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Metallic ferromagnetism in a single-band model. III. One-dimensional half-filled band
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A single-band model recently proposed to describe metallic ferromagnetism is studied in a one-

dimensional geometry in the half-filled-band case. The model describes a tight-binding band with

on-site repulsion U and nearest-neighbor Coulomb exchange matrix element J. %'e determine the

parameter regimes that give rise to partial and full spin polarization using exact diagonalization and

analytic techniques. Ferromagnetism only occurs for JAO, with the required value of J decreasing
as U increases and approaching zero as U~ 00. A regime of partial spin polarization is found to ex-
ist for U less than the bandwidth. We examine the validity of mean-field theory for this model and

find it to be remarkably effective in describing its physical properties.

I. INTRODUCTION

The single-band Hamiltonian

K = t g (—c; c, +H. c. )+ Urn, &n, &

(ij ) I

+J g c;~c)~.ct~ c&~
(j&

has recently been proposed as a simple model containing
the essential physics of metallic ferrornagnetisrn. ' The
parameter J, that drives ferromagnetism in this model, is
an off-diagonal matrix element of the Coulomb interac-
tion between electrons in nearest-neighbor sites and is
positive, and U is the usual Hubbard on-site repulsion.

Within mean-field theory, the Hamiltonian Eq. (1)
gives rise to ferromagnetistn if the parameters J and/or U
are large enough. ' In particular, even for J=0 one ob-
tains ferromagnetism for sufficiently large U when the
Stoner criterion

Ug(e~) & 1

is satisfied, where g ( eF } is the density of states at the Fer-
mi energy. However, it is well known that mean-field
theory overestimates the effect of U by not taking into ac-
count the ability of electrons of opposite spin to avoid
each other (correlations) In fact. , it is likely that the
Hamiltonian Eq. (1) never exhibits ferromagnetism if
J =0.' On the other hand, it is intuitively obvious that
ferromagnetism in this model will occur for sufficiently
large J. Thus, it was conjectured in Ref. 1 that mean-
field theory may not be unreasonable as far as the treat-
ment of the interaction J is concerned, and that the effect
of correlations may be taken into account in the mean-
field equations by using an "effective" value of U which is
smaller than the bare U and does not satisfy the Stoner
criterion. Our results in this paper support this conjec-
ture.

We study in this paper the parameter range giving rise
to ferromagnetism in the model Eq. (1) for the special
case of a one-dimensional lattice. In addition, we re-

II. ANALYTIC RESULTS

The Hamiltonian Eq. (1) can be rewritten as

K= t g(c; c,+, +H—.c. )+Urn;&n;&

J——g (o, cr +n;n .}
(ij)

(3)

which makes its rotational invariance apparent. %e have
also specialized to the one-dimensional case. Let us con-
sider first the simple limiting case U~ao, The usual
transformation applies, and Eq. (3) becomes

2

K,tt= ——— g o, tr —:J,~ g . tr; o . .
(ij ) (ij)

(4)

We have dropped the term in Eq. (3) involving n, n as it
is irrelevant in the large-U limit for the half-filled case.
The Heisenberg Hamiltonian Eq. (4) has ferromagnetic
long-range order for J,z &0 and a singlet ground state
with "almost" antiferrornagnetic long-range order for
J,z&0. Thus, the condition for ferromagnetism in this
limit is J,~ & 0, or

strict ourselves to the half-filled-band case. The condi-
tion on the parameters to give rise to full spin polariza-
tion can be found exactly, as shown in Sec. II, and is
found to coincide with the prediction of mean-field
theory for small U. The value of J required for fer-
romagnetism decreases monotonically with U and ap-
proaches zero for large U, but always remains finite. The
mean-field solution for this model, also discussed in Sec.
II, exhibits certain differences from the case of constant
density of states discussed in Ref. 1. In particular, it ex-
hibits a finite jump in the magnetization for certain pa-
rameters, in agreement with the exact solution. In Sec.
III we study the condition for onset of partial spin polar-
ization by exact diagonalization of small lattices. A re-
gime of partial spin polarization is found to exist only for
U less than the bandwidth, in qualitative agreement with
mean-field predictions. %'e conclude in Sec. IV with a
summary of results and a discussion of the validity of
mean-field theory.
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2tJ&J,= (5)

Note that this condition remains the same for a higher-
dimensional hypercubic lattice. In that case, the ground
state has true antiferromagnetic long-range order for
J &J,.

