbers was usually appreciably excited,
a complication that has not been taken into account pre-
viously in the interpretation of experimental data.

We examine the working hypothesis that the basic
theory of third sound developed by Atkins is fairly accu-
rate when it is extended to include a heat source for exci-
tation. This hypothesis is in conflict with the current in-
terpretation of a large body of existing experimental data,
especially that part which relates to attenuation. Our
study in this paper leads us to the conclusion that Atkins'
theory may be correct, at least for some ranges of ternper-
ature and film thickness, and that it would be highly
desirable for certain additional experiments to be carried
out to explore this further.

Since dissipative coefficients such as viscosity and
thermal conductivity do not appear explicitly in Atkins'
theory, it may seem puzzling that third-sound waves are
nevertheless predicted to be attenuated. Bergman as-
serted that, for thick films, attenuation of third sound is
associated with evaporation and condensation at the in-
terface of the liquid with the vapor. For thin films Berg-
man has shown that other effects are also important in at-
tenuation. Of course, in principle, evaporation and con-
densation can be reversible processes; therefore, it is not
obvious that they should contribute to attenuation, which
is expected to reflect conversion of mechanical energy
into heat. This matter is treated in the Appendix, where
a law for energy conservation is derived. It is shown
there that attenuation is associated with evaporation and
condensation at the film surface and with the fountain
effect term in the equation of motion for the superfluid.
The combination of these effects produces a small correc-
tion to the latent heat that depends on the direction of
mass flow between the film and the vapor. This results in
an excess heat flow that is unidirectional from the film to
the vapor. This loss of energy from the film accounts for
the dominant part of third-sound attenuation in this
theory.

Next, some of the earlier work on third sound will be
reviewed with a brief commentary as a means of clarify-
ing ideas discussed above and explaining motivations for
new developments in this paper.

A. Overvie~ of studies of basic properties of third sound

The theory of third sound developed by Atkins' is
based on the two-fluid model for the "He film in an exter-
nal potential. That potential is due to the van der Waals
attraction of the helium atoms to the substrate. In terres-
trial laboratories there is also a contribution to the poten-
tial due to gravity. Boundary conditions are specified in
a simplified form such that it is not necessary to deal with
equations of motion and heat flow in the neighboring sub-
strate and vapor.

Third-sound waves were detected for the first time by
Everitt, Atkins, and Denenstein. They found that the
measured phase velocity was in semiquantitative agree-
rnent with Atkins theoretical predictions. In that experi-
ment, as well as in more recent investigations, ' the ob-
served phase velocity agrees with theory to within a fac-
tor of 2 or better. The discrepancies in phase velocity are
extremely small for films thicker than about 15 atomic
layers at low temperatures. These discrepancies increase
as the thickness decreases or as the temperature rises to-
ward the A, point for the bulk liquid. For films thicker
than about 35 atomic layers, agreement is good below
about 1.7 K but deteriorates as Tz is approached.

General agreement of the observed phase velocity with
theoretical predictions helps to instill confidence in the
validity of Atkins theory. Therefore, it is surprising
that, in some cases, measured values of attenuation of
third sound were found to be as much as 2 or 3 orders of
magnitude greater than predicted. ' ' It seems worth
noting, however, that the theory predicts only slight
dispersion for third sound, so that phase velocity is al-
rnost the same as group velocity and can be measured
simply and accurately by time-of-flight methods. On the
other hand, attenuation affects the shapes and amplitudes
of the waves and extraction of numerical values from ob-
served results involves assumptions about more intricate
details of the theory.

In the earliest measurements it was recognized that
part of the disagreement in the case of attenuation may
be associated with lack of reproducibility in the observed
results from day to day, but experiment still appeared to
indicate the existence of a real attenuation much larger
than anything predicted in the original theory. In that
work, third-sound waves on a flat rectangular surface
were studied. Waves were excited by a chopped infrared
beam that produced heating along a narrow line and were
detected by an optical method. Data that could be re-
garded as snapshots of the film surface at different in-
stants of time were presented in graphical form, and
values for attenuation were extracted from them.

In Sec. III B of this paper, we present detailed calcula-
tions and analysis of those experiments based on our
more complete theory. The results indicate that the huge
discrepancies for attenuation reported earlier are at least
in part due to inappropriate comparisons between theory
and what was actually observed.

A later experiment by %'ang and Rudnick investigat-
ed attenuation of third sound on the outer surface of a
horizontal glass cylinder about 1 crn in diameter and 3.2
cm long. Heating of a narrow strip of a metallic thin film
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excited the third sound, which was then detected by
measuring the temperature oscillations of the wave using
an aluminum thin-film strip operating near its supercon-
ducting transition. A single-cycle sine burst electrical
signal produced the third-sound pulse, which travelled in
both directions around the cylinder. Values of attenua-
tion inferred from the observations exhibited a minimum

0
as a function of film thickness near 25 A for a ternpera-

0
ture near 1.1 K, and near 55 A for a temperature close to
1.7 K. Except for a small range of thicknesses near the
minimum, the experimental attenuation is much greater
than predicted by Atkins' theory, as much as 2 or 3 or-
ders of magnitude greater for the thickest films studied,
of about 300 A.

In Sec. III C we analyze details of that experiment and
present results based on our new theoretical formulas.
We conclude that, at least for the thickest films studied,
proper interpretation of the experiments would be com-
plicated by two effects that account in part for the
discrepancies. First, distortion of the third-sound signals
was introduced by variations in the equilibrium thickness
of the film due to gravitational effects. Second, the ob-
served waves were not associated with single normal
modes with exponential decay, as they assumed. Portions
of the signals they observed involved many normal modes
according to our calculations. Therefore, we believe that
their inference that the theory is in gross conflict with
their observations is open to question and that this
matter should be studied further.

In a series of papers, Bergman ' analyzed the theory
of third sound in great detail, taking into account equa-
tions of motion and heat flow in the substrate and vapor
as well as in the film. For thick films the results of his
analysis agreed closely with Atkins' theory, ' differing
mainly just in the value of a coefficient of vaporization y
which occurs in formulas for attenuation. Bergman
found y= —", while Atkins assumed y=1. This general
agreement seemed to validate Atkins' theory, but it add-
ed to the mystery of the poor agreement between theory
and experiment on attenuation in thick films. However,
it should be mentioned that other researchers have re-
ported a wide range of values of an accommodation
coefficient that sometimes has been regarded to be the
same as y. In Sec. IIID of this paper we review this
matter. Then we discuss a new method for directly
measuring y that involves uniform evaporation of a film
and utilizes formulas that we have derived.

For thin films, Bergman found that Atkins' theory was
not accurate in certain respects. For example, Berg-
man ' ' found the frequency dependence of attenuation
to be ~' there rather than ~ as in Atkins' theory,
which is only appropriate for thick films according to
Bergman. Bergman ' found that the transition from
thick- to thin-film behavior occurred in the neighborhood
of 100 A, although in the literature 100 atomic layers,
about 360 A, had frequently been regarded on theoretical
grounds as the thickness where the transition occurs.

Measurements of attenuation by Wang and Rudnick
were in better numerical agreement with Bergman's
theory when the films were thin than when they were
thick, although the discrepancies were substantial even in

the former case.
Ratnam and Mochel "" performed a series of experi-

ments on thin films in a closed resonating cavity for third
sound in which they found evidence that single reso-
nances at finite wave numbers were excited in some in-
stances. Their measured values of attenuation seemed at
first to agree with Bergman's theory. Bergman later an-
alyzed their experiments in detail and found that the at-
tenuation values predicted by theory were sometimes 2 or
3 orders of magnitude less than the measured values.
Bergman did not take into account the k =0 terms, and
these terms must have affected the observed signals.
However, it seems unlikely that the k =0 terms account
for the large discrepancy in the experimental
configuration used by Ratnam and Mochel. An impor-
tant mechanism that can cause attenuation has been
omitted in the existing theory for thin films.

A number of attenuation mechanisms have been
identified and studied and have been reviewed in the
literature. ' ' However, none so far has been shown to
account for the large discrepancy between theoretical and
experimental results for either thick or thin films.

B. Review of uses of third sound as a probe
of super8uid helium films

Atkins' developed the theory of third sound in
response to an idea proposed earlier by Kuper' that the
critical velocity in flowing films of helium could be ex-
plained by applying Landau's criterion' ' to an elemen-
tary excitation spectrum for surface waves. Subsequent
experimental studies ' were interpreted as demonstrat-
ing that Kuper's hypothesis was not correct. Neverthe-
less, from the very outset third sound was recognized as a
valuable probe of fundamental properties of superfluid
'He.

This point is illustrated further in one of the
highlights' of third sound studies, where it was unex-
pectedly found that third sound abruptly ceased to prop-
agate for film thicknesses less than a certain threshold if
the temperature was fixed at a sufficiently low value.
Those observations later found explanation in theoreti-
cal' and experimental studies of vortex-antivortex
binding as a mechanism underlying the onset of
superfluidity in He films. The vortices that are postulat-
ed in these theories to exist even below the transition
temperatures for thin films should scatter third sound
and so attenuate it. These vortices could be responsible
for the large discrepancy between theoretical and experi-
mental results for attenuation in thin films mentioned
earlier. Generazio and Reed' have called attention to
the need for further work on this problem.

The Doppler shift of third sound in flowing He films
has also been a useful tool in exploring basic properties of
He films. This effect has been used to help confirm the

existence of persistent currents in He films and to mea-
sure the velocity of flowing films. Other interesting ap-
plications of third sound were concerned with measuring
the thickness of films and with studying the existence of
Kontorovich thinning of flowing films. ' '
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C. Commentary on the new developments
and their implications

So far the usefulness of third sound as a probe has re-
lied heavily on the properties of the phase velocity, which
is fairly well understood. When attenuation is under-
stood better, additional phenomena can be investigated
with its help. New developments in this paper shed light
on some of the previously unresolved problems in under-
standing third sound, including its attenuation.

It would be highly desirable to have additional mea-
surements to compare directly with predictions of the
new analysis that takes into account all resonances simul-

taneously, including the k =0 terms. In the case of thick
films, the temperature range below about 1.8 K is where
we believe good agreement is most likely to be found.
Favorable results there would then establish a reliable
basis for studying the possibility that additional mecha-
nisms that affect attenuation and velocity of third sound
become important as the temperature is raised to near the
A, point. Experimental data cited earlier in this introduc-
tion suggests that such mechanisms exist.

One possible mechanism is suggested by theoretical
work on the bulk liquid that resulted in the hypothesis
that thermally excited vortex rings condense in the liquid
at temperatures somewhat below the A, point and are re-
sponsible for an order-disorder transition at Tz.
Through the effect of the vortices on the propagation of
waves, third sound could be used to investigate the validi-

ty of that hypothesis when it is extended to thick films
where there is also a cusp behavior in the specific heat
similar to that in bulk liquid. If the experiments are
found to support the hypothesis, further third-sound ex-
periments could be conducted to study the size and pre-
ferred orientation of those vortices.

The treatment of third-sound theory presented in this
paper was initiated as part of the preflight preparations
for the Superfluid Helium Experiment on NASA's
Spacelab-2. In addition to giving new insights into pre-
viously existing results for ground-based experiments and
suggesting new paths of investigation on earth, the theory
also strengthens the foundation for future basic scientific
experiments in space where, in contrast to the situation
on earth, films having uniform thickness in the range
from tens of A up to a few pm can be readily produced
and studied.

