
PHYSICAL REVIEW 8 VOLUME 42, NUMBER 12 15 OCTOBER 1990-II

confinemen effects on the low-field —high-field correspondences of hydrogenic impurity states
in quasi-two-dimensional systems
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Correspondences between low- and high-magnetic-field quantum-number assignments for hydro-

genic impurity states in quasi-two-dimensional systems have been established. The apparent
discrepancy between the assignments for three-dimensional and two-dimensional systems for excited
states can be understood in terms of two different limiting cases. Far-infrared magneto-optical mea-

surements have been carried out on well-center-doped Si donors in GaAs/Alo 36ao 7As multiple

quantum wells with relatively narrow well width; the results show two-dimensional behavior, in

agreement with the predictions in this well-width and magnetic-field region.

Magnetic-field effects on shallow-impurity (hydrogen-
like) states in semiconductors have been the subject of
wide interest for many years. Due to the absence of exact
solutions for this problem, certain approximations have
been made at low and high magnetic fields; thus the
correspondence of energy states between the low-field and
high-field limits has attracted considerable attention. For
three-dimensional (3D) systems, such correspondences
have been established after years of theoretical and exper-
imental effort. ' Numerical calculations have been
developed based on symmetry discussions. ' For a
strictly two-dimensional (2D) system, the situation is
much simpler due to the removal of one degree of free-
dom. The correspondences can be established with no
ambiguity. However, the assigned correspondence for
excited states shows an apparent discrepancy with the
three-dimensional results. For example, 2D calculation
predicts that the 3p+, state in the low-field limit with the
usual hydrogen-atom notation should correspond to the
N=2 Landau level in the high-field limit, while it is asso-
ciated with the N=1 Landau level in the 3D case, as has
been confirmed by experiments. This "dimensionality-
dependent" behavior has motivated us to study quasi-
two-dimensional systems, in which neither theoretical
calculation nor detailed experimental investigation has
been carried out for the higher excited impurity states
(such as 3p+, and 4p+, ) in the presence of an external
magnetic field. In principle, the 2D and 3D results can
be reached by taking the limit of the confinement length
going to zero and infinity for infinite potential barriers on
the results of a quasi-2D system, respectively.

Within the effective-mass approximation, the Hamil-
tonian of a quasi-2D hydrogen impurity in a uniform and
static external magnetic field along the direction of
confinement (chosen as z) has the general form

2 2
H= — + ,'co, L, + —,'m*co—,(x +y )+ V(z), (1)

2m

where we have chosen the symmetric gauge, e and m '
are the charge and effective mass of the electron, e is the
dielectric constant of the semiconductor, L, is the z com-

ponent of angular momentum, and co, =eB/m 'c is the
cyclotron frequency. Without loss of generality, the
confinement potential can be chosen as

~, Izl&W/2

Ized & 1V/2,
(2)

which implies that the impurity is doped at the center of
the well with well width 8'. It is obvious that the z com-
ponent of angular momentum and the parity along z,
P(z), are conservative throughout the discussion.

In the absence of a magnetic field and in the 3D limit
(B=O, ait « W, where ait =Pi e/rn'e is the effective
Bohr radius), the zeroth-order solutions of the Hamiltoni-
an of Eq. (1) are just those of the usual 3D hydrogen
atom. The quantum numbers are (n, l, m), and the
zeroth-order eigenenergies are

F I
= —R/n, n =123,. . . , (3)

where R =-e /2@a~ is the effective Rydberg. The wave
function of state (n, l, m) has (n —1 —1) nodal spheres
and (l —~m~) nodal cones along the z direction. Parity
under the transformation z ~—z is odd or even accord-
ing to whether P(z)=( —1)' is —1 or +1, respective-
ly. On the other hand, in the presence of a strong
confining potential V(z) at zero field (B=O, W «att ), it
is convenient for future discussion to rewrite the Hamil-
tonian as

(p2+p )
2m E'p

1
p,'+ V(z) +H',

2m

(4)

with p =(x +y )'~- and H'=(e /e)(1/p —1/r), which is
a perturbation on the 2D limit. The term in the first set
of large parentheses is the Hamiltonian for a strictly 2D
hydrogen atom and can be analytically solved. Thus the
problem of a strongly confined hydrogenic impurity can
be treated as a 2D hydrogen atom plus an associated sub-
band structure with an additional perturbation term.
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The second relation also has ensured parity conservation
in the z direction when V(z) has refiection symmetry.
The correspondence for several low-lying energy states
are listed in Table I (under low field). In this table, the
standard spectroscopic notation (e.g. , ls, 2p+, , etc. ) has
been used to denote the 3D hydrogenic states, whereas
(n, m, i) are used to label the states in the 2D limit.