We next consider the predictions of mean-field theory.
A mean-field decoupling of the interactions in the Hamil-
tonian Eq. (3) leads to the Hamiltonian

H r= QE (k}cl,~e (6)

kyar

with

and the condition for onset of spin polarization is

UJ)Jo=—t 1—
3 2mt

(17b)

g(e)= 1

m(4t e—)'i (18}

Thus, for small U partial spin polarization occurs first
and full spin polarization occurs for larger J. For

For JO=O, Eq. (17b) is the same as the usual Stoner cri-
terion Eq. (2), since the density of states for the one-
dimensional tight-binding chain is

E (k)= —2(t JIi—)cosk —o m,U+2J
(7)

(19)

Ii T~g (o' c(+) +H ~ C. ) (8)

and

m=n —n l (9)

the magnetization per site. The condition on the parame-
ters to yield spin polarization is obtained by setting

Et (kFt ) =Ei (kF}) (10)

with kF&, kF ~ the Fermi wave vectors for up and down
electrons, given by

the lines defined by Eqs. (17a) and (17b) cross and the sys-
tem goes directly from unpolarized to fully polarized.
The situation here is somewhat different than that found
for a constant density of states (Fig. 6 of Ref. 1) as the
condition Eq. (15) does not yield lines that cross at the
same point for different m's. Figure 1 shows the critical
J's that result for various m, and Fig. 2 shows m versus J
for various U (compare with Fig. 7 of Ref. 1). Because
the density of states is not constant here, the magnetiza-
tion jumps discontinuously from finite m to m = 1 in cer-
tain cases. From Eq. (15}one easily sees that the magne-
tization goes continuously from 0 to 1 in the regime

n+m
kF

2

n —m
kF

2

Equation (10) then yields

n~. m J4t sin sin —n 1 — Ii =(U+2—J)m
2 2 t '

(1 la)

(1 lb)

(12)

U ~2t (20a)

while it jumps from a maximum magnetization discon-
tinuously to 1 for

2t & U&(6 m)r .— (20b)

The maximum magnetization is given by the solution of
the equation

and I, is obtained from

=2I, =—g cosk(n&&+nI, &)
k

(13)

2.0

as

2 . n7T m7TI, =—sin cos
2 2

(14)
1.0

The condition on J to obtain a given magnetization m is
then

0.5
1 —( U/4tc)[m /sin(me /2)]J =2tc

[m /sin(m~/2)]+(4/m. )c cos(mn /2)
nm.

C =Sin
2

(15)

(16)
0.0

UJ&J =2t 1 ——
4t

(17a)

We now specialize to the half-filled case, n =1. The con-
dition for full spin polarization (rn =1) resulting from
Eq. (15) is

FIG. 1. Lines of constant magnetization (numbers next to the
lines) within mean-field theory. The system is fully spin polar-
ized for parameters above the line labeled m =1, and below the
line labeled 0 the system is antiferromagnetic.
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+J g (c;tc~ tcI tcj I+c~tcItc~ (cII )

(ig)

+2J+n, t+Ugn, &

—J g n, n,
1 i (ij )

(23)

The energy of the fully polarized state is E =0. With one
overturned spin, the energy is

E =Eo+ U+2J (24)

and the Hamiltonian Eq. (3) becomes (neglecting con-
stants)

H= t g—(c; c, +H c .) —. Ugn;tn, &

(tj)

FIG. 2. Magnetization vs J for various values of U (numbers

next to the curves) within mean-field theory. For 2 & U/t
2.86 the magnetization jumps discontinuously from a finite

nonzero value to m =1 (this is indicated by the dashed lines).
For U/t &2.86 the transition is directly from m =0 to 1. The
dotted line indicates the maximum magnetization vs J.