The remainder of this paper is organized in the follow-

ing way. In Sec. II the theory of third-sound propagation
in thick films is developed and extended to include a heat
source for excitation. Algebraic formulas for solutions of
the ensuing equations are then derived. Section III con-
tains results calculated with the aid of the newly derived
formulas. Solitary waves, waves excited by long and
short bursts of heat, and uniform evaporation are treated
there. Both theoretical and experimental implications of
the results are discussed. Section IV contains conclusions
drawn from this work.

II. THEORY OF THIRD SOUND PROPAGATION
IN THICK FILMS

The basic equations of third sound including a source
of heat for excitation are derived in Sec. II A. This is fol-
lowed by solution of those equations in Secs. II B—II D.

A. Two-quid model with a heat source

a(ps)
ai " T'+V (psv„)=—, (2)

where Q is the heat per unit volume injected into the
liquid at a point in unit time, T is temperature, and s is
entropy per unit mass.

Superfluid equation of motion with an external poten-
tial per unit mass P:

Bv~ 1+v, Vv, = ——Vp+sV T
Bt ' '

p

+— V(v, —v„)—VP,
1 Pn

2 p
where the superfluid, being irrotational, obeys

QXv, =0
and p is the pressure.

Bergman ' ' elaborated a method of deriving third-
sound equations by integrating such bulk-fluid relations
over the thickness of the film. That approach is formally
satisfying and capable of greater precision and generality
than the one we will take here. We will follow more
closely Atkins" method, which is more intuitive and
more transparent. Certain simplifying assumptions in
this approach restrict it to thick films. This 1imitation is
largely due to (1) treating mass, entropy, and superfluid
densities as if they take on their bulk liquid values and (2)
neglecting ordinary heat conduction from the film into
the substrate and vapor.

The main features of third sound can be found by con-
sidering oscillations of a film that is uniform in the z
direction for the geometry sho~n in Fig. 1. The film is
assumed to be many atomic layers thick, but the thick-
ness is also much less than the viscous penetration depth
in the normal fluid (2il„lp„co)',for all frequencies con-
sidered here. As a consequence of this second condition,
the normal fluid is locked to the substrate so that to good
approximation v„=0.The superfluid has no viscosity
and moves freely, mainly parallel to the substrate. As an
approximation, we will take v, to be in the x direction
and independent of the distance from the substrate, con-
sistent with Eq. (4).

The liquid film is acted on by an external potential P
that, in general, contains contributions from gravity and
from the van der Waals interaction of the helium atoms
with the substrate. The van der Waals per unit mass of
film is

The theory of third sound can be developed using the
following dissipationless form of the two-fluid equations '

for bulk-liquid He.
Continuity equation:

Bp +V.(p, v, +p„v„)=0,
i3t

where p=p, +p„. The fluid mass density is p. The
superfluid and normal fluid densities are p, and p„,re-
spectively, and the corresponding velocities are v, and
"n.

Entropy conservation with a heat source:
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where

mH,
K y

' 1/2

z (+d0

FIG. 1. Third-sound wave in a superfluid He film.

a

Here y is a constant which Atkins assumed to have the
approximate value of one. Also, P=dp/dT, the deriva-
tive being evaluated on the saturated vapor-pressure
curve at the unperturbed temperature T. The mass of a
He atom is m„„andthe gas constant per mole is R.

The temperature T of the vapor at least several molecular
mean free paths from the film surface is assumed to
remain constant, and the instantaneous temperature of
the film at x during third-sound oscillations is T+ T'.

The net change in mass in the slab due to flow and eva-
poration changes the height of the surface an amount g,
and the total mass density p remains constant in this ap-
proximation. Therefore,

The corresponding force on unit mass of the film near its
outer surface is in the negative y direction and its magni-
tude is

dM dM Bg ~~W5x . (12}

3Q
4 7 (6)

where d is the film thickness. In the present treatment,
gravity is taken into account only to the extent that it
may help determine the equilibrium thickness of the film.
For example, for a saturated film at height H above a
liquid reservoir in a terrestrial laboratory, the film thick-
ness is

d =kH-'",

From Eqs. (9), (10), and (12), one finds

(Ig clu

p +p,. d +ET'=0 .
Bt Bx

(13)

aMs dM as
Bt dt Bt

Change of entropy in the slab of liquid is a sum of
terms associated with change of mass in the slab and
change in entropy density associated with temperature
variations. Then,

dM

Aow
dt

BU= —p, Wd 5x .
Bx

Here, and in what follows, u„Bp,/Bx, and g are treated
as first-order terms while terms of second order and
higher are neglected.

Atkins' assumed, on the basis of kinetic theory argu-
ments using detailed balance, that the change in mass of
the liquid slab due to evaporation at its free surface is
given to su%cient approximation by

' 1/3

k = — =4.2X 10 (8)

in cm and g =980 cm s
Turning now to the derivation of equations for third

sound, refer to Fig. 1 for meanings of symbols and con-
sider a portion of the film of width W in the z direction
and lying between x and x+dx. For a film of thickness
d, the superAuid mass crossing the face at x per unit time
is p, u, Wd. Using Eq. (1), one finds that the net flow of
the mass into the region through the faces at x and
x+dx is

dM
dt

dM
dt

evap

(14)

po(x, y; T)=po(x, d; T) p[P~(y )
—Pii, (d )]—. (16a)

~here C is the specific heat per unit mass of fluid.
Superfluid flow through the faces at x and x+dx does
not change the entropy, as one can see by referring to Eq.
(2). The entropy entering the slab is therefore just equal
to a sum of two terms. One is due to condensation from
the gas (negative evaporation) and is represented as
s (dM/dt), „,„.The second is due to heat injected by a
source and is represented as q(x, t ) W5x. Noting that the
latent heat of vaporization is L = T(s —s ), one can com-
bine these results with Eqs. (9), (10), and (14) and obtain,
from entropy balance,

(j7' BU
pCd —p, d sT+KLT'=q .

dt Bx

The final equation for third sound is found using Eq.
(3). First, integrate the y component of Eq. (3) when the
thickness of the film is d and the pressure is po, and ob-
tain

= —KT' W5x,
dt

evap

(10} Next, integrate the y component of Eq. (3) when the film
is perturbed by third sound; the thickness is d+ (, the
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p(x, y; T+ T') =po(x, y; T)+p'(x, y; T+ T') .

Combining Eqs. (16a)—(16c), one obtains

p'(x, y; T+ T') =p(x, d+ (;T+ T') —po(x, d; T)

+Plow(d+() 0w(d—) )

(16c)

(16d)

Taylor series expansions give, through first-order terms,

p(x, d+g; T+ T') =p(x, d+g; T)+PT',
4'w(d+ 4)= &w(d }+f0

(16e)

(16f)

where p is the same as in Eq. (11) and where f is given by
Eq. (6). If the vapor is treated as an ideal gas in the
presence of an external potential Pw(y), then an elemen-
tary calculation yields

p(x, d+g; T) po(x, d; —T)

where ps( ~ ) is the mass density of the gas far from the
substrate. Numerical evaluation of the right-hand side of
Eq. (16g) shows that it is negligible for d ) 100 A, the
film thickness range in which we are interested. Taking
this into account and combining Eqs. (16d)—(16g), one ob-
tains

p'(x, y;T+T')=PT'+pf( . (17}

Substituting Eq. (17) into (3), one finds that the x com-

temperature is T+ T', the pressure is p, and T' and g are
functions of x only. Taking into account that U =0, one
finds, through first-order terms,

p(x, y; T+ T')=p(x, d+g; T+ T')

—
pc 4 w(y }—kw(d+P1

The variable pressure p' due to third sound is defined by

ponent of the linearized superfluid equation of motion is

Bg P dT'f— + s ——
Bt Bx p Bx

(18)

Equations (13), (15), and (18) provide the basic rela-
tions in the theory of third sound formulated by Atkins
except that the heat-balance relation, Eq. (15), has been
extended to include a heat source for excitation.

B. General solution of third-sound equations

A general solution of the third-sound equations will be
developed here for a model of an experimental chamber
shown in Fig. 2(a). Other important experimental ar-
rangements to which our treatment can be applied with
no change except proper identification of certain parame-
ters are shown in Figs. 2(b} and 2(c). Surface distur-
bances excited by the localized heater shown in Fig. 2(a)
travel in both directions around the annular track. A
detector for thickness changes in the film is shown there
as a flat comb capacitor, like that in the experimental
cells that were flown on Spacelab-2. However, a paral-
lel plate capacitor with a narrow gap could serve the
same purpose. Experiment has shown that third sound
does not propagate past steps of about 3 mm or more,
and on that basis we will assume that the third sound is
confined to the flat surface where the heater is located.

If the average radius of the cell is much greater than
the width of the annular track, then the system with its
physically imposed periodic boundary conditions can be
well represented by a rectilinear model with repetitive
structure extending over —0. &x (a, as indicated in Fig.
3. We will consider a strip of unit width in this idealized
model. The distance P is just the average of the inner and
outer perimeters of the actual track. The origin of the x
coordinate is chosen to be at the center of the actual
heater whose length is 8'. The detector is located be-

DETECTOR

HEATER

SENSOR
CAPACITOR

EXCITATIO
HEATER WAVE

CHANNEL

DETECTOR

HEATER

18 mm

(a)

FIG. 2. Tracks for third-sound waves: (a) annular channel, (b) cylinder surface with horizontal axis, (c) horizontal Oat plate.
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HEATER

-2P
I l

-1/2W 1/2W

x2
t

2P

DETECTOR

FIG. 3. Rectilinear model for third sound.

tween x» and x,2. In the rectilinear model there are also
heaters and detectors at image points implied by the
periodic boundary conditions.

The heat Ilux density q(x, t ) injected into the system
can be represented in terms of Fourier components

qo (k„,tv ) as follows:

D =det

—ik„f lkn s
p

l cdp —ik„pd K

0 ik„p,dsT icopCd+KL

q(x, t ) =—g f qo(k„,~v)e
P —~ 2m

n

(19) = t cop —k„p,d s ——sT
p

(23a)

qo(k„,cv) = f dx f dt q(x, t )e (20)

where k„=2m.n /P and n =0,+1,+2, . . . . This same set
of one-dimensional wave vectors for the normal modes
also applies to the cylinder in Fig. 2(b) and the flat plate
in Fig. 2(c). In the latter case, the values of k„arefound
using results for superfluid velocity developed later in this
section together with the boundary conditions that v =0
at the edges of the actual plate, located at x =+—,'P. The
inverse of Eq. (18) is

+(icopCd+KL )( k„p,df )—

Kk„p,d—fsT+tv p(ici)pCd+KL )

p, dT$ k„=pKL co —i co—
KL

Psdf + Ts
tl

(23b)

0 —ik„p,d K

q pN &

=det q p ik„p,dsT i copCd +KL

Similar equations hold for the pairs of vari-
ables [g(x, t ),go(k„,co)], [v(x, t ), vo(k„,tv)], and
[T'(x, t ), To(k„,cv)] for surface displacement, superfluid
velocity, and temperature change, respectively. The sub-
script is omitted from v, here and in what follows.

