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Magnetoplasmons in an electron gas at the crossover from two- to one-dimensional behavior
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Magnetoplasmons in a strongly modulated two-dimensional electron gas are studied within the
random-phase approximation, including for the first time local fields as well as screening effects in

the ground state. With increasing modulation a transition from "bulk" to "edge" magnetoplasmons
accompanied by a frequency lowering is observed. Our results open a new interpretation of recent
far-infrared experiments and correct predictions of classical model calculations that become un-

physical for submicrometer systems.

With modern microstructuring techniques the quasi-
two-dimensional electron gas (2D EG) in, e.g. , a
GaAs/(Al, Ga)As heterostructure can be laterally
confined on a submicrometer scale to quasi-one-
dimensional (1D) structures (quantum wires) or quasi-
zero-dimensional dots. ' Size quantization of electronic
energy levels due to the lateral confinement has clearly
been demonstrated by magnetotransport measurements
on quantum wires with a width less than 500 nm. ' In
view of the great importance of optical methods such as
far-infrared (FIR) spectroscopy, the interesting question
arises how the size quantization affects the spectra. Al-
though some recent FIR data have been interpreted in
terms of transitions between single-particle levels, ' it
has been emphasized that in general the FIR radiation
excites collective oscillations in many-electron systems. '

In order to interpret FIR experiments correctly, it is,
therefore, important to understand the nature of
plasrnons and magnetoplasmons in these geometrically
confined, submicrometer electron systems.

So far, the FIR experiments have usually been evalu-
ated on the basis of the well-known dispersion relation
for magnetoplasmons in an unmodulated 2D EG,

co =co +2ne n q/mv,

where co and q are the frequency and (in-plane) wave
number of the plasmon, co, is the cyclotron frequency, m

and ~ are the effective mass and dielectric constant, and
n, is the areal density of the 2D EG. For example, Han-
sen et al. , who have studied the transition from a weak-
ly modulated 2D EG to a quantum-wire superlattice by
applying a depletion voltage V between the 2D EG and
a microstructured grating gate, observed (for small

modulation) a linear decrease of the squared resonance
frequency with Vs and used Eq. (1) to calculate an aver-

age density n, of the modulated 2D EG, assuming

q =2m/a, with a the period of the grating gate. Demel
et al. determined a width 8' of their quantum wires
from Eq. (1). For a plasma wave having nodes on oppo-
site edges of the wires, q =n./8' ("plasmon in a box"),
they obtained much larger 8' values than from their
transport measurements. They argued that modified
boundary conditions might resolve this discrepancy.

W'e demonstrate in this Brief Report that the interpre-
tation of FIR experiments on such submicrometer sys-
tems on the basis of Eq. (1) in general is not justified and
ignores important physics. We present magnetoplasmon
results obtained from a fully quantum-mechanical calcu-
lation within the random-phase approximation (RPA),
based on a model of a 2D EG in a sinusoidal modulation
potential of arbitrary strength, which covers the whole
region between 2D and 1D behavior. We, thus, are able
to compare our results with the experiments of Ref. 2 in
this most interesting transition region. This was neither
possible in previous RPA calculations, which were re-
stricted to zero magnetic field and nonoverlapping
wires, nor in a recent Letter, presenting magneto-
plasmon results for the case of weak modulation and the
limit of very low frequencies. Furthermore, we fully in-
clude the "local-field effects" (due to higher-reciprocal-
lattice vectors) on the response in the periodically modu-
lated ground state, which were neglected in Ref. 8. Thus,
we are able to investigate the detailed shape of plasma os-
cillations, which was previously discussed only in a classi-
cal local-response approximation (LRA). '