4 U mn——1 cos
5 4t 2

—1
sin(m m. /2)

(21)

and is shown in Fig. 3 versus U. For U ) (6 m)t no pa—r-
tial spin polarization is obtained, and for U &4t full po-
larization is obtained even for J =0.

We can obtain an exact criterion for the stability of the
fully polarized ferromagnetic state by comparing its ener-

gy with the energy of the lowest state with on overturned
spin. The procedure is discussed in Ref. 5 for a general
hypercubic lattice, and we repeat here some equations for
completeness. A particle-hole transformation on spin-up
electrons yields

with Eo the ground-state energy of

H = t g (—c; c +H. c. )
—U g n, t n, &

(ij ) 1

+J g(ct c, )(c; c, ) (25)

with one 1 and one $ particle. The second term in Eq.
(25) describes an attractive interaction between the hole
and the overturned spin and the last term describes a
"pair hopping" of the hole together with overturned spin.
The condition for full spin polarization is then

Eo+U+2J )0 .

We construct the wave function

~g) = g f(1)c ct; +&I( 0)

(26)

(27)

and application of the Hamiltonian leads to the equation
for the coefficients

2t [f(1+1)+—f (1 —1)]+5IO(2J—U)f (l)=Eof(I) .

c;t~( —1)'c, t

0.8--

0.6 i-

(22)

Introducing the Fourier-transformed amplitudes

f(1)—ge k If
k

Eq. (28) yields

fk =(2J —U)—1 l
Fo

W Eo+4t cosk

with

(28)

(29)

(30)

Fo= &fk .
k

(31)

0.2 I—
Summing over k then leads to the condition for the eigen-
values

oo'—--=——
2 22 24

L

2,8 1=(2J—U) —gl l
Eo+4t cosk

(32)

FIG. 3. Maximum partial magnetization vs U within mean-

field theory. The system cannot sustain a partially magnetized
state with magnetization larger than m in this parameter re-

gime.

If Eo is inside the band this equation can be satisfied with

Eo differing by O(1/N) from 4t cosk for a—ny given k,
which correspond to scattering states. The lowest-energy
scattering state has energy [within 0 (1/E)]
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E = —4t0

and yields the lowest-energy state in the regime

2J —U &0.

(33)

(34)

The condition Eq. (26) becomes
T

UJ&2t 1——
4t

(35a)

which is identical to the condition obtained from mean-
field theory for full spin polarization [Eq. (17a)]. Due to
the condition (34), Eq. (35a) is only valid in the regime

U+2t . (35b)

E = —[(U —2J)i+(4t)i]'~~ . (36)

Equation (36) and the condition for ferromagnetism Eq.
(26} then yield the condition

When Eq. (34) is not satisfied, a solution to Eq. (32) ex-
ists where the lowest eigenvalue is below the bottom of
the band, E0 & —4t, describing a bound state where the
hole and the overturned spin propagate tightly coupled.
Equation (32) is simply evaluated by contour integration
and yields

overlap, interactions will prevent further spins from over-
turning. Thus, this picture indicates that the magnetiza-
tion jumps discontinuously from m = 1 to a finite value as
the transition line is crossed in the regime U 2t, the
maximum partial magnetization being approximately
m —1 —I/(. When g approaches unity the transition
will occur directly from fully polarized to unpolarized, as
in the strong-coupling limit. Our results for the coher-
ence length suggest that this is likely to occur somewhere
in the range U-3t to U-4t. Note that these exact re-
sults exhibit remarkable agreement with the predictions
of mean-field theory.

It should be pointed out that the conditions Eqs. (35a)
and (37a) only guarantee the stability of the fully fer-
romagnetic state with respect to a state with a single re-
versed spin. It is conceivable that in the regime where no
bound state of a single overturned spin and hole exist,
composite bound states involving more overturned spins
could exist that would render the fully polarized state un-
stable even if Eq. (37a) is satisfied. We believe this is
highly improbable but are unable to rigorously rule it
out.