Substituting Fourier representatives into the third-
sound equations (13), (15), and (18) and equating
coefficients of linearly independent exponentials

i (cot —k„x)
e ", one finds the following set of simultaneous
equations for the Fourier amplitudes:

i copgo ik„p,dvo+ K—TO =0,

ik„s——
p

qpN2 =det

l COP

0 qp i cupCd +KL

ik f 0 ik„—s ——
p

=qo —k„p,d s ——+itoK
p

= —q0(p, dsk„icuK ), —

(24a)

(24b)

ik„p,dvo+(icupCd+KL )T, =qo, (21)

=
qo

—e&k„p s ——+iKk„f
p

=qo( cok„ps+iKk„f—),

(25a)

(25b)
ik„fgo+icovo+—ik„(s Plp) To =0 . —

This system of equations can be solved using Cramer's
rule. One finds

qpN3 =det
l COP

ik„f—
—ik„p,d 0

ik„p,dsT qp

l co 0

where

qpN]

D

qpN2
Vp-

D

qpN3
Tp

D
(22)

=qo( —k„'p,df+pco ) . (26)

A factor qo(k„,co) enters into the numerator of each of
the Fourier amplitudes. That factor can be simplified as
follows for the situation we are considering where q(x, t)
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is spatially uniform over the face of the heater and zero
elsewhere. Write the heat flux density as a product

q(x, t }=p(x )r(t ),
where

p(x)=e(,' W —x)e(x+,' W)

and 8 is a unit step function such that

0 for X&0
1 for X&0,eX ='

(( x, t )=—g f g (k, tu)e
2~

one finds

Px, t)= —g P(k„)I,(k„,t)e

where, in general, for j=1,2, 3,

N~(k„,cu)I (k„,t)= R(co) e' '
—~ 2n. D(k„,cu)

(35)

(36)

(37)

Substitute Eqs. (27) and (28) into (19) and (20) and obtain

qo(k„,co) =P(k„)R(cu),

where

(30)

—ik„x
p(x ) =—g P(k„)e

n

P(k„)=f dxp(x)e—1/2P

r(t)= f R(cu)e'"',
27T

R(cu) =f dt r(t )e

(31)

(32)

(33)

(34)

Substituting Eqs. (22) and (30) into the analog af Eq. (19),
viz,

x, t dx.
x12 x»

(38)

This can be simplified further. Note that only even
powers of k„enter into the expressions for D and X, in

Eqs. (23) and (24). Then, with the aid of Eq. (37), one can
show that I, (k„,t)=I, (

—k„,t). Using this result upon
substituting Eq. (36) into (38) and carrying out the indi-
cated integration, one finds the detected surface displace-
ment is

Assuming the capacitor measures the average displace-
ment of the liquid film from its equilibrium thickness be-
tween x» and x,z, one finds that the detected signal is
proportional to g(t ), where

1 4 sin[ —,'k„(x,2 —x „)]cos[—,'k„(x,2+x„}]
g(t)= —P11I,11(t)+ g P(k„)I,(k„,t)

k„(X12 X 11 }
(39)

By similar methods one can derive formulas for superfluid velocity and temperature signals when the average values
are sensed by appropriate detectors. If the velocity detector is between xz, and x~z, and the temperature detector be-
tween x» and x3z, one finds

u(t)= 1 Xppf u(x, t)dx
xzz xz&

1 4 sill[ —,'k„(x,2 —X21)]sin[ —,'k„(X22+X2,)]=—g P(k„)—I,(k„,t)I'„0 " i k„(x22—x2, )
(40)

T'(t ) = T'(x, t )dx
x3p x»

=1 4sin[ —,'k„(x32—x» )]sin[ —,'k„(x32+x3'1)]
P Io(3t0) +g P(k„)I3(k„,t)

n X 32 X 31
(41)

where

Po =—P(k„=O)

and

I,o=I, (k„=O,t) for .j=1,2, 3 .

The terms in the right-hand sides of Eqs. (39)—(41) are
separated into factors that depend on the spatial charac-
teristics of the heater and of the detector, and on an in-

tensity factor I- which depends on the intrinsic properties
of third-sound waves and the frequency dependence of

I

the source. Each of these factors is a function of k, . The
terms involving k„=0were mentioned in Sec. I and seem

to have been overlooked or neglected in all previous
work.

The formulas for response functions g(t), u(t), and
T'(t ) given by Eqs. (39}—(41}are exact within the context
of Atkins" theory when that theory is extended to in-

clude a heat source for excitation. Using Eqs. (28) and

(32), one can shaw easily that when the source is centered
at x =0, the factors I' occurring there are given by

Po = W, P(k„)= sin( —,'k„W) for k„&0. (42)
2 ~
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If the time dependence of the source is specified, then
R (co) can be calculated and the intensity factors I (k„,t )

in Eqs. (39)—(41) can be evaluated. The next two parts of
this section are concerned with special cases where the
excitation signals are simple enough to be treated analyti-
cally and complex enough to be informative and practi-
cally useful. While exact results could be obtained
analytically in these cases, we will introduce certain ap-
proximations that are fairly accurate and which reduce
the complexity of the mathematics considerably.

These approximations take advantage of the following
inequalities, which are similar to some that Atkins' used
in his work.

lar pulses provide part of the solution in treating a finite
burst of sine wave excitation signals, as we will see in Sec.
II D.

The intensity factors I,(k„,t) that enter formulas for
((t ), v(t ), and T'(t ) in Eqs. (39)—(41) will be evaluated
next. They involve the function R (co) as indicated in Eq.
(37). R(co) is the Fourier transform of r(t), the time-
dependent factor in the excitation signal. General prop-
erties of these functions are given in Eqs. (27), (33), and
(34).

Consider first the problem of evaluating R (co) for a se-
quence of M rectangular pulses when 3 is the ampli-
tude of the mth pulse, and 1~m ~M. In the time
domain, the excitation factor is

(1) In the range 0.6& T& 2.0 K, r(r)= g A. e(r r, )e—(r.f r) . — (43a)—&0.07 .
pS

(2) When y=l, co&10 rads ' and d &10 'cm,

KL
pc()d

0.0060 for 0.6~ T&2.0 K,
0.0010 for 0.8 ~ T ~ 2.0 K .

C. Excitation by rectangular heat pulses

Rectangular heat-pulse excitation signals are of interest
for several reasons. One is that they can be easily gen-
erated experimentally and yet are amenable to theoretical
analysis. Also, a special limiting case of this form is a
Dirac 5 function excitation in time, which is also useful
in experimental investigations that are especially easy to
analyze. Furthermore, the results obtained for rectangu-

These observations and neglect of small terms which can
be identified with their help lead to the approximate ex-
pressions for D, N, , and N2 given in Eqs. (23b), (24b),
and (25b). The main benefit of using these approximate
formulas stems from D being reduced from a cubic to a
quadratic function of co, as we shall see in the following
two sections.

p2

RA

Using Eqs. (34) and (43a), one finds

1 IN'R(co)= g i A (e f —e
[&m&~

(43b)

') . (44)

In Eq. (44) and throughout this paper, whenever e ap-
pears in an expression that occurs somewhere in an in-
tegrand, e is taken to be a positive number that tends to
zero after the integral is evaluated. One can verify that
the imaginary term in the denominator in Eq. (44) is
correct by substituting Eq. (44) into (33) and using con-
tour integration to show that the result is Eq. (43).

Turning now to the evaluation of the intensity factor
I,(k„,t ) given by Eq. (37), one can use Eqs. (23b), (24b),
and (44), then factor the function D(k„,co), and obtain

The subscripts i and f refer to initial and final instants of
excitation at constant heat-flux-density input A . If the
heat is generated by applying a voltage V to produce a
current I,

„

in a resistance R having a surface area 3 next
to the liquid-helium film, then

ill t —t, )

D~ [co+i (C, /D—, )k„](e f —e
I)(k„,t)= g A

co 2 ir (cu k„E„+)—(co k„E„)(cois—)— (45)

where E +=i A+(B —A )' (50)

p dTS

2KL

0 for k„=0,

1+ Ts
for k„&0,

(46)

(47)

The integral in Eq. (45) can be readily evaluated using
contour integration and the residue theorem. The major
steps and results in this procedure are as follows:

I)(k„,t)= g A [6(t t f)S,(k„;t,t f )—

p~ ds
C, =

pKL
(48) e(r r, )S,(k„;r, r—

, )],— (5 la)

1
D

pL
(49)

where S& is defined by



7834 H. W. JACKSON AND P. V. MASON 42

e(t —t, )S,(k„;t,t, )

D—
I [to+i ( C, /D, )k„]e

—~ 2~ (co k„—E„+)(co k—„E„)(t0—ie)
(51b)

and t represents either t f or t;. By contour integra-

tion and the residue theorem, one finds

S,(k„=0;t,t )=Dl(t t—) . (52)

For k„+0,two cases must be considered. First, forB„)A one finds

Si(k„;t, t ) =SI (k„;t, tp', CI, D I )

+ +, sin[k„(8„—A )' (t t~—)](8„—A ')'/' 8„(8„—A ')' '

—k2A(t —t )+ cos[k„(8„—A )' (t t~)] —e
n

(53a)

B„k„k„2
C,
Bn

2 ]/2
1

Bn —W'

—k„A(t—t )
Xsin[k„(8„—A )' (t —

tz )+/I ]e (53b)

e first line in the above equation indicates explicitly a dependence of S& on C, and D, for reasons that will become
clear later. Equation (53b) exhibits the results in a particularly transparent form and is also efficient to use in numerical
studies. The phase angle QI in Eq. (53b) satisfies

sin/I =
1 n

1 CiA
cos I= D, +

M (8 A 2)l/2

(54a)

where

C,
2

+
2 1/2

1

B —A' (54b)

For 8„(A, evaluation of the integral in Eq. (51b) gives

SI(k„;t,t )=Si(k„;t,t;CI, DI )

C& 1

Bnkn kn
2, +, sinh[k„(A —8„)'/(t t )]-

(A2 8 )I/2 8 (A2 8 )I/2

— 2

+ cosh[k„(A —8„)'/(t t~ )] e-
n

(55)

Using these results one can readily evaluate the response of the detector in terms of the film thickness as a function of
time and position when third sound is excited by a sequence of rectangular heat pulses.

Formulas for v(t ) and T'(t ) can be found by similar methods. The results are as follows.
The intensity factor I2(k„,t ) in Eqs. (37) and (40) satisfies

& co(t —t ) tao(t —t )D2[to+i(C2—/D2)](e —e '
)

I2(k„,t)= gi A k„
(co k„E„+)(co k„E„)(tv—ie)——

=yiA k„[e(t—t f)s,(k„;t,t f)—e(t —t;)S (k„;t,t, )],

(56a)

(56b)

where the definition of S2 as an integral can be inferred from the above equation. Also,

C2=-
pL

D 2 gI (58)
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and for k„&0,

S,(k„;t,t, }:—S,(k„;t,t, ;C„D,)
C2=S,(k„;t,t,;, , D, )k„

(59a)

(59b)

In words, Eqs. (59a) and (59b) state that Sz is also given by Eqs. (53a), (53b), and (54) provided that C& is replaced by

Cz /k„ there and D
&

is replaced by D2.
The intensity factor I3(k„,t ) in Eqs. (37}and (41}satisfies

ice(t —t, )

= g a.[8(t t ~—)S,(k„;t,t ~) 8(t—t, —)S,(k„;t,t, )],

I,(k„,t)= g A
d~ iD3[a) (C3—/D3)k„](e —e

(~ k„E—„+)(to —k„E„)(coi e—)
(60a)

(60b)

where the definition of S3 can be inferred from the above equations. Also

Psd
C3=

pKL
1D3=

pL

Contour integration and the residue theorem give the following results:

S,(k„=0;t,t, }= D, , —

for k„&0and B„)A

(61)

(62)

(63)

C3
S,(k„;t,t, }=—,+B„k„

for k„&0and B„&A

r

z ~&2 z +D3 sin[k„(B„—A )' (t t~)]-(B„—A )' B„k~
—k~g(t —

~ j+
2 D, cos[k„—(B„—A')'~ (t —t )] e

n n

(64)

S,(k„;t,t, ) =— C3B„k„(A B„)'i B„k—
„

+
2 D3 cosh[k (

—A B)' (t t )] e— —3 ] yp
—k„A(t—t

n n

(65)

Third-sound signals generated by rectangular heat pulses
can be completely characterized in terms of surface dis-

placement, superfluid velocity, and temperature change,
and those properties can be evaluated using the foregoing
formulas.

