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Quasibound states in an electric field
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The Lippman-Schwinger equation in one dimension is solved for the cases of one and two & wells
in an electric field. At low field the field dependence of the quasibound levels behaves in accordance
with perturbation theory, while the levels are ionized at high fields. The two-well case exhibits the
onset of a Stark ladder. In both cases there is evidence for a positive-energy-resonance structure
which becomes suppressed as a §-well lattice is formed.

I. INTRODUCTION

Electric field effects have been somewhat controversial
until recently,' > when it became possible to engineer
semiconductor heterostructures of controlled purity and
dimensions. The reason is that in ordinary solids the
bandwidths A are so large that the dimensionless parame-
ter f=A/Fa (F=e&, the electrical force; a =lattice
spacing) is enormous and these effects are washed out in
experimentally attainable fields (6 <10° V/cm), whereas
for presently standard superlattices f =1 is easily ob-
tained. There is clear evidence for the existence of field-
induced localization and Wannier-Stark ladders in these
structures.®”® The matter to be addressed in this Brief
Report concerns the existence of sharp Stark-shifted elec-
tron and hole states in semiconductor quantum wells and
relatively sharp resonant states that have been found in
calculations and seen experimentally lying above the po-
tential barriers enclosing quantum wells.” ! In addition,
we shall comment on the restructuring of these field-
dependent states into Wannier-Stark levels as individual
quantum wells are coupled to form a lattice.

The existence of bound states in an electric field is curi-
ous in itself, for if a quantum well is placed in an electric
field of any strength, the energy spectrum becomes con-
tinuous and extends from — o to . Experimental ob-
servations suggest that certain states in this continuum
are somewhat “special” and differ from the background
continuum by their exceptional stability. These *“quasi-
bound” states cannot be located by ordinary quantum-
mechanical means, since the matching equations have ac-
ceptable solutions for all energies, but have been studied
by identifying them with peaks in the density of states'?
or as transmission resonances.'? In this Brief Report we
suggest a procedure for identifying them directly and ap-
ply it to the cases of one- and two-8 potential wells,
where the calculations can be carried through analytical-
ly to obtain the complete field-dependent spectrum of
quasibound levels.

II. CALCULATION

In ordinary (F=0) quantum mechanics the
Schrodinger equation with potential V' can be cast into
the Lippman-Schwinger form

) =gl$)+G,VI¥), (1)

where ¢ denotes a basis state of the underlying represen-
tation and G, is an appropriate Green function. In these
terms, the bound states correspond to poles of the Green
function G satisfying the Dyson equation

G=G,+G,VG . (2)

Then, the continuum states satisfy (1) with g =1 and the
bound states satisfy (1) with g =0. We propose that this
same dichotomy holds for F#0 and that the quasibound
levels can be found from the integral equation

Y= [T Golox,x W (x"lx"dx" 3)

where, for simplicity we work in one dimension, and
Gy(x,x") satisfies

——————Fx —E |Gy(x,x;E)=68(x —x') (4)
X

(we shall generally not express the dependence on E ex-
plicitly). As discussed in Ref. 14, an acceptable solution
is
__T
I’°F
where [ =(#/2mF)'}, Z=(x—E/F)I~', Z_(Z.)
=max(min)(Z,Z’), and A;,B; denote the standard Airy
functions.'?
We consider first the case of a 6 well:

Vix)=—A8(x), (6)

Go(x,xl): A,(Z>)B,(Z<) ) (5)

which for F =0 has a single bound state
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In this case (3) becomes
P(x)=—AGy(x,0)¢(0) ,

Gy(0,0)=— % .

The second equation in (8) seems to have appeared first
in Ref. 16 but, as discussed in Ref. 14, an inappropriate
Green function was used so they did not obtain real solu-
tions. We shall identify the quasibound levels with the
solutions to the transcendental equation

A;(—8)B(—5)=n 9

in terms of the dimensionless variables £=E /Fl,
n=I1?F/m\. In atomic units (A=2m =1) with A=1/,
we have

E=gy, FP=4n*. (10)

(®)

Equation (9) can be solved approximately for small F by
using the asymptotic expansions for the Airy functions.
As F—0 we recover exactly the bound-state energy (7),

FZ/J

0.00 005 0.10 015 020 025
OO 1 1 1 Il
(a)

-0.1 7

AOZ —

Energy

AO'B —

~0.4

-0.5

0.040

(b)
0.032 A=1/T

0.024 A

Energy

0.016 -

0.008 A

0.000 -f T T T T
0.00 0.05 0.10 0.15 020 0.25
F2/3

FIG. 1. Field dependence of the spectrum for the single-8-
well potential: (a) quasibound state, (b) positive-energy ‘reso-
nance.”

and for small (F >0) the energy decreases quadratically

in F, in agreement with perturbation theory.!” For larger

F the solution was found by integrating the Airy equation

numerically. The resulting spectrum is shown in Fig. 1.
Next, we look at the double & well

Vix)=—A[8(x)+8(x —a)] . (11)

It is straightforward to show that for y =mia /#*<1
there is a unique bound state, for which
xo=ka(E=—x?) is the sole positive root to
(xoy_l-—l)exo——-l. When y > 1, however, there are two
distinct bound states corresponding to the positive roots
of (xgy ~'—1)e 0 ==1.

In the presence of the electric field, Eq. (9) is replaced
by the determinantal equation

A (a—E)B,(—E)

A(a—E)Ba—E)—n |0

(12)

where a=a /Il and, in atomic units, the dimensionless
quantities £,7 are related to the energy and electric field
as in (10). The spectrum resulting from the numerical
solution to (12) for the case a =1, A=10/m, is shown in
Fig. 2.
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FIG. 2. Field dependence of the spectrum for the double-6-
well potential: (a) quasibound states, (b) resonances.



7632

III. DISCUSSION

In Fig. 1(a) we show the field dependence of the quasi-
bound state for a single well in a uniform electric field. In
the absence of the field the well has a single true bound
state with energy E,= —%)»2. For small F, the binding
energy is seen to increase quadratically, in agreement
with perturbation theory.!” As F increases, the binding
energy eventually begins to decrease and vanishes abrupt-
ly at the critical value F,. This occurs when the electric
potential drop across one Bohr unit is close to |E,|. At
this field and above, the well is unable to maintain a
quasibound state. This is in agreement with previous cal-
culations for a square well'” and also with physical intui-
tion. Less intuitive, however, are the above-well quasi-
bound levels shown in Fig. 1(b), which appear for
0 < F <F, and whose number increases without limit as
F—0. From Egs. (5) and (8) one sees that the wave
functions for these states are Airy functions A4; having
maxima lying upfield from the well at distances E /F?/3.
Evidence for the existence of these states is discussed in
Refs. 9-11.

For the two-8-well case, we see in Fig. 2(a) the begin-
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ning of a Stark ladder. The two rungs have different crit-
ical field values, so it appears that in the case of a lattice
of 6 wells, the ladder is probably well defined only in the
weak-field regime. In addition to the ladder states, the
positive-energy ‘“‘resonant” structure appears to become
more complex. The upper part of the structure moves to
higher energy and expands, while the lower part de-
creases in size and contracts toward E =0. It is likely
that, as more wells are introduced, this portion of the
spectrum disappears, leaving only the Stark ladder states.
This aspect of the problem deserves further investigation.

In conclusion, we speculate that the spectra found in
the &-well case also occur for more realistic potentials
and account for phenomena observed experimentally in
semiconductor heterostructures.
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