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It is predicted that in a charge-density-wave (CDW) ring-shaped conductor, placed in an external
vector-potential field, there should appear a new Aharonov-Bohm contribution to the magnetic sus-
ceptibility and the electrical conductivity oscillating as a function of the flux with the period
®,=hc /2e. This contribution arises from instanton transitions between degenerate vacua of the
CDW condensate and is the solid-state realization of © vacuum in quantum field theory. The
period transforms into ®,/N in N strongly correlated parallel CDW chains.

The remarkable transport properties of linear-chain
conductors such as NbSe;, TaS;, and K, ;M00;, as well
as of doped linear polymers trans-(CH), (AsFs,1,Br), etc.,
observed at sufficiently low temperatures stimulated con-
siderable research activity in recent years (see re-
views! 7?). These compounds undergo, at moderately low
temperature, the Peierls transition to a state which is a
condensate of paired electrons and holes differing by the
wave vector 2kg, the charge-density-wave (CDW) con-
densate. This macroscopic quantum state is character-
ized by the complex order parameter, A exp(i¢), whose
modulus (A) defines the energy gap in the single-particle
spectrum and the derivatives of the phase (¢) provide for
the charge and current fluctuations,
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The above expressions have been derived in the frame-
work of the Frohlich model of superconductivity.® It
soon became clear, however, that the various pinning
mechanisms of the CDW exclude the existence of super-
currents, but nevertheless the intriguing question
remained whether there are any traces of the “supercon-
ductivity” in the system. The most direct probe for this
hidden superconductivity can be associated with the
Aharonov-Bohm effect (flux quantization) in CDW con-
ductors.

Manifestations of flux quantization in solids are
displayed by a variety of materials ranging from super-
conductors to normal metals’ 7 (see review papers®?),
where they are associated with the response of free-
charge carries to the Aharonov-Bohm flux. The period
of conductivity oscillations as well as of nondecaying
current oscillations,’ with respect to the magnetic flux P,
is hc /e =4X 1077 G cm?. This effect is mesoscopic, i.e.,
persists in systems that are large in the atomic scale, but
small compared with the electron inelastic mean free
path. Weak-localization mechanisms represent another
source of conductivity oscillations making their period
smaller by half, ®,=hc /2e.!>!" The latter effect is due
to the interference in an electron pair, the Cooper pair.
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Similarly, a realization of the Aharonov-Bohm effect in
the magnetic susceptibility oscillations can take place in
the absence of free carriers, as discussed in Ref. 12.

In this paper, we consider the collective mechanism of
the Aharonov-Bohm effect in Peierls conductors associat-
ed with relations (1). Virtual excitations of a CDW con-
densate are represented by instantons, providing transi-
tions between the degenerate vacua of the CDW and
making the energy of the system an oscillating function
of the Aharonov-Bohm flux. This phenomenon is generic
to the ©-vacuum problem in the quantum field theory. 13
In our case, the © angle is nothing else than the total
flux, ©=27® /P, Therefore the subject of the paper has
an ideological sense, as it relates the field-theoretical
effects to their solid-state realizations.

The Gibbs free energy of a ring-shaped single-chain
CDW conductor in the Aharonov-Bohm field, see Fig. 1,
is represented as the sum of the modulus and the phase
contributions, F, and F, 14 of which the latter is of im-
portance in the context of collective Aharonov-Bohm

~—/

FIG. 1. Schematic of a conducting ring (R) in the field of a
vector potential created by a solenoid generating the magnetic
flux ®. In an actual experiment, the flux can be generated by an
applied magnetic field, H, and the leads L,L’ for measuring
resistivity can be attached to the ring. The Aharonov-Bohm
effect manifests itself in the appearance of a magnetic moment
(persistent current in the appearance of a magnetic moment
(persistent current in the ring, j) oscillating, as the ring resistivi-
ty, as a function of ®.
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effect. This contribution is expressed as the functional in-
tegral:

F¢=—%lnfD¢exP [_fode foﬁdTLE(¢) ] @

where B is the inverse temperature, B=1/kg T, L the ring
perimeter, and Lg(¢) the Euclidean Lagrangian of the
CDW

Lg(¢)=Ny[(1/2)d2+(c3/2)(¢')*]
—(Now3/M*)(1—cosM@)—(ie /mc) A . 3)

The last two terms represent the commensurability en-
ergy’® and the interaction of the CDW with the vector
potential field A, respectively, and M is the commensura-
bility index subject in the commensurate CDW state to
restriction M = 3. Classical solutions to (3) in the real
time ¢ =it are fractionally charged solitons and, in the
imaginary time, fractionally charged instantons. The
fractional charge is Q =2e¢ /M. In the above expression,
Ny =2A’N(gp)/w?, where w is the renormalized Debye
frequency, co=vp(w/2A) <<vy the phason propagation
velocity (cq <<vg), vp the Fermi velocity, and N (gz) the
electron density of states.