Our results show, similar to the LRA, that with in-
creasing density modulation n, (x) the plasma oscillation
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is expelled from the high-density regions, so that the am-
plitude of the oscillation becomes largest where n, (x ) is
small, and the frequency decreases. Our quantum theory
corrects, however, the unphysical prediction of the LRA
that both width and frequency of the plasma oscillation
approach zero as the minima of n, (x) approach zero.
This prediction was in clear contradiction to the experi-
ments of Hansen et aI. , which yield at the transition
from the modulated 2D EG to nonoverlapping 1D wires
a plasmon excitation with a finite frequency of the same
order of magnitude as for the unmodulated system. Han-
sen et al. used the reduction of the plasmon frequency
observed during this transition to calculate from Eq. (1)
an average electron density (n, =1.8X10" cm at the
channel formation, n, =6X10" cm at zero gate volt-
age). Thus, it was assumed that the depletion of electrons
from the 2D EG, caused by the applied gate voltage that
creates the modulation, is the only reason for the ob-
served frequency lowering. However, our results reveal a
frequency-lowering mechanism inherently related to the
increase of the density modulation in the ground state at
constant average electron density n„which also explains
why the simple plasrnon-in-a-box model leads to prob-
lems with the wire width. In order to separate clearly
the frequency lowering due to the increase of the modula-
tion from the lowering due to the decrease of the average
electron density n„we study different strengths of the
modulation while keeping n, fixed, which, unfortunately,
was not possible in the experiment.

As a model system we consider a GaAs-(Al, oa}As het-
erostructure (m =0.07mo; a=11.9; n, =2X10" cm )

with a laterally microstructured gate electrode of period
a =500 nm in the x direction, as described in Ref. 2. The
effect of the microstructured gate can well be simulated
by an external potential (created by the gate charges) of
the form Vo+ V cos[(2n/a)x] in t.he gate surface at a
distance D =26 nm from the GaAs-(A1, Ga)As inter-
face." The 2D EG is strictly confined to the lowest elec-
trical subband.

The plasmon eigenmodes of the system can be ob-
tained, within the RPA, as the zeros of the determinant
of the dielectric-response matrix eGG, which is con-
veniently expressed, in the Fourier representation, as'
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the homogeneous 2D EG is, up to first order in the
momentum q, given by Eq. (1). In the range of larger q
the RPA dispersion shows a maximum and falls off ex-
ponentially to co, for q going to infinity. This is an ar-
tifact of the RPA and is corrected by exchange-
correlation effects. ' In order to avoid such problems we
include in our RPA calculation for the structured system
only values of q=~q +G~ up to the dispersion max-
irnum, thus restricting the rank of the matrix eGG. to, e.g. ,
21 at B = 10 T and 5 at B =2 T.

The characteristic changes of the magnetoplasmon fre-
quency at the transition from 2D to 1D behavior can be
seen in Fig. 1, showing, for B =10 T, the four lowest
eigenfrequencies in the center of the first 1D Brillouin
zone (BZ), q„=0, ' versus the amplitude —V~ of the
modulation potential. (The sign is adapted to the experi-
mental situation. ) The four modes (N= 1, . . . , 4} con-
sidered here, evolve with increasing modulation (larger—V } from the magnetoplasmons of the homogeneous
system (V =0) with q„=0 (N=1), +2m/a (N. =2, 3),
and +4m. /a (N =4, mode 5 not shown) after backfolding
into the first BZ. These q =0 modes can in principle be
excited by FIR light ( ~q„~ &&2~/a ) with the gate acting
as a grating coupler or, with the same result, the modula-
tion of the electron density breaking the translational in-
variance. The hatched area labels the particle-hole exci-
tations. ' In the unmodulated 2D system the N =1 mode
coincides with the cyclotron resonance and the higher
modes are given by Eq. (1). With increasing modulation
(larger —V ), the lowest mode increases very slightly in
energy, whereas the higher modes decrease strongly up to
a modulation potential of V = —90 meV, even though
the mean density is fixed. From the ground-state calcula-
tion, we can identify this as the threshold voltage where
the 2D EG splits into 1D channels, that is, where the
electronic density between the channels is about one hun-
dred times smaller than in the center of a channel.

eGG.(q„,qy, co) =5GG. —v (q„+G, q;cv)

