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Dynamics of Heisenberg ferromagnets at low temperature
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The dynamical correlation function G,{t)=&S,{t)So{0)& and dynamical structure factor S~{t0}
are calculated by the modified spin-wave theory for the low-dimensional quantum Heisenberg fer-
romagnets at low temperature. We use the Dyson-Maleev transformation, ideal spin-wave states,
and the rotational averaging. Sq(co) satisfies the dynamic scaling relation. The explicit form of the
scaling function is obtained. The classical limit of our results is compared with a molecular-
dynamics calculation. The agreement is surprisingly good.

Low-dimensional Heisenberg ferromagnets have at-
tracted much experimental and theoretical interest be-
cause they relate to quasi-low-dimensional magnets and
He atoms adsorbed on a solid surface. ' At present we

understand the static properties of these systems. They
have no long-range order at finite temperature. The
correlation function decays exponentially and correlation
length is proportional to 1/T for 1D and exp(a/T) for
2D. But for dynamical properties we do not know as
much. As these systems have strong short-range order,
they may have a sloppy spin-wave mode.

In recent papers we proposed the modified spin-wave
theory for these systems. Approximations of the same
kind for 3D systems had been done by several authors.
Static properties such as free energy and instantaneous
two-point functions were calculated. These agreed very
well with numerical results of Bethe ansatz equations '

and Monte Carlo calculations at low temperatures.
Modified spin-wave theory is characterized by the follow-
ing: (i) the mean-field theory for ideal spin-wave states;
(ii) the chemical potential for the spin wave is determined
so that &S &=0; (iii) the rotational averaging for rota-
tionally asymmetric physical quantities. On the contrary,
the orthodox spin-wave theory is the perturbation ex-
pansion by 1/S. The chemical potential is the uniform
external magnetic field. Physical quantities are calculat-
ed in a finite field. To get the zero-field result one takes
the limit of the infinite system and after that the limit of
the zero field. Rotational averaging cannot be taken be-
cause the field breaks the symmetry.

In the following we will set 6=k~ =1. The Hamiltoni-
an is

H= —JQS; S, .
(ij )

We assume exchange coupling between nearest neigh-
bors, a periodic lattice with N spins, and a periodic
boundary condition. The two-point function
&S (t)SJ~(0) & (a,P=x,y, z) is the basic quantity for the
dynamics of this system. As this system is rotationally
symmetric in spin space and translationally symmetric in
lattice space, we have

& S, (t )S,~(0) &
= -,

' 5,ttG, , ( t),

G, (t)=&S,(t) So(0)&

In our experience the direct calculation of the left-hand
side (lhs) by the modified spin-wave theory is dangerous
because it is asymmetric for rotation in spin space. Our
density matrix breaks the rotational symmetry. So this
theory gives poor results for rotationally asymmetric
quantities. Then we try to calculate the symmetric quan-
tity G, (t) We define . its Fourier transforms as

S,(t) =N 'QG, (t)e

Sq(to) —= J Sq(t)e '"'dt .

We call Sq(to) a dynamic structure factor. We write
S (t =0) as S, which is called the static structure factor.
If we know all eigenstates and eigenvalues of H, Sq(co) is
written as follows:

S,(~)=yP(I)fi(~ E,+E, )(-,'&I~S+—, ~F &&F~S; ~I &+-,'&I~S:,~F &&F~S,
+

~I &+&I~S', ~F &&F~S;~I&) .
I, F

—iq rIHere S—'=N '~ ate 'St—', St—=St"+is( ~I &
—and ~F & are eigenstates of H. Et and EF are their eigenvalues.

P (I) is the probability of state I. We use the Dyson-Maleev transformation

Sl =at st+=(2S al'al)al, Sl S —attal—— —

As Bose operator aI is defined on the lattice, its Fourier transform is defined on the first Brillouin zone
at, =v'1/N g;exp(ik. r, )at. The Hamiltonian (1) becomes
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NS 2—SQ(1—yk)akak+N ' g (yq
—yk+q)ak+qak, qak. ak, yq=z 'ge' '

k

(4)

Here z is the number of nearest neighbors and the 6's are vectors to the near neighbors. We assume that the eigenstates
of H are approximated by ideal spin-wave states:

IO) is the ferromagnetic ground state where all spins are in the z direction. The expectation value of (4) is

E = — S 2SN—'g(1 —yk)nk+N g(1 —
yk

—yz+yk ~)[nknz ,
'—5«—~(n k+n k)]

k k, p

We assign an eigenstate by N quantum numbers Ink].
The thermal average of n k is

&IIS' qIF)(FISqII) =N '{n„+q+1)n„,

(nk) =2n «+irk, nk =—(nk) .