D. Excitation by sinusodial bursts of electrical current

V(t)=8(t —t; )8(t& t)Vosin[c—oo(t t; )] . —(66)

Just as in Sec. II C, we wil1 let A be the area of one face
of the resistor. Then the heat-Aux density into the helium
film is still given by Eq. (27), but now r(t ) satisfies

Sinusodial excitation signals are useful in studying res-
onance effects, and they have been used in a number of
experiments reported in the literature. Formulas for
third sound excited by sine waves of electrical current
will be derived next.

Consider an excitation signal generated by a electrical
current passing through a resistor R due to a sinusoidal
burst of applied voltage V with frequency coo and period
T. The initial and final instants in the burst are t,- and t&,
respectively. The excitation voltage is

r(t ) =r„(t)+re(t ),

r„(t) =8(t —t, )8(t& —t )B,

re(t ) = —8(t —t, )8(tt —t )B cos[coo(t —t, )],

and

(67)

(68a)

(68b)
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~oB=—
2 RA

(69)
t 2ccjpf8 e t ( 2coo

—
tet ) t t( 2' o

—
cct ) t

21 co 2co() t e

The third-sound equations (13), (15), and (18) are linear in
the quantities (, v, T', and q. Therefore, one can calcu-
late the response of the film to a sum of excitations as the
sum of the responses to the individual excitations. It fol-
lows that Eqs. (39)—(41) still hold provided that the inten-
sity functions I (k„,t ) are given by

I 2tttc) pI —t(2cuo+cu)tf
e

co+ 2cop t e

—i (2cup+ cu)t—e ' ') (71)

I (k„,t)=I „(k„,t)+I2)(k„,t) for j=1,2, 3, (70)

where I „andI2& correspond to r„(t)and rz(t), respec-
tively. The functions I „(k„,t) are the same as those
treated earlier in Sec. II C provided that one takes M=1
there and then sets A, =B.

The problem that remains is the evaluation of
I~~(k„,t). These functions are given by Eq. (37) when
R(co) is replaced by Rz(co) there, and Rz(co) is the
Fourier transform of rz(t). From Eqs. (68b), (69), and
(34), one finds

One can verify that the imaginary terms in the denomina-
tors are correct by substituting Eq. (71) into the right-
hand side of Eq. (34), using contour integration and the
residue theorem, and showing that the result is the same
as the right-hand side in Eq. (68b).

Substituting Eq. (71) into (37), one can evaluate the in-
tegral by a straightforward but lengthy procedure using
contour integration. Some of the major steps and results
will be given here.

For j=1, it is useful to introduce an auxiliary function
8', as follows:

8(t —t )W, (k„;t,t;co, )=8(t —t )W, (k„;t,t;co, ;C„D,)

Integration yields the following results:

D, [co+i(C(/D, )k„]e
(co k„E„+)(—co k„E„)(—co —co, i e)— (72)

I)z(k„,t)=BI8(t —tf)Re[W)(k„;t,tf, 2cop)e '' ]—8(t —t;)ReW (k)„;t,t, ;2 co)p) .

For k„=0,
I 2Q)p( lf I ) BD,

Re[ W)(k„;t,tf, 2cop)e ' ]= [sin[2cop(tf —
t; )]—sin[2cop(t —t, )]) .

2No

The second term in Eq. (73) can be evaluated by setting tf = t, in Eq. (74). The result is

BDi
ReW) (k„;t,t;;2cop) = — sin[2cop(t —t, )] .

COp

Combining these results, one obtains

0, t(t„
BD)

sin[2ct)p(t t )] t; &t &tf,I)s(k. =0 t) = 2cop

BDi
sin[2cop(t t, )], t )tf-

2cop

(73)

(74)

(75)

(76)

For k„&0,one must consider the cases B„)A and B„&A separately. For B„)A:
l 2cop( tf 1 ) 1Re[W, (k„;t,tf,.2cop)e

' f ' ]=D, —sin(co„t +P, ) —sin(co„t —())2)
CO~

M3+ cos(co„t+/)+f3—
Q4)

M4

M3 —k A(t —
Ef )+ cos(co„t P2 P3+ (f25)——

5

M3
cos[2co()( t —t, ) +P3 P4 P~]——

n 4 5

(77)
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where

co„=k—„(B„—A )'

$ )
= (2coo co )tf 2coot,

P~: (2coo+co» )tf 2toot(

2copsin/3=, cosg3=-
k„'M,

with

C1

D1M3

(78)

(79)

(80)
and

, [(~„—2' )'+ A')'~',1

n

sinPs=-
M5

~Ps ~ 2m.

(84)

(85)

C1

D]

2 1/2
Q)p

k„
COn 2COpsin/4=, cos$4=M4' k M4

with

(83)

with

Ms= (co„+2coo)+ A
1

n

1/2

(86)

The second term in Eq. (73) can be evaluated by setting

tf = t, in Eqs. (77)—(81). The results are as follows:

Re W, (k„;t, t, ;2coo) =D,
1

2COn

M3—»n(~„t+ P& )
—sin(co„t —Pz)+ cos(co„t+p, +$3 p4)—

4

M3 —k„A(E—
E )+ cos(co„t P~ Ps—+ ttps

—
) e

5

M3
cos[2mo( t t, ) +P3 p4

—
ps )—

n 4 5

(87)

where

(88)

Notice that for all times t ) tf the undamped terms that enter the expression I,z(k„,t ), Eq. (73), through its depen-
dence on Eqs. (77) and (87) cancel each other. Therefore, for all t ) tf, the contributions of each normal mode to the in-

tensity functions I,„(k„,t) and I&z(k„,t) are exponentially damped in time. Although we have seen this only for
B„&A, one can readily establish this for B„)A also, as well as for I~(k„,t ) and I,(k„,t ).

For B„
? 2'?p( tf' f ) D,

Re[ W, (k„;t, tf ', 2coo)e ' ' ]= 2k„(A B„)'——2 sinh[k„( A —B„)' (t —tf )]cos[2coo(tf t;)]—

where

C, 2copsin/6=, cos$6= zD1M6 k 2M6

with

—k„(A —B„) (t —
t&. )

e " " ~ cos[2coo(tf t, )+$6 P—7]—
7

M6 —k A(t —t )+ e " " t c o[2sco (t0f t; )+/& Ps] e— —
8

D, M6
sin[2coo(t —t, )+$6 P7 Ps], — —

n 7 8

(90)

M6=
C,

D,

2cop

n 7

2 1/2
Ct)p+ k„

(91)

(92)
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and

with

and

(P (2m.2-'-

2ND
1/2

+[A+(A' —B )'"]'
k

n

n

2coo

k Mn 8

(93)

(94)

with

(P (2n.2-'-
2 1/2

k
+[A —(A B)' —]n

n

(95)

Setting tf =t, in Eq. (89), one finds that the second term in the right-hand side of Eq. (73) is given by

D,
Re W, (k„;t, t;;2cop) =

2k„(A B„)'—
r

-k'(~'-a„)'"(t-t,)

X —2 sinh[k„(A —B„) (t t; )]
7

k„(A B„)' (( —
t, )— —k„A( ( i, )M

+ e cos 6 s
8

D, M6
sin[2 co(pt t; )+$6—Pq Ps] . — —

n 7 8

(96)

Turning next to the velocity response function, we will consider I2(k„,t) in Eq. (37) when R(co), N2(k„,co), and

D(k„,co) are given by Eqs. (71), (25b) and (23b), respectively. In this instance, it is convenient to introduce a function
8'2 as follows:

B(t t, ) W, (k—„;t,t, ;~. ) =B(t t, ) W, (k—„;t,t, ;co„C,,D, )

ia)(t —t )
D2[co+t«2 ~D2 )]k.e

2'(r (co k„E„+)(co k„E„—)(co—co—, —ie)

where C2 and Dz are given by Eqs. (57) and (58), respectively.
Using Eqs. (24b), (25b), (37), (72), (73), and (97), one can show that

(97)

I~~(k„,t)=ik„BIB(t—tf)Re[W2(k„;t,tf, 2cop;C2, D2)e ' ' ]—B(t t; )ReWz(k„;t,t, ;2cop—;C2,D2)I,

where, for k„&0,
W2( k„;t, tp, 2cop,' C2, D2 ) —W( (k„;t~ tp, 2cop', Cp Ik„,Dp )

(98)

(99)

The function W( above is defined by Eq. (72) and it satisfies Eqs. (77) and (87) for B„)A . It satisfies Eqs. (89) and (96)
for B„(A . Combining these results with Eq. (40), one can evaluate the contribution to the velocity response function
v(t) associated with rz(t ).

Finally, we will consider the temperature-response function for a sinusoidal burst of excitation current. Referring to
Eq. (70), we will evaluate I3&(k„,t ), which corresponds to the excitation function rz(t). The result for I3~ can be sub-
stituted into Eq. (41) to evaluate T'(t ).

The intensity function I3& is given by Eq. (37) when R (co), N3(k„,co), and D(k„,co) are given by Eqs. (71), (26), and
(23b), respectively. Now it is useful to introduce a function W3 as follows:

iD3[co (C3/D3 )k„]e- —
B(t t ) W3(k„;t,t;co,)=-

21' ~—k„E„Cg—k„E„CO—N —
1 E

(100)
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Applying the methods used earlier, one finds

I&&(k„,t)=B{8(t—tf )Re[ W&(k„;t,tf, 2'coo)e ' ]—8(t —t; )ReW&(k„;t,t, ;2to&)[ .

The derivation of Eq. (101)uses the condition that

W3 (k„;t,t;to, )
= Wi(k„;t,t; —co, ),

(101)

(102)

where the asterisk means coinplex conjugation. The validity of Eq. (102}can be established from formulas for W& ob-
tained from Eq. (100) using contour integration and the residue theorem. That procedure also yields the following re-
sults:

W3(k„=O;t,tp, to, ) =Die

From Eqs. (101) and (103), one finds

(103)

I (k„=O,t)=BD {8(t tf)c —so[2 co(t t, )]——8(t t;)—cos[2co (t —t;)]I (104a)

0, t(t, ,

—BD 3 cos[2ioo( t —t, ) ],
0, t)tf .