Physically, the confinement removes some of the de-
generacies by pushing states with 1arger wave-function
extension in the z direction to higher energies. The states
with ~m~ =l have the smallest extension along z among
those states with the same n and l, and thus belong to the
ground subband in quasi-2D systems. The one-to-one
correspondences of Eq. (6) allow one to label the quasi-
2D impurity states with the 3D atomic notation. This
has come into common usage without forrnal
justification; however, it is worth emphasizing that such
labeling is nothing more than an indication of the bulk
parentage, which can be tracked back from the quasi-2D
states by continuously reducing confinement. The spec-
troscopic notation has been used to labe1 the strictly 2D
hydrogenic states by defining l=~m~. For a quasi-2D
system such notation may produce ambiguity (e.g. , the
2po state in the 3D atomic notation is the 1s state of the
second subband in the 2D notation).

At high magnetic fields, but still in the strong
confinement limit (R « irido, «AE, , where b,E, is the
subband separation), the Coulomb term ( e ler) in Eq. —
(1) can be treated as a perturbation. Three quantum
numbers that completely describe the system in this case
are (N, m, i), and the zeroth-order energies are given by

N=0, 1,2, . . . , i =1,2, . . . , (7)

where N is the Landau index and m ~N. The perturba-
tion term becomes important in this problem only when
two states with the same m and P(z) attempt to cross
each other as the magnetic field is varied, since the per-
turbation has spherical symmetry. This cannot happen in
the 2D limiting case (b,E; ~ oo); hence, the correspon-

The quantum numbers for the unperturbed Hamiltonian
now become (n, m, i) with (n, m) denoting the eigenstates
of the 20 hydrogen atom and E' the subband index. The
zeroth-order energy eigenvalues are given by

E„,= —. R/(n —
—,') +E, , n, i =1,2, 3, . . . .

The wave functions have (n —
~
m

~

—1) nodal cylinders
and (i —1) nodal planes along the z direction. Parity
along z is odd or even according to whether
P (z) = (

—1)' ' is —1 or + 1, respectively. The
confinement in the z direction has condensed the nodal
cones into planes parallel to the x-y plane, whereas it
hardly affects the properties in the x-y plane. With the
concept of nodal surface conservation, the correspon-
dence between 3D and 2D limiting cases at zero magnetic
field can be set up as

TABLE I. Correspondence between quasi-2D ( n, m, i) and

3D (n, l, m ) eigenstates at zero magnetic field [the spectroscopic
notations are used to denote (n, l, m)] and their corresponding
Landau levels at high magnetic field in both 2D and 3D limits
for several energy levels.

Low field

Quasi-2D 3D bulk

(n, m, i) (n, t, m)

High field
2D limit 3D limit

N N

(1,0, 1)

(2,0, 1)

(2, + 1,1)

(2, —1,1)

(2,0,2)

(3,+ 1,1)

(3,—1,1)

(4, + 1,1)

(4, —1,1)

ls
2$

2p+1
2p

2po

3p+1
3p

4P+1
4p

dence between low-field states (n, m, i) and high-field
states (N, m, i) can be determined with no ambiguity. If
we again make use of the concept of nodal surface con-
servation, the result is

n —
/m/

—1~N —,'(m + )m—/), (8a)

or equivalently,

N~(n —1)+—,'(m —m ) . (8b)

all m ~O~N=0,
all m &0~X =m .

(9a)

This is exactly the same as the result of Ref. 8, where no
crossing between two states with the same m for a strictly
2D hydrogen atom was considered. It is obvious that the
strictly 2D case is just the limit AE; ~ ~, so that only
the ground subband E, is occupied in a quasi-2D system.

On the other hand, when the confinement is relaxed by
letting W become so large that bE, -R (&Ace„ the states
with smaller i but larger X will cross states with larger i
and smaller N if the Coulomb term is neglected. Howev-
er, such crossing is not allowed between states having the
same m and P(z) due to the nonvanishing off-diagonal
matrix elements of the Coulomb term, which should not
be treated as a perturbation in this case. For example,
3p+, (n = 3, m =1, i = 1) will cross 3d+ „4f+„Sg+,,
and so on (n =2, m = 1, i =2,3,4, . . . , respectively), if the
Coulomb term is neglected, since 3p+ has a larger slope
(N=2) in energy versus magnetic field than 3d+ &, 4f + 1,
and 5g+, (N= 1). When the Coulomb term is turned on,
the crossing is prevented for certain states (it may cross
3d+, if parity is a good quantum number, but not 4f + &

),
and 3p+, is depressed and eventually approaches a slope
equal to that of the upper energy states (N= 1). This is
like a typical anti-level-crossing process, except that the
upper branch does not approach the slope of the lower-
energy level (N=2) because of interaction with even
higher-energy states. In fact, the Coulomb term mixes all
states with the same m (but difFerent N and i) and forces
all of them to move along with the lowest allowed Lan-
dau level for that particular m. That is,
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1s 2p 4
Sample 1

These are the well-known 3D correspondence rules.
Equations (8) and (9) are tabulated for several states in
Table I (under high field). It is easy to see that differences
between 2D and 3D will occur for states like 2s, 3p+&,
4p+&, and so on, but not for states like 1s, 2p+„2po, and
so on. Thus confinement effects play a crucial role in un-
derstanding naturally the apparent "discrepancy" be-
tween the 2D and 3D correspondences.