XP (q„+G, q„+G', q;co) . (2) ~ 1.06
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Here, G =m(2m/a), m =0,+1,+2, . . . , is the 1D
reciprocal-lattice vector in the x direction, q the corre-
sponding momentum in the first Brillouin zone, [i.e.,—(n/a) &q„&(m/a)], and q is the momentum in the y
direction along the channels. As usual P denotes the ir-
reducible polarization matrix, here calculated from a
self-consistently determined effective potential including
the magnetic-field-dependent screening effects in the Har-
tree approximation" and U is the Coulomb interaction.
For an explicit representation as well as for computation-
al details we refer to Ref. 12. The calculations are per-
formed for q =0, i.e., we assume electron gas as well as
exciting electromagnetic field constant in the y direction.
As can be shown easily, the RPA plasmon frequency in
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FIG. 1. The four lowest magnetoplasmon modes at q =0

with B =10 T and qy =0. For X = 1 (notation see text) we used
solid circles, for N =2 solid triangles, N =3 open triangles, and
N =4 solid squares. The hatched area marks the particle-hole
continuum. The inset shows the experimental data of Ref. 16.
The gate voltage is rescaled by a constant factor, so that the
threshold occurs at —90 meV.
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Beyond this threshold voltage (V & —90 meV), the
plasmon frequencies fall into the spectrum of single-
particle excitations. We understand the single-particle
spectrum from the ground-state calculations. In the
quasi-1D situation the Landau bands near the Fermi level
fail to be parallel, and a single-particle continuum opens,
whereas in the quasi-2D situation of weaker modulation
the nearly perfect screening leads to nearly parallel Lan-
dau bands, " and thus to a very narrow excitation spec-
trum for q =q =0. Below we will give an argument
based on a parabolic approximation of the external po-
tential that shows the optically active collective mode in
the 1D region ( V & 90 meV) is essentially a rigid
center-of-mass motion, which is decoupled from the
internal degrees of freedom and, therefore, undamped al-
though its frequency in the present case, 8 = 10 T, falls
into the single-particle continuum, The inset in Fig. 1

shows the corresponding experimental result' at
8 =9.87 T. The two modes in the measurement can be
identified as evolving from the magnetoplasmon reso-
nances of the unmodulated system at q„=0 (cyclotron
resonance; N =1 mode) and q„=+2/a (plasmonic mode,
will be called umklapp resonance in this paper; N =2, 3),
respectively. Note that the total decrease of frequency
experimentally observed for this umkIapp resonance is
only about twice the value we calculated for fixed average
density, n, =2X10" cm . This demonstrates that in
the experiment the frequency lowering due to the in-
crease of the modulation must be a very important effect.
As a consequence, the actual mean density at the transi-
tion ( V = —90 meV) is larger than estimated from Eq.
(1). For V & —90 meV, where only particle-hole excita-
tions are seen in the calculation, the experiment shows a
quite broad single resonance, located near the upper edge
of particle-hole continuum.

Figure 2 shows the magnetoplasmon resonances, for
the system studied above, at 8 =2 T. Here, the transition
from 2D to 1D behavior still occurs at V = —90 meV,
but the umklapp resonances clearly remain above the
single-particle spectrum; they do not become Landau
damped. The upper resonance even increases slightly in
energy, as the voltage gets smaller than V = —90 meV,
similar, but less pronounced as in the experiment, which
is also shown in Fig. 2. The lowest excitation (N = 1) lies
now inside the particle-hole continuum which, owing to
the less-efFective screening, " now appears broader than
for 8 = 10 T. The quantitative differences between exper-
iment and theory can be attributed, first of all, to the
variation of the electron density with the gate voltage,
which we have not taken into account, and second, to the
simple form of the external potential we assumed in the
calculation. Replacing V cos[(2~/a )x] by the steeper
potential V cos(2~[(x /a) —

—,
' sin[(2m/a)x]I ), which is

more adequate for the actual gate structure, ' we ob-
served that the gap between the two umklapp modes be-
comes larger and the upper resonance is shifted further
upwards (solid circles in Fig. 2) leading to a closer agree-
ment with the experiment.

The character of the magnetoplasmon resonances is
most clearly visible in the induced density profile 5p(x).

1.8 B=BT

6 g z—aeO

~ ~gX
3 14 ~r—v

eiseiXAFA@~r/AFl/i/Awfi~P~/ri~

—120 —80 -40 0
(rneV)

FIG. 2. The X =2 (solid triangle) and X =3 (open triangle)
magnetoplasmon mode at q=0 with B =2 T and q~ =0. The
hatched area marks the particle-hole continuum. The (rescaled)
experimental results of Ref. 16 for B =2. 19 T are shown by the
asterisks, those for the steeper potential (text) by solid circles.