For k„WO,one must consider separately the cases where B„)A and B„(A . The results are as follows.
For B„oA:

i2coo(tf —t ) nBnk k„B„2

0}e ' ]=Di cos(oi„t+p)+2/9—p4)+ cos(to„t /+2' +—p, )2aM4 " ' ' 4

C3 1 1 —k„A(t—tf )

cos(co„t+/) P4)+ c o( sC„ot tc)2+fg) e
2'„D3 M4 5

(4'„o/k„)—( C& /D3 )
cos[2coo( t —t; )

—
P4

—P, ]
n 4 5

(105)

where

A
sin/9= B„

and (106)

0&)
2

The second term in Eq. (101)can be evaluated by setting tf =t, in Eq. (105). The results are as follows:

k„B„ k„B„
ReW3(k„;t,t, ;2coo)=D3 cos(to„t+P&+2/9—P4)+ cos(co„t—$2+2/9+$5)2'„M4 " ' 2m„M5

C3 1 1 —k„A(t—t, )

cos(co„t + P&
—P4) + cos(co„t —

tt 2+ P~ } e
2mD3 M4

"
Mq

(4'„o/k„)—(Ci /Di )

k„M4M5
cos[2roo(t —t, ) —$4 —P, ] (107)

For B (A2:
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l 2')p( tf t )Re[8'3(k„;t,tf 2Q'20)e ]=D3 ~

k„[/1+(/1 —B„)' ] +C3/D3 —k&(A2 —2)„))/2(t—t )

2k 2( g 2 B )(/2~ e " " / sin[2co (t t—) —t))0 f i ~7]
n n 7

k„[A —( 2 B—„)'] + C3/D3

2k 2( g 2 B )1/2~
k (A —B ) (t —t )

n n f

—k A(t —-t )
2

X sin [2p20( tf t, )
——

(t)() ] e

[(2(t)0/k„) —C3/D3 ]+
2 cos[2cop(t t, ) —t)—I)7 —tt, , ] .
n 7 8

(108)

Re W3(k„;t, t;; 2cop) =D3

The second term in Eq. (101) can now be evaluated by setting tf = t, in Eq. (108). The results are as follows:

k„[A+(A B„)'—] +C3/D3 —k (A —2) ) /(t —t )

kn[~ (~ Bn) ] +C3/D3 k (A B) ' (t ——t ) . —k A(t —t )

2 2 1/2 2

+
2k2( g 2 B ))/2M

[(2cop/k„) —C3 /D 3 ]+
knM7M8

cos[2cop(t t, )
—

(t)7
——

(tt()] . . (109)

When these results for 8'3 are substituted into Eq.
(101) and then combined with Eq. (41), the temperature
response function T'(t) will be expressed as an algebraic
formula.

Some features of the response functions that have im-
portant implications for experiments are revealed by the
formulas that we have derived. For clarity we will de-
scribe them in terms of the displacement response func-
tion g(t), but there are analogous features in the response
functions for superfluid velocity and temperature change
also.

First, there is no true steady-state condition for third
sound produced by the kinds of excitations that we have
analyzed. While the heater is energized, there is a net
evaporation of the film that reduces the average film
thickness. This net evaporation is associated with the
k„=0terms in Eqs. (52) and (74). After the heater is
turned o8; the third-sound amplitude associated with
each resonance decays exponentially at a characteristic
rate, as indicated by Eqs. (53b) and (55) for rectangular
excitation pulses and by those same two equations togeth-
er with Eqs. (77), (87), (89), and (99) for sinusoidal excita-
tion. Second, if sinusoidal excitation is applied for a long
time interval, terms in the response function that decay
exponentially will eventually be negligible. Then the
response of the detector will be dominated by the k„=0
terms together with the last terms in the right-hand sides
of Eqs. (87) and (96), which oscillate at the driving fre-
quency of the heater power. The factor M4 in the
denominator of the last term of Eq. (87) determines the
line shape of the response function near each resonance.
The formula for M4 given by Eq. (84) shows how the
width of the line for a resonance is related to the time de-
cay of a normal mode.

An approximate expression for the phase velocity c of
third sound found by Atkins, ' viz,

NC=
k

r

Pt df Ts

P L

1/2

can be obtained by using Eqs. (47) and (78) for the nth
normal mode and taking A =0, which is valid when
third-sound attenuation is negligible.

The formulas developed in this section provide a com-
plete set of relations for characterizing third-sound waves
excited by a sequence of rectangular pulses and by a
sinusoidal burst of heat. In the next section they will be
used in a numerical study of a number of cases that are of
interest both theoretically and experimentally.

III. CALCULATED RESULTS

Formulas derived in Sec. II have been applied in calcu-
lating third-sound characteristics for a number of experi-
mental configurations and a variety of excitation signals.
Results will be presented for solitary waves, waves excit-
ed by long and short bursts of heat, and for uniform eva-
poration. Both the theoretical and experimental
significance of the results will be discussed.

A. Solitary waves

Solitary waves of third sound are isolated ripples that
propagate on the surface of He films following excitation
by heat pulses of very short duration at a narrow source.
Existence of these waves is one of the striking predictions
of the new theoretical calculations. They have not yet
been observed experimentally. Solitary waves are espe-
cially well suited to elucidation of the nature of third
sound in terms of correlations among a complete set of
variables that characterize the dynamics of He films,
viz. , surface displacement, temperature change, and ve-
locity of superfluid parallel to the substrate. The study of
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these relationships clearly shows that earlier explanations
of the structure of third sound are not correct, and the
actual structure of solitary waves is displayed graphical-
ly. Furthermore, the calculations reveal, for the first
time, how third-sound waves are generated at a heater.

Intrinsic shapes of solitary waves in space and time
domains are determined by properties of the film alone.
These shapes can be found by progressively reducing the
duration of the exciting heat pulse and the lengths of the
heater and detector until wave forms are reached that are
independent of those parameters.

Solitary waves can be generated only on films in a cer-
tain thickness range. Our calculations show that& at 1.80
K, they can exist on films at least as thin as 300 A and at
least as thick as 1000 A. For the range of parameters we
have studied numerically, they cannot be excited on films
as thick as 3000 A.

The calculations in Sec. III A are for third sound on an
annular track as depicted in Fig. 2(a); the average cir-
cumference is P =17.94 cm. The unperturbed tempera-
ture is 1.80 K. The thickness of the film is 300 A, and the
lengths of the heater and detector along the paths of the
waves are 0.01 and 0.04 cm, respectively, unless stated
otherwise. The excitation starts at t =0 and lasts for 100
ps. These parameters satisfy the criteria described earlier
for observing intrinsic properties of solitary waves.

The value of the coefficient y is taken as 1.0 for these
illustrative calculations. The properties of main interest
in Sec. IIIA, with the exception of the attenuation, do
not depend sensitively on this value. The question of
determining the correct value of y will be addressed in
Sec. III D.

All curves calculated in Sec. IIIA take into account
the normal modes n =0—400, unless it is explicitly stated
to be otherwise. Parametric studies showed that this is
adequate to avoid spurious features that were sometimes
prominent when fewer normal modes, even as many as
100, were taken into account. Some characteristics of
normal modes under the conditions stated above are
given in Table I. The phase velocity c =cok ' varies
about 0.01% for the modes n =1—400, and equals 76.51
cms '. The group velocity u =dao/dk is essentially
equal to the phase velocity in this case. The decay time
of a normal mode is r= 1/(Ak ), where A is given by
Eq. (46). For the conditions assumed here,
A =8.546X10 cm s '. The period is T=2vr/cu

Responses of detectors located one-quarter of the dis-
tance around the track, i.e., centered at x =4.486 cm, are
shown in Figs. 4(a) —4(c). For detectors such as these,
which are far from the source, the detected waveforms
are independent of the shapes of the excitation pulses

provided that the pulses are of sufficiently short duration.
From Fig. 4(a) one can see that a solitary wave is a
depression in the surface of the film that propagates at
the common phase velocity of the normal modes. The
detected signal lasts about 0.025 s, which is several times
greater than the time of flight of a point with a constant
phase in the wave, for example, the point of maximum
depression, across a span equal to the sum of the lengths
of the heater and detector. From Fig. 4(b) one can see
that the temperature of the film at the detector first rises
above the unperturbed level and then falls below it as the
pulse moves past. The temperature change is proportion-
al to the negative time derivative of the surface displace-
ment. Figure 4(c) shows that at the location of this detec-
tor the superfluid velocity is directed toward the source,
opposite to the direction of propagation of the wave, at
every instant. The magnitude of that velocity is propor-
tional to the displacement of the surface.

The properties of solitary waves are displayed as
snapshots in Figs. 5(a) —5(c), where the entire track is
viewed at a given instant, viz. , t =0.0585 s. At this time,
the maximum depression of the film is over the centers of
the detectors specified for the previous figures. Now one
can see the two waves that travel in opposite directions
around the track.

These figures show that, at a given instant, the temper-
ature change of the film is proportional to the spatial
derivative of the surface displacement, and that the mag-
nitude of the superfluid velocity is proportional to the
surface displacement itself. Throughout the spatial ex-
tent of the solitary wave, the superfluid velocity is direct-
ed toward the heater where the pulse originated. The re-
sults in Figs. 4 and 5 are consistent with the picture that
the signals in Figs. 4(a) —4(c) are generated when the wave
forms in Fig. 5 move across the fixed detector at the com-
mon phase velocity of the normal modes, as one expects
for a traveling wave when damping is small.

The temperature distribution is such that there is a net
evaporation of liquid at any fixed point on the track that
is on the leading edge of the surface depression. There is
a net condensation at any point on the trailing edge. This
distillation process contributes to the propagation of the
depression away from the source. Furthermore, the
nonuniformity of the superfluid velocity is such that, dur-
ing any small time internal 6t, there is a net decrease of
mass in any fixed strip 6x on the leading edge of the
depression and a net increase on the trailing edge, as one
can see with the aid of the continuity equation and Figs.
5(a) and 5(c). The resulting changes in the height of the
film are about an order of magnitude greater for uneven
liquid flow than for distillation over most of the solitary

TABLE I. CalcUlated properties of normal modes for conditions specified in text with P = 17.94 cm.

k
(cm ') (rad s ')

T
(s)

7

(s)

C

(crn s ')

1

2
100
400

0.350 233
0.700467

35.023 3
140.093

26.7983
53.5966

2 679.81
10718.0

0.234 462
0.117231
0.234464X10 '
0.586 228 X 10--'

920.689
230.172

0.920 689 X 10
0.575 431 X 10-'

76.5156
76.5155
76.5151
76.5063
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FIG. 4. Solitary waves on an annular track at a fixed detector
located one-quarter of the track length from the heater: (a) sur-

face displacement vs time, (b) temperature change vs time, (c)
superfluid velocity vs time.

wave, and further analysis shows that this is true for any
value of y. Further calculations show that, for this ex-

ample where y=1.0, over most of the wave the hydro-
static pressure is about 100 times more effective than the
fountain pressure in accelerating the superfluid. It
should be noted, however, that if one assumed y=0.01,
these pressures would be of comparable effectiveness.

These calculated results disagree with earlier explana-
tions' of the structure of third sound. Atkins' assumed
that " at a peak of a wave an excess of superfluid has
collected and the temperature at this point is lowered,
while at a trough the temperature is raised, so that in ad-
dition to the pressure gradient present in the case of a
classical liquid there is an additional restoring force due
to the thermomechanical effect of the temperature gra-

dient. Also at the trough where the film is hot it will
evaporate into the vapor phase, whereas at the peak the
vapor will condense on to the film. There will be a Aow
of vapor from the troughs to the peaks, - ."The initial
assumption that troughs will be at higher temperatures is
in confiict with calculated results in Figs. 5(a) and 5(b).
Therefore, distillation and the thermomechanical effect
do not act to produce motion of the film in the manner
predicted by Atkins. This conflict was found for all soli-
tary waves as well as all other third-sound waves that we
have analyzed. Also, it can be shown that Atkins' picture
does not apply for any individual normal mode. (Atkins
derived formulas that indicate the correct phase relations
among oscillating variables in the case of individual plane
waves, which are simply related to normal modes [see
Eqs. (17) and (18) of Ref. I]. Those relations were not in-
corporated properly in Atkins' explanation (Ref. 1) of the
structure of third sound in thick films, and the resulting
error has propagated through the literature. ) It may be
noteworthy that the manner in which the three primary
variables are correlated is simpler in solitary waves than
in many of the other third-sound waves we have exam-
ined, and therefore analysis of their structure is particu-
larly instructive.