The free energy

F= —,'NJz S ——g(1—yk)nk
k

—Tg[(1+nk )ln(1+nk) —nklnnk]

(7) F +I ek+q ek+N Jz(1 rk+q rk+r, »

e«=Jz S(1—yk) —N 'g(1 yk
—y+—y„)n ' —p .

The average of ek is ek in Eq. (8). Neglecting the term
0 (N ') and taking thermal averages we have

should be minimized under the zero magnetization condi-
tion. So we get

l
q(CO) Qnkn k+q5(CO+Ek Ek+ ), n k =nk+ 1

k

S =—&nk, S'= —grknk, nk =
N k

'
N k

" '
exp(E«/T) —1

ek= JzS'(1 —yk) —p .
(8)

(9)

The Fourier transform of this gives the two-point func-
tion G„(t):

Parameters S' and p are determined by these self-
consistent equations.

The Fourier transforms of the spin operators in (3) are
written as follows:

S = S+=Sqaq~Sq2Sa —q +a«a« a« —k —
q

k, k'

G, (&)=
2

k kge '"'(n +e "+n e ")
k

2

e
—ikr n +e k n e k

k k
k

(10)

Sq=N' S5qo —N '
gak+qak .
k

Consider the term (IIS+q IF) (FISq II ) in Eq. (2). If
(FISq I)%0, IF) should be (nq+1) ' a II). Then
this term is

2S(nq+1)+N ' n +n —+2(n +1)nk
k

The thermal average of this term is zero, because of (7)
and (8). For the second term of (2), IF) should be
n '~ a II ). Then it is

2Sn +N '(n q+n q
—g«2n qn«)

and the thermal average also vanishes. For the third
term of (2), IF ) 's should be

[(nk+, +1)nk] '"a«+,ak II )

and

Equation (9) predicts that Sq(ai) is always zero at
co&2JzS. As nk =exp(ek/T)nk, it satisfies the detailed
balance condition S (ai) =e S ( —co). Equation (10) at
t =0 gives

G, (0)= N 'gn e'q' +S5,0 .

This instantaneous two-point function coincides with that
in Ref. 2.

At T =0 we have nk =1VS5ko, p=O, S'=S. Then Eq.
(9) gives

S (co)=S5(co—JSz(1—yq)) .

This means that S (co) has the 5-function peak at the
spin-wave energy.

We can show that Eq. (9) satisfies the dynamic scaling
law at low tt;.mperature and low momentum. At
k2((T j(JS') Eqs. I', 8) give
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Next we consider the classical limit S~~. We set
s=S/S and Jo =JS; then the Hamiltonian and equation
of motion become

10:(
H= —Jogs; s, s;= —Jogs, Xs

(1j) I
(13)

where we define scaled time u =t/S W. e can define the
classical correlation function

g, (u)=—(s,(u) s (0)),
and its Fourier transform is

sq(v) =—(2m%) 'g fg, (u)e ""+q"du .

These functions are calculated by following relations:

gs(U)
~'+ ++ ++ +

0.5-

0 I

15

g, (u) =S G, (uS), s (v) =S S (v/S) .

The limit S~ oo is taken at JS && T &&JS . From Eq. (8)
nk becomes

nz ——fi'
& =ST/hk, ht: Jox[z(1 —y&)+u],

where x—:S'/S, U—:—pS/(Jox). Self-consistent equa-
tions for x and U are

FIG. 2. Autocorrelation function go(u) and g8(u) (eighth
neighbor correlation function) for 1D classical Heisenberg fer-
romagnet with N =16 and T=0.1Jo. X's and +'s are the re-
sults of our spin-wave formula (15) and the solid lines are the re-
sults of molecular dynamics. Equations (14) are solved numeri-
cally and we get v =0.007 5968 at T =0.1JO. The agreement is
very good.

T 1 T 'Yk1=—g, x=—gN k hk N k hk
(14)

The dynamical correlation function (9) and the two-point
function (10) become

5(v —hq+ +h), )
sq(v)=

k k+q

cos( Pl g u )
'2

ye —ik r

sin(h„u )—tt.r

k

(15}

In Fig. 2 we compare these formulas and the results of
molecular-dynamics calculations of the 1D classical
Heisenberg ferromagnet at T =0. 1Jo. go( u ) and g s ( u )

are calculated for the N = 16 ring. The initial
configuration of classical spins at a certain temperature T
is obtained by Monte Carlo calculation. The equation of
motion (13} is solved numerically by the Runge-Kutta
method. The correlation function g, (u) is calculated. By
changing the initial conditions about 500 times, we take
the average of the correlation functions. Details of the
numerical methods were given in Ref. 10. The agreement
is surprisingly good.