Finally, we find the phase boundary obtained from ex-
act diagonalization of two sites. The energy of the singlet
state is

2t2J&
U

(37a) U+J (U —J}
2 4

1/2

(40a)

which is remarkably the same as the condition obtained
in the strong-coupling limit discussed at the beginning of
this section. Equation (37a) applies in the regime

and that of the triplet state

E = —J (40b}

U+2t (37b}

f(I)~ 1

[ [1+( U —2J/4r )']'"+( U 2J!4r )I'—
~

—I/g (38)

and the coherence length is given approximately by
g-4t/(U —2J). Along the phase transition line Eq.
(37a)

and matches smoothly the condition Eq. (35) at U =2t.
In the regime U &2t the hole and the overturned spin

are not bound, which implies that the system is metallic.
This is likely to be the case for other partially magnetized
states with more overturned spins also.

In the regime U & 2t the hole and the overturned spin
are bound with a finite coherence length. From Eqs. (29)
and (30) we obtain

yielding as the condition for ferromagnetism

2
1/2J + U U

+2r 8r' V 8r
(41)

2.0

1.0

In Fig. 4 we plot the result Eq. (41) for the two-site chain
and the result Eqs. (35) and (37) for the infinite chain.
For two sites no partial spin polarization can exist so that
the dashed line may also be interpreted as the condition

4t
U (4r'/U)— (39)

0.5
so that the coherence length decreases rapidly from
infinity as U increases beyond 2t: for example, (=4.4 for
U =2.5t, and (=1.3 for U =4t The fact. that pairs oc-
cupy a finite coherence length indicates that at the transi-
tion line it will become advantageous to overturn more
than a single spin, as their energies will simply add if the
wave functions are nonoverlapping. As the density of
overturned spins becomes large enough that pairs start to

0 0 x i ~ g I i & t t I

0 2 4 6

FIG. 4. Exact phase boundaries for full spin polarization for
two sites and for an infinite chain.
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FIG. 5. Ground-state energy vs J for a six-site chain for all values of the total spin S allo~ed for U =0, 2, and 4. For small J the
ground state is always a singlet, S =0. Note that the value of J required for spin polarization decreases as U increases, and that the
range in Jwhere the ground state is partially polarized shrinks as U increases and has vanished at U =4.
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for onset of spin polarization. Note the qualitative simi-
larity of these results with the predictions of mean-field
theory, Fig. 1.

III. NUMERICAL RESULTS

We have diagonalized the Hamiltonian Eq. (3) on finite
lattices using a standard diagonalization routine for N ~ 6
and a Lanczos algorithm for N=8 and 10. We use
periodic (antiperiodic) boundary conditions for X =4n
+2 (X=4n) sites, with n an integer. This ensures that
the ground state in the noninteracting case is nondegen-
erate and yields smooth behavior as a function of lattice
size.

Figure 5 shows the ground-state energy versus J for
N=6 and spin values S =0-3 for various values of U.
Note that the ground state with S = 1 is never the
lowest-energy state. For U =0 the system is unmagnet-
ized for small J (S =0), it becomes partially magnetized
(S =2) at J=1.39, and fully magnetized at J=1.85. As
U increases the regime of partial spin polarization shrinks
to 0.88 &J & 1.00 for U =2. At U =4 no partial spin po-
larization exists. Figure 6 shows the phase boundaries
for the six-site chain. The maximum U where partial
spin polarization exists is approximately U =3.0.

Similar results are found for an eight-site chain. We
perform a Lanczos diagonalization starting with a ran-
dom vector and measure that total spin of the obtained
ground state. Figure 7(a) shows the results for U=1.
The ground-state spin shifts from S =0 to 2, 3, and 4
monotonically with U. In contrast, in Fig. 7(b), with
U=2, only S =0 2, and 4 are obtained. Note that this
behavior agrees with the mean-field prediction that for
increasing U the magnetization jumps discontinuously
from partial to full. The phase boundaries in this case for
partial and full polarization are shown in Fig. 8.