The process of creation of a solitary wave at a heater
can be understood with the aid of Figs. 6(a) —6(c). In this
example, the excitation signal is a sine wave of voltage
Vosincoot, so that the input power at the heater is propor-
tional to —,

' Vo(1 cos2co—ot). The heater was assumed to
be energized for one full period of the cosine term, which
was taken as 10 p s. Also, the heater and detectors were
taken to coincide in the calculations for Figs. 6(a) and
6(b), their common length along the track being 0.01 cm.
Figure 6(a) shows that the thickness of the film over the
heater decreases monotonically while the heater is ener-
gized, creating a trough in the surface of the film. Figure
6(b) shows that the temperature tracks the input power as
a function of time, first rising above the unperturbed
value and then falling, reaching the unperturbed temper-
ature when the input power is reduced to zero. The aver-

age superfluid velocity is zero across the heater, as one
can deduce from a symmetry argument. Therefore, this
function is not plotted here. Instead, the superfluid ve-

locity over a hypothetical 10-A wide sensor placed at the
edge of the heater on the positive x axis is shown in Fig.
6(c), where one can see that the velocity there is always
directed toward the heater and that its magnitude in-

creases monotonically while the heater is energized. The
mass Auxes due to distillation and liquid flow into the re-

gion over the heater have been calculated using the data
in those figures. The results show that evaporation is the
dominant process in changing the liquid mass there.

From the foregoing discussion, one can see that a soli-
tary wave of third sound is created at the heater by for-
mation of a depression in the liquid-film surface, mainly
due to evaporation. The liquid adjacent to the film then
flows in such a way as to fill that trough, and a ripple
propagates as each element of the film creates a depres-
sion that is subsequently filled by liquid flowing from the
neighboring region down the line, aided to a small degree
by distillation.
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0

In contrast to solitary waves on a 300-A thick film just
discussed, solitary waves on a 1000-A thick film undergo
substantial attenuation when they propagate. This is il-
lustrated in Fig. 7. The length of the detector was taken
as 0.4 cm in that example, rather than the 0.04 cm used
previously, but the other conditions were the same as
specified earlier. Flight time accounts for about 30% of
the width of the pulse in this case. In this instance the at-
tenuation of the pulse is not a consequence of wave-
packet spreading due to dispersion. In fact, the phase ve-
locity, about 12.55 cms ', varies by only 0.3% for the
normal modes of n =1—100, which give an accurate rep-
resentation of the surface displacement in this particular
case. A study of those 100 dominant modes shows that

the attenuation and spreading of the solitary wave is due
to the differing decay rates of those modes. We are not
aware of this interesting decay mechanism being
identified in any prior theoretical discussion of wave phe-
nomena, although it is consistent with the certain results
obtained from experiments by Generazio and Reed. "

Under the same conditions assumed for Fig. 7 with the
single exception that the unperturbed film thickness is

0

3000 A, the third-sound signal generated is no longer a
solitary v ave, but rather a complex wave shown in Fig. 8.
Only the modes n =1—78 were propagating sinusoidally
in this case, and only even-numbered modes could be
sensed by the film-thickness detector centered at the 90'
point on the annular track. A study of the properties of
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FIG. 5. "Snapshot" of solitary waves on an annular track at a fixed instant of time 0.0585 s after the heater is first excited: (a) sur-
face displacement vs distance, (b) temperature change vs distance, (c) superAuid velocity vs distance.
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the propagating modes showed that, for any mode with
n )34, the quality factor Q =a. (decay time/period) was
less than l. (This calls attention to an important feature
of our theory, which gives accurate results even when
modes having Q ( l are important and also when modes
do not vary sinusoidally. ) For n =2, the period was
T=3.7084 s and the decay time was ~=23.0170 s. For
n =4 the values were T=1.8560 s and ~=5.7543 s.
Higher modes decayed even faster. In the last cycle
shown in the figure, only the n =2 mode had an apprecia-
ble weight. Therefore, according to the calculations,
properties of an essentially pure mode, with n =2, could
be observed at times greater than 16 s. This provides a
valuable opportunity to study third sound experimentally
in its most elementary form. To clarify this point, the
contributions to the signal by the sum of the n =0 and 2
modes are also shown in Fig. 8. The effects of the n =0
term do not change in time or space after the excitation
pulse is turned off.
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FIG. 6. Solitary wave generation in a film 300 A thick by a
heater: (a) surface displacement vs time, (b) temperature change
vs time. In (a) and (b) the detector coincides with the heater. (c)
superAuid velocity vs time at one edge of the heater. The origin
of time is at the instant the heater is turned on.

B. Waves excited by long bursts of heat

Atkins ' and his collaborators studied third sound on
helium films over rectangular horizontal substrates in
their pioneering experiments. Waves that propagated
along the length of the film were excited by periodically
heating a narrow strip for many cycles. During the
periodic heating, the thickness of the film was sensed
along a line one-quarter of the length from one end.

The measured propagation velocities agreed fairly well

with theoretical predictions, as noted in Sec. I. Measured
values of attenuation fluctuated widely from day to day,
but nevertheless seemed to be much greater than theory
predicted. Furthermore, despite substantial effort since
then, those and other observed values of attenuation have
not yet been explained satisfactorily.

To gain insight into their results, we have applied our
more complete theory to the experimental arrangement
shown in Fig. 2(c). The length of the substrate was 4.0
cm and the detector was 1.0 cm from one end, just as in
the actual experiments ' where attenuation was mea-
sured. The linear heater is at the midpoint with respect
to length. In this example, the lengths of the heater and
detector were taken as 0.01 cm. The temperature was
1.80 K and the depth was 300 A for the unperturbed film.
The vaporization coe%cient was y =1.0, and the normal
modes n =0—400 were taken into account.

The length of the track is shorter here than in Sec.
III A, and so the resonances are now more widely
separated in frequency. Therefore, one might expect that
properties of individual modes could be more readily ob-
served in this case. Characteristics of the ten lowest nor-
mal modes having finite wave numbers are given in Table
II. The phase velocity is c =76.515 cms ' for all the
modes shown there. Because of the location of the detec-
tors, they can sense contributions to the surface displace-
ment and temperature change only for even-numbered
modes.

Figures 9(a) and 9(b) show the calculated values of sur-
face displacement and temperature change at the detec-
tors when a burst of 10 cycles of sinusoidal power is in-
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TABLE II. Calculated properties of normal modes for conditions specified in text with J' =4.0 cm.

T 7

(s) (s)

1

2

3

4
5

6
7
8

9
10

1.570 80
3.141 59
4.712 39
6.283 19
7.853 98
9.424 78

10.995 6
12.566 4
14.137 2
15.708 0

120.190
240.381
360.571
480.761
600.952
721.142
841.332
961.522

1081.71
1201.90

0.522770x10 '

0.261385x10 '

0.174257x10 '

0.130692x 10- '

0.104 554 x 10-'
0.871 283 x 10
0.746814x10 -'

0.653463x10 -'

0.580 856 x 10-'
0.522770x10 '

45.770 8

11.442 7
5.085 64
2.860 67
1.830 83
1.271 41
0.934 097
0.715 168
0.565 071
0.457 708
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serted into the film at the heater. The period of oscilla-
tion of heat input was 0.021 7821 s, which is half way be-
tween the periods of modes with n =2 and 3. The flight
time of the earliest discernible displacement signal at the
detector is found by calculation to be the same as the
travel time at the phase velocity of the low-order modes.
The oscillating displacement signal is superimposed on a
background of decreasing film thickness for as long as the
heater is on, reflecting the net evaporation associated
with the k =0 mode. Interference effects are prominent
between t =0.118 and 0.144 s. It may be ~orth em-
phasizing here that the k =0 mode also contains both
steadily decreasing and oscillatory parts and neither of
these parts decays exponentially in time or space.

Temperature changes at the detector are shown in Fig.
9(b). Interference effects are also exhibited there. These
results show that surface displacement and temperature
change are not in antiphase for these waves, implying, for
example, that crests are not always colder than troughs,
illustrating once again deficiencies in the earlier explana-
tion' of third-sound structure.

The complexity of the calculated third-sound signals
suggests that extraction of meaningful data on attenua-
tion for a plane-wave mode or a normal mode from ex-
periments of this nature would be very difficult and
perhaps impossible.

The excitation method used by Atkins ' and co-
workers was even more complicated than the one de-
scribed above. They used a chopped infrared beam to
heat the film. To study a more faithful representation of
their scheme, we assumed an excitation signal of 10 rec-
tangular pulses. The heater was turned on with constant
amplitude for the first half of each cycle and turned off
for the other half. The repetition rate was 0.0217821 s,
the same as the period of sinusoidal heating considered in
the previous example. All other parameters were the
same as for Fig. 9(a). The wave calculated for these con-
ditions is shown in Fig. 10. An oscillating signal super-
imposed on a background of decreasing film thickness
and also interference effects are evident here as for
sinusoidal excitation, but now high-frequency ripples add
further to the complexity of the wave form and its com-
position in terms of normal modes. Extraction of infor-
mation on attenuation for plane waves would be corre-
spondingly more complicated.

In the two examples treated so far in Sec. IIIB, the
heat source was located at the midpoint of the film with
respect to its length. Under these circumstances, one
could vary the position of the detector and calculate the
properties of the film in snapshot form, using the same

procedure described in Sec. IIIA for solitary waves. If
one moved the heater to a different location and held it
fixed there, the properties of the film could again be
viewed in snapshot form. However, the profile of the sur-
face would be different from the previous case because
the strength of coupling of the heater to the normal
modes depends on the location of the heater with respect
to the ends of the substrate. In fact, we have solved this
more general problem for an arbitrary location of the
heater, and the formulas we found clearly exhibit these
features, although we will not give the details here.

In the experiments by Atkins and collaborators, the
detector was fixed at one location, about one-quarter of
the track length from one end, and the position of the
heater was varied stepwise along the track. Each datum
point for the surface displacement detector was obtained
by integrating over many cycles. They correlated the
average of the integrated signals at the detector with the
excitation signals and exhibited the data in a form which
they interpreted as snapshots of the surface at different
instants of time. From those snapshots they inferred
values of phase velocity and attenuation for plane waves
varying as e" ' "". In presenting the data, they as-
sumed x to be the distance between heater and detector.
They did not take into account effects of boundary condi-
tions in the normal-mode structure or the location of the
heater with respect to the ends of the substrate.

Our analysis above suggests that their interpretation of
the experimental data in terms of snapshots of the surface
profile is not correct and therefore inferences drawn by
them are open to question. Our theoretical model in-
volves an imperfect representation of the actual boundary
conditions in their experiment, where the liquid film
could be replenished at the ends of the horizontal track.
Our theory indicates that, for the long integration times
and high power levels which they used, the film would
have been thinned substantially unless such replenish-
ment occurred. These effects were, in fact, observed in
auxiliary experiments with uninterrupted heating. The
accompanying flow would add even greater complexity to
the relationship between their experimentally observed
signals and plane-wave motion.