Several years ago Reiter et al. " argued that the dy-

namic scaling law is not valid for 1D Heisenberg fer-
romagnets. They calculated moments of Sq(co) by ortho-
dox spin-wave theory. But their calculations are based
on very short time and short distance behavior of the
two-point function. So calculations of S~(to) at very
small q and ~ by the moment method are not reliable.

In this paper we calculate S (to) of the 1D and 2D
Heisenberg ferromagnets assuming that eigenstates are

approximated by ideal spin-wave states. Using the
Dyson-Maleev transformation and mean-field approxi-
mation we give a very natural derivation of the dynami-
cal structure factor. We show that our results satisfy the
dynamic scaling relations (12} (Ref. 9) at low tempera-
ture. The characteristic time r satisfies r=g /(JS'). We
obtain the explicit form of the scaling function 4(x,y).
This system has a transition point at zero temperature.
So scaling properties are different from the usual finite T,
phase transitions. We take the classical limit (S~~)
and compare with the results of the molecular dynamics
of the classical Heisenberg model. ' The accordance is
quite good.

ACKNOWLEDGMENTS

I acknowledge Professor Yutaka Okabe for informing
me of the existence of Refs. 3.

'R. D. W'illet, C. P. Landee, R. M. Gaura, D. D. Swank, H. A.
Groenendijk, and A. J. Van Duyneveldt, J. Magn. Magn.
Mater. 15—18, 1055 {1980);K. Awaga, T. Sugano, and M. Ki-
noshita, Solid State Commun. 57, 453 {1986);Y. Okuda, I.
Yamada, J. Watanabe, and T. Haseda, J. Phys. Soc. Jpn. 49,
2136 {1980);K. Takeda, Y. Okuda, I. Yamada, and T. Hase-

da, ibid. 50, 1917 {1980);H. Godfrin, R. R. Ruel, and D. D.
Oschero8; Phys. Rev. Lett. 60, 305 {1988);P. Kopietz, P.
Scharf, M. S. Skaf, and S. Chakravarty, Europhys. Lett. 9,
465 (1989); K. Hirakawa and H. Ikeda, J. Phys. Soc. Jpn. 35,
1328 {1973).

~M. Takahashi, Prog. Theor. Phys. Suppl. 87, 233 {1986);Phys.



770 MINORU TAKAHASHI 42

Rev. Lett. 58, 168 (1987);Jpn. J. Appl. Phys. Suppl. 26—3, 869
(1987).

~M. Bloch [Phys. Rev. Lett. 9, 286 (1962)] treated the spin-wave

numbers as variational parameters. He calculated the energy
of 3D systems at T (T, . See also P. D. Loly, J. Phys. C 4,
1365 (1971). In this theory the spin-wave chemical potential
is zero. E. Rastelli and A. Tassi [Phys. Lett. 4$A, 119 (1974)]
treated the paramagnetic region (T~ T, ) by introducing a
finite chemical potential to set (S,*)=0. But the systematic
method to calculate the two-point function of low-

dimensional Heisenberg ferromagnets was established in

Refs. 2 for the first time.
4M. Takahashi and M. Yamada, J. Phys. Soc. Jpn. 54, 2808

(1985); M. Yamada and M. Takahashi, ibid. 55, 2024 {1986);
T. Koma, Prog. Theor. Phys. 81, 783 (1989).

~M. Yarnada, Ph.D. thesis, University of Tokyo, 1989; M. Ya-
rnada, J. Phys. Soc. Jpn. 59, 848 (1990).

M. Takahashi, Phys. Rev. B 36, 3791 (1987); Y. Okabe and M.
Kikuchi, J. Phys. Soc. Jpn. 57, 4351 (1988).

7F. Bloch, Z. Phys. 61, 206 (1930); 74, 295 (1932); T. Holstein
and H. Primakoff, Phys. Rev. 58, 1098 (1940); F. J. Dyson,
ibid. 102, 1217 (1956); 102, 1230 (1956).

sS. V. Maleev, Zh. Eksp. Teor. Fiz. 30, 1010 (1957) [Sov.
Phys. —JETP 6, 776 (1958)].

B. I. Halperin and P. C. Hohenberg, Phys. Rev. 177, 952
(1969); 188, 898 (1969); S. K. Ma, Modern Theory of Critical
Phenomena (Benjamin, New York, 1976).

' M. Takahashi, J. Phys. Soc. Jpn. 52, 3592 (1983).
G. Reiter, Phys. Rev. 8 21, 5356 (1980); G. Reiter and A. Sjo-
lander, J. Phys. C 13, 3027 {1980).