To summarize, we plot in Fig. 9 the phase boundaries
for full spin polarization for N =4, 6, 8, 10, and ~ sites,
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FIG. 6. Phase boundaries for onset of partial spin polariza-
tion and full spin polarization in the six-site chain.

FIG. 7. Ground-state energy and spin quantum number in
the ground-state vs J for an eight-site chain and U= l and 2.
The ground state never has spin 5 = 1, as in the six-site case.
Note that for U =2 the magnetization jumps from S =2 to 4, in
qualitative agreement with the mean-field prediction.
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FIG. 8. Phase boundaries for onset of spin polarization
(S =2) (dashed line) for increased partial polarization (S =3)
(dotted line) and for full polarization (S =4) (solid line) in the
eight-site chain.

and in Fig. 10 the boundaries for onset of spin polariza-
tion for N =6, 8, and 10. It can be seen that the behavior
for the di6'erent lattice sizes is quite similar, and based on
this we conclude that the conditions found for onset of
spin polarization on the finite lattices are likely to be
close to the boundary for onset of polarization in the
infinite chain.

IV. DISCUSSION

We have studied the conditions on the parameters that
give rise to ferromagnetism in the model Hamiltonian Eq.

2.0

l I I I l I I I I

0 2 4 6
U t

FIG. 10. Phase boundaries for onset of spin polarization for
N=6, 8, and 10.

(1) for a one-dimensional half-filled band. Let us summa-
rize our findings.

(I) The critical J's both for onset and full polarization
are decreasing functions of U, that approach zero as
U~ ao. That is, no ferromagnetism exists in our model
unless J &0.

(2) The critical J for full spin polarization coincides
with the strong-coupling limiting form J,=2t /U for all
U ~ 2t. For U (2t, it is given by J, =2t(1 —U/4t) which
is the result obtained from mean-field theory.

(3) A regime of partial spin polarization exists for U
less than a maximum value U, . From our finite-lattice
results we estimate U, /t -3.

(4) For small U the magnetization increases rnonotoni-
cally from 0 to 1 with increasing J, while for U/t ) 2 it
jumps discontinuously from a maximum magnetization

2.0

1.5
1.5

1.O

0.5
0.5

I I I I I

0 2 4 6
U

O 2 4 6 S

FIG. 9. Phase boundaries for full spin polarization for N =4,
6, 8, 10, and ~.

FIG. 11. Lines of constant magnetization within mean-field
theory using an e8'ective U de6ned by Eq. (42) in the mean-Geld
equations.
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m to 1. m tends to 1 as U~U, .
(5) Mean-field theory qualitatively reproduces the gen-

eral features obtained from the exact treatments. In par-
ticular, it correctly predicts that the magnetization goes
continuously from 0 to 1 in the regime 0~ U 2t and
that a jump in the magnetization occurs for larger U.
The value of U ~here the jump becomes 1, i.e., where the
transition is directly form unpolarized to fully spin polar-
ized, is Ult =6—

m in mean-field theory, in reasonable
agreement with the results of finite-lattice calculations.

An important goal of our study was to determine the
accuracy of mean-field theory for a Hamiltonian of the
form Eq. (1) in a simple case where exact solutions could
be found. It is reasonable to infer that mean-field theory
would yield comparably good results in other cases with
this Hamiltonian. Comparison with the exact diagonali-
zation results shows that mean-field theory underesti-
mates the required J to give rise to spin polarization by
approximately 30'%f. As expected, mean-field theory

grossly overestimates the effect of U for large U. From
comparison with the exact results we conclude that
defining an "effective U" in the mean-field equations

Ug= U, U~2t,

U,&
——4t (1 t—IU), U & 2t,

(42a)

(42b)
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would give a qualitatively correct picture, as shown in
Fig. 11. More generally, any smooth interpolation with
the asymptotic behavior given by Eq. (42) for small and
large U may be expected to give a reasonable estimate of
the phase boundaries. Using an effective J somewhat
smaller than the bare J would bring the mean-field results
in close agreement with the exact diagonalization results.
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