For some films, Atkins and collaborators stated that
they observed standing waves. Also, in auxiliary experi-
ments, they observed that third sound did not propagate
past the edges or ends of a horizontal flat plate where
there was a 3-mm step. This suggested that the waves
were not able to spread over the edges or ends of the
plate in their main experiments on third sound. These re-
sults help justify the boundary conditions which we used
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FIG. 10. Third-sound signal in a 300-A thick film on a horizontal flat plate with the heater and detector arranged as in Fig. 2(c).
Excitation is by a long train of rectangular heat pulses, and the detected signal is surface displacement as a function of time.
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in modeling their experiments, where we assumed the
superfluid velocity was zero at the ends of the horizontal
track.

C. Waves excited by short bursts of heat

In our numerical study of third sound so far, we have
found that both ultrashort and very long excitation sig-
nals usually produce wave forms involving more than one
normal mode. In Sec. III C we will examine the region
that is intermediate between these extremes. There are
two motivations for this study. One is to try to discover
circumstances under which individual normal modes of
third sound can be excited and investigated systematical-
ly, where comparison of experimental observations with
theoretical predictions should be particularly transpar-
ent. The second is to gain insight into previous experi-
mental studies of propagation velocity and attenuation
where short pulses were used. Our numerical work here
wi11 be framed in such a way that, to a large extent, both
elements are treated at the same time.

Following the lead of the experimenters, we will study
third-sound waves excited by a short train of sinusoidal
heat input two cycles long. We wi11 also select the other
input parameters in our calculations so that they approxi-
mate those in the experiments.

Specifically, our theory will be applied to a film on the
outer surface of a cylinder, as in Fig. 2(b). The cir-
cumference is assumed to be 4.0 cm. (The circumference
used in experiments by Wang and Rudnick was 3.2 cm. )

A heater is located at the origin x =0 and a detector is
one-quarter of a circumference away at x =1.0 cm.
These and other input parameters used in these calcula-
tions are the same as in Sec. III B unless it is explicitly
stated otherwise. The mathematical description is the
same as in Sec. III B even though the shape of the physi-
cal apparatus is different. Gravitational effects will be
neglected and we will take @=1.0 unless it is explicitly
stated otherwise.

The same amplitude of power input is assumed in all
calculations in Sec. III C, so that it is meaningful to com-

pare the relative strengths of detected signals in Figs.
11-15.

Figure 11 is particularly instructive in studying the
modal composition of third sound generated by a short
burst of sine waves. The period of the heat input in this
case is 0.0174 s, which coincides with the period of the
normal mode n =3, as one can see in Table II.

The solid curve in Fig. 11 shows the temperature
change at the detector that results from excitation of the
heater by two full sine waves of power (one full sine wave
of voltage across the resistance heater). That curve takes
into account the modes n =0—400 and is essentially exact
within the context of the theory. The flight time of the
earliest signal from the heater to the detector is about
0.013 s, corresponding to a velocity of propagation of
76.9 cms '. This is very close to the phase velocity of
the low-order modes, as one can verify using the data in
Table II. The earliest detected signal is nearly sinusoidal
for 1.5 cycles and its period is about that of the excitation
power, but then there is a null region due to destructive
interference when the wave traveling the longer path
around the cylinder reaches the detector and combines
with that traveling the shorter path. A pattern of
sinusoidal temperature change separated by null regions
is found for later times also.

A highly significant feature here is that none of the
detected signal is associated with the n =3 normal mode,
even though the power input has exactly the same period
as that mode. The configuration of heater and detector
that we have specified serves as a natural filter in which a
detector for temperature change is completely insensitive
to odd-numbered modes. One can readily verify this with
the aid of Eq. (41). The solid curve in Fig. 11 is due to
the combined effects of many even-numbered modes. To
exhibit the modal composition of the detected signal in
more detail, we have also plotted a curve that takes into
account the n =0 and 2 modes (dashed line), and another
that takes into account the n =0, 2, and 4 modes (dot-
dashed line). Additional calculations reveal that taking
into account all modes through n =10 still gives a bad
approximation to the exact result when the time is less
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than about 0.035 s when the heater is turned off, but gives
a good approximation for time greater than this.

The exact theoretical result for the detected tempera-
ture change due to waves excited by two cycles of
sinusoidal power input at the period of the n =5 mode is
shown in Fig. 12. The pattern of sinusoidal variations
separated by Bat regions has many similarities to that
shown in Fig. 11. This establishes that the pattern in Fig.
11 is not a unique case for odd modes.

The conditions for studying properties of individual
normal modes are more favorable if the excitation power
is applied with a period that coincides with that of an
even mode. This is illustrated in Fig. 13, where the exci-
tation period coincides with that of the n =4 mode. A
study of the modal composition of the detected signal
shows that the contribution of the n =4 mode differs
from the exact theoretical result based on the modes
n =0—400 by less that 0.5% for all times after the excita-
tion power has been turned off; at an elapsed time of
0.026 s. However, a large number of modes contribute to
the detected signal while the heater is on. It should be
noted that, for this case where y =1.0 has been assumed,
the n =4 mode has a quality factor of over 200, and ex-
traordinary care would be required in an experiment to
excite this mode at a frequency within several natural
linewidths of the central frequency, where that mode
would dominate the detected signal after the excitation
power is turned off.

Consider next how these observations are related to ex-
isting experimental results. The part of the data reported
by Wang and Rudnick for film thicknesses greater than
125 A has been used to calculate the number of wave-

lengths that would fit on the circumference of their cylin-
drical track. Of the several cases we examined, only one
corresponded to an index n within one-tenth of an even
integer. Two were close to n for odd modes (viz. , 2.91
and 3.09), and most of the remaining ones differed from
an even integer n by at least 0.3. Since periodic boundary
conditions were physically imposed in their experiments,
and also since their detector was one-quarter of a cir-
cumference from the heater so that odd modes could not
be sensed by their detector, one can conclude that those
data did not correspond to individual normal modes.
Therefore, their assumption that "the train of pulses
picked up by the receiver had an exponentially decaying
envelope whose time constant gave the attenuation
coefficient" appears to be questionable for the thick-film
regime which we examined. Only if an individual mode

were dominant should one expect simple exponential de-
cay in the time domain, as shown by our theory. In addi-
tion, close examination of the only oscillogram of a
detected signal in their paper reveals that the envelope is
not uniformly decreasing even after the heater is turned
off, but exhibits oscillations where the envelope is increas-
ing in some time intervals, typical of complex interfering
waves. These observations suggest that quantitative com-
parison of attenuation rates extracted from their experi-
ments with theoretical results for individual normal
modes should be regarded with due reservation. Further-
more, as we have seen in numerical examples, the early
part of the detected signal usually has contributions from
many normal modes, and so the determination of an at-
tenuation rate for assumed simple exponential decay de-
pends on what part of the detected signal one uses in
fitting an envelope because of this effect also.

A film of about 300 A (80 atomic layers) was the thick-
est one studied in those experiments, and third-sound at-
tenuation was said to be extremely large there. To us, it
seems significant that, for the conditions that existed in
those particular measurements, gravity would produce an
uneven distribution of equilibrium thickness of the film.
Their cylinder was about 1.0 cm in diameter, and calcula-
tion shows that film thickness at the top of the cylinder
would be about 10% less than at the bottom. This im-
plies that components of the propagating signal having
wavelength small compared to the circumference would
travel with a velocity at the top of the cylinder that is
about 17%%uo greater than at the bottom. Effects of thick-
ness variations for longer wavelengths are not so easy to
analyze, but it seems likely that the propagation velocity
in a region will just depend on the average depth over a
distance of the order of a wavelength. This suggests that,
for films of such great thickness, third-sound signals in-
volving at least several normal modes will be distorted
due to gravitational effects as they travel around the
track.

To study this point further, we developed an iterative
solution for a model where third-sound propagates on a
film for which the equilibrium thickness varies as a cosine
function with one full cycle of variation on the track
length. This is a reasonable representation of the hor-
izontal cylinder arrangement in the experiment. Al-
though we have not yet solved those equations numerical-

ly, the structure of the equations shows that the uneven
equilibrium thickness of the film will affect the shape of
the third-sound waves. Also, a study of the equations
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FIG. 12. Third-sound signal calculated for same conditions as in Fig. 11, curve a, except that the period of power input in the
same as for the normal mode n = 5.
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modes n =2 and 3. The detected signal is for temperature change vs time calculated under the following conditions: based on
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It can be shown in a similar manner that the n =1
mode can be observed almost in isolation by placing a
detector one-eighth of a track length from the heater and
then exciting the heater at a period fairly close to that for
the n =1 mode. The specified position of the heater rela-
tive to the detector provides a filter that eliminates the
n =2 mode from the detected signal. The higher-order
modes will not be strongly excited and their contributions
will decay much sooner than that of the n =1 mode, as
one finds from an analysis similar to that given earlier for
n =2. We have calculated the third-sound signal that
would be observed in this case when the power input at
the heater is two sine waves at a period 1.20 times that of
the n =1 mode, i.e., at 0.062732 s for y =1.0 and 0.01.
The results show that after the heater is turned off, the
contribution of the n =1 mode to the detected signal
differs from the exact theoretical result that takes into ac-
count modes n = 1 —400 by about 3% or less.

D. Uniform evaporation

The vaporization coefficient y is of crucial importance
in understanding attenuation in the theory of third
sound, and there are still unsettled questions concerning
its correct value. This matter will be discussed next. A
new method for measuring y directly, based on uniform
evaporation of a film, will then be described.

Much of the beauty and simplicity of Atkins' theory
is directly related to the assumption that the rate of eva-
poration depends on y through Eqs. (10) and (11) when
the film is heated slightly above the temperature of the
surrounding gas. The equations in Sec. IIC show that
decay rates for normal modes of third sound are directly
proportional to the quantity A in Eq. (46), and A varies
inversely with y.

The term "vaporization coefficient" follows Atkins'
terminology most closely in referring to y in Eq. (11),

but other researchers have considered related quantities
that they called "condensation coefficient, " "accommo-
dation coefficient, " and "coefficient of evapora-
tion. " All of these quantities characterize evaporation
at a liquid-vapor interface but, in some cases, are defined
differently. Even the term "accommodation coefficient"
has been defined in different ways by different authors. In
some eases it refers to the fraction of incident gas mole-
cules that stick on the surface, but sometimes it refers
to effectiveness of energy-transfer processes between mol-
ecules in counterflowing streams near the surface. Nev-
ertheless, all of these quantities have sometimes been re-
garded as e ual in discussions in the literature.

Kennard has briefly reviewed work that dates back to
the 1800's and which involves these concepts within the
context of evaporation from classical liquids. He has also
developed simplified derivations of formulas based on
those early treatments. Hunter and Osborne have re-
viewed early work on evaporation from the quantum
liquid He and developed their own theory as well. In-
dependently, Bergman' has developed a theory of eva-
poration from liquid He. Typically, these treatments
made assumptions about details of how molecules in-
teract within a few mean free paths of the liquid-vapor in-
terface, details which are hard to substantiate theoretical-
ly.

Equally diverse approaches have been used on the ex-
perimental side. For example, in evaluating y for eva-
porating He, Atkins, Rosenbaum, and Seki measured
the rate of distillation of bulk liquid near 1 K and in-
ferred y=1. Hunter and Osborne inferred y=1 from
measurements of the reAection coefficient of second
sound from the free surface of liquid HeII. Blair and
Matheson inferred 10 y 10 from measurements
of the period of a torsional oscillator from which an ad-
sorbed helium film was evaporating. %'ang et al. in-
ferred y= 1 from measurements of the rate of slowing
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down of a rotating superconducting sphere levitated in
vapor and covered with a saturated helium film.