It is clear from the above discussion that experimental
investigations of those states with qualitatively different
behavior in the high field between 3D and 2D systems
(such as 3p+, and 4p+, ) are crucial to verify the
correspondences between low and high magnetic fields.
Far-infrared magneto-optical measurements of intra-
impurity transitions for well-center (central —, ) -doped Si
donors (ND = 1 X 10' cm ) in GaAs/Alo 3Gao 7As
multiple-quantum-well structures have been carried out
on two samples with different well widths (sample No. 1,
125 A; and sample No. 2, 150 A} at liquid-helium tem-
perature and magnetic fields up to 9 T. The subband sep-
arations (E2 E, ) are—about 550 and 420 cm ' for sam-

ple No. 1 and sample No. 2, respectively, much larger
than the cyclotron frequency ( —120 cm ' at 9 T). A
low-frequency ( —100 Hz) capacitively coupled photocon-
ductivity technique was used to enhance the signal-to-
noise ratio. All measurements were made with a slow-
scan (repetitively scanned) Fourier-transform spectrome-
ter with far-infrared (FIR) light propagation parallel to
the magnetic field and field normal to the sample surface
(Faraday geometry).

Figure 1 shows the photoconductivity spectra for sam-

pie No. 1 at several magnetic fields. At zero field, the
most prominent feature is the strong peak at -78+1
cm, which has been identified as 1s~2p+, transitions
degenerate at B=O. This strong line is split into
1s ~2p

&
and 1s ~2p+

&
peaks as the field increases, and

their behavior is well known. ' " Unfortunately, these
transitions cannot yield information concerning the
correspondences since both initial and final states exhibit
no difference between 3D and 2D. In addition to these
strong features, there are two more weaker lines at higher
frequencies. They move to higher frequencies much
more rapidly in comparison with 1s~2p+, as the mag-
netic field increases.

To identify these transitions, the selection rules have to
be examined. In the geometry of these experiments, the
electric field of the FIR light is in the x-y plane. The
electric-dipole-allowed transitions are b,m =+1 and
b,P(z)=0. At low temperature, the initial state is the
ground state ls [or (101) in the quasi-2D low-field nota-
tion]. The transition energies are much lower than the
subband separation at this well width, indicating that
they are intra-subband transitions. Considering addition-
ally the slopes of the transition energies as a function of
field discussed below, we identify these transitions (in the
3D atomic notation} as ls~3p+, and Is~4p+, . It is
worthwhile to point out that we cannot exclude the
ls ~4p, transition (accompanying ls ~3p+ ~

) and
ls ~5p, transition (accompanying ls ~4P +, ) as possi-
bilities from the above selection rules. However, their in-
tensity should be much weaker due to smaller dipole
transition matrix elements. We exclude them on this
basis.

In Fig. 2, we plot the transition energies as a function
of magnetic field for two samples, solid squares are for
sample No. 1, and open circles are for sample No. 2. At
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FIG. 1. Capacitively coupled photothermal ionization spec-
tra for impurity transitions on sample No. 1 at T=4.2 K and
several magnetic fields. The "shoulder" at —120 cm ' in the
zero-field spectrum is an artifact from the interference of white
polyethylene window, not the 1s~3p+I or 1s~4p+, transi-
tion.
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FIG. 2. Magnetic-field dependence of impurity transitions on

two well-center-doped multiple-quantum-well samples; solid
0

squares are for sample No. 1 (125-A well) and open circles for

sample No. 2 (150-A well). Lines are rough fits (see text).
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Ek =E ( 1s ~2p, ) +k fico, +hk, (10)

where E ( ls ~2p i ) is the transition energy for
1s~2p, in a magnetic field, calculated by Greene and
Bajaj' with well width 125 A (sample No. 1), fico, =13.7
cm /T (nonparabolicity is ignored here), k=0, 1,2,3 cor-
responding to 1s~2p „2p+&, 3p+„and 4p+, , respec-
tively. 6k is the parameter indicating the transition-
energy differences at 8=0 relative to the 1s~2p, tran-
sitions. In spite of the roughness of this formulation,
these curves fit the data reasonably well. It is apparent
that 1s ~3p+, has a slope of -2A'co, and 1s ~4p+, has
a slope of -3%co, in the high-field region. Data taken on

present, theoretical calculations for 1s 3p+, and
1s~4p+& transitions in this system are not available to
compare with our experimental data. For a rough com-
parison, the curves in Fig. 2 are calculated from the sim-
ple formula

sample No. 2 show exactly the same qualitative behavior
as sample No. 1, except that the transition energies are
lower due to the larger well width. Experimental results
clearly indicate that states 3p+ &

and 4p+ &
move with

N= 2 and N= 3 in the high-magnetic-field region, respec-
tively, since 1s moves with N=O. The correspondences
between the low-field and high-field states (N, m, i) are
3p+i~(2, 1, 1) and 4p+, ~(3,1,1), respectively, which are
apparently different from the results of bulk ' and in
agreement with 2D predictions in previous discussions
(see Table I), as expected in this well width and
magnetic-field region (b E; » fico, ))R ).
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