Results for the third (N =3) magnetoplasmon excitation
corresponding to the open triangles in Fig. 1 at
V = —50 meV and at V = —90 meV are shown in Fig.
3. At V = —50 meV, the real and imaginary parts of
the plasma wave, which are cosine-like and sine-like, re-
spectively, in the unmodulated 2D EG, are deformed to-
wards the edges of the channel. Mathematically, this de-
formation is due to local-field effects arising from higher-
reciprocal-lattice vectors G, cf. Eq. (2). By increasing the
voltage towards the threshold value of 1D-channel for-
mation, the induced density becomes small in the center
of the channel and localized at the edges [Fig. 3(b)]. In
addition, the symmetric (real) part of the oscillations van-
ishes (the small oscillations in the density profile are a nu-

merical artifact due to our truncation of eGG. to a finite-
rank matrix). The second model (solid triangles in Figs. 1

and 2, N =2) turns out to be of similar shape but with a
predominant symmetric component. The larger dipole
moment of the antisymmetric (third) mode and its in-
creasing frequency with increasing —V beyond 90 meV
show that this mode is the optical active one. These re-
sults resemble the findings of the classical local-response
model, ' ' although in our quantum-mechanical model,
the localization of the plasma oscillations is less pro-
nounced, especially as the magnetic field becomes smaller
[see Fig. 3(c)].

In the quasi-1D limit of strong modulation (
—V & 90

meV) we can compare our results for the antisymmetric
(third) mode to a rigid oscillation of all electrons in a sin-

gle quantum wire with a parabolic confinement potential
V, =—,'m 0 x . Here the center-of-mass motion decouples
exactly from the relative motion since the corresponding
Hamiltonians are strictly additive, irrespective of the
Coulomb interaction. In the dipole approximation (valid
for q =0 and

~ q, ~
&&2~/a) the FIR light excites only the

centers-of-mass oscillation at frequency co=(co, +0 )'

as has been shown recently by Brey et al. ' using more
formal arguments. (A corresponding theorem holds for
quantum dots and explains recent experiments. ' ) If we
approximate our external modulation potential propor-
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FIG. 3. Magnetoplasmon profiles (Ref. 14) for the N=3
mode (corresponding to the open triangles in Fig. 1), vs position
x. Solid and dashed lines correspond to, respectively, the imagi-
nary part and the real part of the induced density.

tional to V exp[ (D+z)(2m—/ a)]cos[x(2n/a)] in the
plane z =10 nm (center of the plane of the 2D EG) by a
parabolic potential, we obtain, for V = —90 meV,
A'0 =3.2 meV. This yields co/co, = 1.02 for B = 10 T and
co/co, =1.36 for B =2 T and a corresponding increase of
co/co, with increasing values of —V or with a steeper
potential shape at the gate as shown in Fig. 2 (solid cir-

cles). Considering the frequencies and the antisymmetric
shape of the induced charge-density profile, we thus may
interpret the N=3 mode in the 1D limit ( —V ~90
meV) as an approximately rigid in-phase oscillation of all
the wires. (The corresponding antiphase oscillation has
q„=m./a. ) Near the threshold of channel formation
( V = —90 meV) the calculated 5p profiles are localized
closer to the edges of the channels than one would expect
from a rigid oscillation of the ground-state density
profile. We attribute this to the deviation of the external
cosine potential from the parabolic approximation.
Within the crude parabolic approximation we can also
understand qualitatively the symmetric (N =2) mode as
an oscillation of the width of the individual density
profile without a center-of-mass motion. This mode
should have a lower frequency and is not excited in the
dipole approximation.

In summary, we have presented a quantum theory of
magnetoplasmons in a density modulated 2D EG, which
covers the whole region between 2D behavior and weakly
coupled 1D wires. We found that, with increasing modu-
lation, the character of the plasmons changes from a 2D
"bulk plasmon" towards a kind of "edge plasmon, " and
that the plasmon frequency decreases below the value one
would obtain from the "bulk" formula Eq. (1) with the
average electron density n, Our results open a new in-
terpretation and better understanding of the FIR experi-
ments ' ' on microstructured (Al, Ga)As systems.

We have recently received work by Dahl' which
presents interesting results on oscillator strengths of
plasmons in density-modulated electron systems focusing
also on the transition between 2D and 1D behavior, but
only for zero magnetic field.
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