Each of these experiments was rather indirect and re-
lied on a theoretical formula in order to deduce a value of
y. Because of the diSculties and complexities of both the
theoretical and experimental aspects of evaluating y, we
believe that the appropriate value to use in Eq. (11) is still
an open question that should be investigated further.

An idealized experiment that can provide a direct, in-
dependent evaluation of y will be described next. The
only assumptions involved are already contained in At-
kins" theory of third sound as we have extended it to
include a heat source. Results of this auxiliary experi-
ment could provide values of y as a function of ternpera-
ture to be used in theoretical calculations that would per-
mit definitive comparisons with observed properties of
third sound, particularly attenuation, which has been so
troublesome in the past.

An arrangement for measuring y is shown in Fig. 16.
A thin flat plate is suspended in a horizontal plane by fine
fibers. A detector D for measuring thickness of an ad-
sorbed helium film and a thermometer T are located on
one face of the plate. The plate has a fairly high electri-
cal sheet resistance, and metallic electrodes are attached
to two of its edges so that a uniform electrical current can
be passed through it to heat it evenly over its broad sur-
faces. A film of helium, say about 300 A thick, is formed
on the plate by allowing an attached rod to dip into a
bulk liquid reservoir about 2 or 3 cm beneath it. After
the film thickness is stabilized, a plunger is used to rapid-
ly lower the level of the reservoir. The switch is then
closed and the helium film evaporates uniformly from the
surface.

The entire apparatus is positioned near the center of a
large cavity whose outer walls are in contact with a heli-
urn bath at a steady temperature below Tz. This fixes the
asymptotic temperature boundary condition in the vapor,
which is the same as the unperturbed temperature T.

From simultaneous measurements of the film tempera-
ture and the time rate of change of the thickness of the
adsorbed film, one can determine a unique value of y.
The result does not depend on the film thickness provided
that it remains in the range where Atkins' theory is appl-
icable, i.e., greater than about 125 A.

Calculations based on formulas in Sec. II have been
made for a uniformly heated film to illustrate predictions
of the theory and show how y can be evaluated. Our
model does not take into account the heat capacity of the
film or substrate, and so there is a short transient period

FIG. 16. Arrangement for measuring vaporization coeScient
y based on uniformly heating a helium film adsorbed on a hor-
izontal plate.

after the heater is turned on that is not treated correctly
in our calculations. However, following that initial rapid
rise in temperature„ it levels o6 at a value that is constant
for the remainder of the heating interval. For y=1.0,
the film thickness will decrease at a steady rate from 300
to 150 A in 0.500 s when the constant temperature at-
tained by the film is 1.17 X 10 K above the unperturbed
value of 1.80 K. On the other hand, if one assumes

y =0.01, the film thickness will decrease at precisely the
same rates as for y =1.0 when the constant temperature
attained by the film is 1.7X10 K above the unper-
turbed value of 1.80 K. The rate of evaporation depends
only on the heating power input to the film. The steady
temperature of the heated film is inversely proportional
to y. One can readily understand this by looking at the
k„=0contribution to the response function T'(t) in Eq.
(41) and referring to Eqs. (11), (60b), (62), and (63). Only
the k„=0terms contribute to the response functions un-

der conditions of uniform heating.
In a real experiment, many details must be treated

carefully in order to obtain accurate values of y. Some of
the more important ones will be discussed next.

The enclosure should be so large that the atoms eva-
porated from the film will be only a small fraction of
those in the vapor in the unperturbed condition. All sup-
port fibers and electrical leads should have very small di-
ameters so that there will be negligible heat flow and
liquid flow to or away from the flat plate along them
while the heater is on. The flat plate should have a negli-
gible heat capacity so that the film temperature will rise
very rapidly when the heater is turned on. The detector
D for film thickness should not interfere appreciably with
evaporation of the film. A remote measurement of thick-
ness using an optical method utilizing an ellipsometer
with low intensity light may be appropriate. However, a
comb capacitor may also be satisfactory provided that
suitable precautions are taken to minimize its effect on
evaporation.

In summary, analysis of an idealized experiment sug-
gests that y can be measured directly and accurately pro-
vided that careful consideration is given to details in a
real experiment.

IV. CONCLUSIONS

A powerful tool for investigating properties of third
sound has been developed in this article by extending At-
kins' theory to include a heat source for excitation. The
structure of third sound has been calculated for the first
time and the results are inconsistent with earlier views on
the subject. Previous interpretations of experimental ob-
servations that seemed to indicate major deficiencies in
the theory, especially with respect to attenuation, are
highly questionable. Additional experiments conducted
in accordance with conditions studied in this paper would
be useful in resolving these issues and in understanding
the newly discovered phenomenon of solitary waves of
third sound. The theory indicates that distillation acting
in concert with the fountain eff'ect produces the dominant
contribution to third-sound attenuation.
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which has the general solution

V~ = Vo, cosk„x+Vp2sink„x . (A9)

The values of k„canbe selected so that either periodic or
null boundary conditions are satisfied.

Furthermore, V (t) satisfies

APPENDIX: PHYSICAL PROCESSES
IN THIRD-SOUND ATTENUATION

V+23k„V+8„k„V=O,
where

(A10)

Analysis of attenuation of third sound can be con-
veniently divided into two parts. First, the terms that ac-
count for attenuation in a set of simplified equations for
third sound will be identified. Next, an energy-
conservation law based on these equations will be de-
rived. Interpretation of that law reveals the physical na-
ture of third-sound attenuation.

The set of simplified equations used in the analysis are
obtained by omitting the heat source term in Eq. (15) and
keeping only the dominant terms in Eqs. (13), (15), and
(17) in accordance with the discussion in Sec. II. From
Eq. (13), one finds

p
" +p, d +KT'=0 .

Bc Bu

Bt Bx

Equation (15) yields

—p, dsT +KLT'=0 .Bv

Bx

From Eq. (1S) one obtains

Bg Bu BT'

Bx Bt Bx

(A2)

(A3)

These three equations can be combined to obtain a sin-
gle equation for superfluid velocity u as follows. Solve
Eq. (A2) for T' and substitute the results in Eq. (Al).
This yields

Bg Ts Bu
P a~ P' L ax

(A4)

Combine Eqs. (A2) and (A3) and obtain

Bg Bu dTs 8 u

Bx Bt ' KL (jx2
(A5)

v P, dTs c} v P, d Ts g uf 1+- =0.
at' «ax'at p L a ' (A6)

This equation for superfluid velocity can be solved us-
ing separation of variables, as follows. Write

u(x, r)= V~(x)V(t), (A7)

substitute Eq. (A7) into (A6) and let k„bethe separation
constant. Then Vo satisfies

V()'+ k„V()=0, (AS)

Operate on Eq. (A4) with fBIBx and on Eq. (A5) with
pB/Bt and take the difference of the resulting equations.
One finds

and

p dT$

2KL

Psfd Ts
n

(A 1 1)

(A12)

The general solution of Eq. (A10) is

V(t)= V, e ' + V~e

where

co =i Ak +k (8 —A )'

(A13)

(A14)

Bv

Bx
—

( —,'p, u )= p,f (ug)+p, fg-
Bx

+p, s (uT') p,sT'—, dv

Bx Bx
(A15)

From these results, it follows that, when 8„&A, this
normal mode is a simple oscillation in space and a
damped oscillation in time with a decay rate per second
of Ak„. This is in agreement with results found in Sec.
II, as one can see from Eqs. (40), (46), (55), (56b), and
(59b).

It is easy to trace the origin of the second term in Eq.
(A6), which is responsible for the damping, to the com-
bined effect of the last term in Eq. (A3), which accounts
for the fountain effect, and the terms involving K in Eqs.
(Al) and (A2), which account for evaporation and con-
densation. Furthermore, one can easily see that if there
were evaporation, but the fountain effect were missing,
the second term in Eq. (A6) would be absent and the nor-
mal modes would be undamped oscillations in time as
well as in space. There also would be no dispersion in
this case. This shows that distillation acting alone does
not produce third-sound attenuation.

Evaporation and condensation can occur reversibly at
a liquid-vapor interface. Also, dissipative coefficients
such as viscosity and thermal conductivity do not occur
in the set of third-sound equations considered in our de-
velopment. This raises an interesting question about
what process is responsible for converting mechanical
motion into heat when third sound is attenuated. The
answer can be found with the aid of an energy-
conservation law that will be derived next.

Recall that p, is independent of space and time in the
approximation we are considering. Multiply Eq. (A3) by

p, u and use elementary properties of derivatives of prod-
ucts of two functions and obtain
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p—,sd f'5x T' '
.

0 Bx
(A16)

Using Eq. (A 1), one can rewrite the first term on the
right-hand side of Eq. (A16) with the aid of the following
results:

p, d f 5x g =f 5x g( pg
—KT')—

x——,'p —K xT'

2p + x me„p

(A17)

m =pd is the mass of the film per unit area and m„, is
the time rate of change of m due to evaporation. The re-
lation between m,„,p

and T' can be inferred from Eq.
(10).

Next, rewrite the last term in Eq. (A16) with the aid of
Eq. (A2):

—p, sd f 5x T' = —f 5x KT' T'—, t)v p L
0 t)x 0 T

(A18a)

For a film of width W= 1, integrate Eq. (A15) over the
length of the track, from 0 to P, and use the boundary
condition that either requires v to be periodic or to vanish
at the end points. One finds

d f 5x (-,'—p, v')=p, fd f 5x g
o Bt ' ' '

o Bx

Equation (A19) is an energy-conservation law for the
whole film. The left-hand side is mechanical energy of
the film. The various terms can be interpreted as follows.
For a portion of the film of length 5x, height d+g, and
width %=1; —,'m, , v is defined as the kinetic energy per
unit length due to superfiuid motion, ,'pf g—isdefined as
the additional potential energy per unit length acquired
by the film due to van der Waals attraction to the sub-
strate when the thickness is changed from d to d +g.
Note that

,'pfk'=—f(pN'')fk'

where pg' is mass per unit length of a slab of film of
thickness 5$' and unit width, and fg', is potential energy
per unit mass at level g' relative to energy of the film of
thickness d. m,„,pf( is defined as the rate at which po-
tential energy enters unit length of a slab of film having
unit width due to evaporation of mass at the rate m,„,„.
This term may be either positive or negative.
m,„,LT'/T is defined as the excess rate at which energy
enters unit length of the film due to evaporation at the
rate m,„,when the film is at temperature T+ T' instead
of T. The energy represented by this last term is associat-
ed with irreversible heating of the gas. This term arises
from the fountain e6'ect in combination with evaporation,
and therefore accounts for third-sound attenuation ac-
cording to our earlier discussion in this appendix. One
can write this term in the following equivalent forms:

LT'
evap evap ( g

LT'
x m evap0

(A18b) = rn,„,L '= —
( T')KL

—f 5x( —,'m, v +—,'pfg )

~ ~P LT'
5x m„,fg+m,„, (A19)

Let m, =p, d represent the surface superfluid mass densi-

ty. Combining Eqs. (A16), (A17), and (A18b), and using
the fact that limits of integration here do not depend on
time so that the time derivative can be taken outside the
integral, one obtains

The middle two members show that this term, which ac-
counts for attenuation, is associated with an excess con-
tribution to the latent heat L'. The last form shows that
the term is always negative regardless of whether T' is
positive or negative, and this is associated with a correla-
tion between mass flow due to evaporation and the sign of
excess latent heat. The negative sign in the last form in-
dicates a decrease of the mechanical energy of the film ac-
cording to Eq. (A19), and this is in accordance with one s
expectations for an attenuation term.
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