The physics of the instanton Aharonov-Bohm effect is
as follows. The phase ¢ is constrained to the condition
0<¢<2m. The quantum-mechanical vacuum-vacuum
transition is a combination of the virtual transitions be-
tween the eigenstates corresponding to the Lagrangian
(3),

v, =|¢=2rn/M), n=0,1,... M—1. (4)
Each intermediate step ¥, —W¥, | acquires a change of
the charge equal to the fractional charge +Q, whereas the

net vacuum-vacuum charge transfer equals *2e. Thus,
the period of the oscillations due to the instanton fluctua-
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where n, =(EtM/2—{D/Dy}), 0={D/Py} =1/2; «a,
=1 at n¥n,, a,=1 at M/2+{d/P;}=0,%l,
£2,...,a,, =1 at M/2+{®/Dy}7#0,£1,%2,. . .; [x]
denotes the integral part of x, and {x} the periodic func-
tion (see Fig. 2),
x —[x] for 0<{x} <3
tx)= 1—x +[x] for L<{x}. @

The quantity AE represents the leading term in the en-
ergy splitting of a particle on the circumference due to
the instanton transition:

AE =44iwy(S /2m#) 2exp( — S /#) | 9)

where S =8N w,L /M? is the instanton action calculated
at the classical trajectory.

o (n (@)
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tions is (hc /Q)/M =hc /2e, coinciding with that in su-
perconductors. It can be considered as a manifestation of
Frohlich superconductivity. As the CDW condensate is
pinned by the commensurability potential, superconduc-
tivity does not show up in an infinite length system but
exhibits itself in the periodic variation of the energy with
respect to the flux in a simple of a finite length compara-
ble with the phase coherence characteristic scale. !¢

Consider the small size homogeneous system (3) with
space gradients omitted and introduce a canonical Ham-
iltonian operator corresponding to (3):

H=(1/2NoL)(P,+® /D)
+(Now3L /M*)[1—cos(M¢)] , (5

where P,=(h/i)(3/0¢) is the canonical momentum.
The wave function is subject to the periodic condition
Y(¢)=W(p+27) which ensures that the formulation (5)
is identical to the Bloch problem in a lattice, with 27 /M
substituted for the lattice spacing and ® for the quasi-
momentum. !’

The instantons describe the macroscopic quantum tun-
neling of the CDW which is easiest for homogeneous tra-
jectories, i.e., for a macroscopic quantum transition of
the ring as a whole. Indeed, according to the Derrick
theorem (see Ref. 13), there are no space-dependent in-
stanton solutions with a finite action in the Euclidean sca-
lar models in the dimension d> 1. Therefore the instan-
ton sine-Gordon solution to (5).

d(7)=(4/M)tan "' exp(wyr) , (6)

is advantageous in the action against any inhomogeneous
trajectory in a finite volume.

The instanton contribution to the Gibbs energy of
CDW at zero temperature is

E o

Equation (7) describes the oscillations of the Gibbs en-
ergy as a function of ® with the period ®, at T=0.
Generalization to finite temperatures is achieved by the

{x}

-1 0] | 2 X
FIG. 2. Graph of {x].
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B-periodic instanton lattice solution 8
T o 2 U
¢(T)=H+—A7am(a)o7'//() , (10) 4m

where hwyB=2kK (k), and results in the finite-7 action:
Slg:%[E(K)_%(I—KZ)K(K)], (11)

where K (k) and E (k) are elliptic integrals of the first and
second kind, respectively. When AE <<T <<fiw,, the
temperature dependence of the Gibbs energy is given by
the relation F .~ —(AE)*/T. The temperature, at
which the instanton contribution to the flux quantization
dominates, is about 0.1 K. At higher temperatures, it
starts to exponentially decrease. (However, thermally ac-
tivated solitons should be taken into consideration in this
range of temperature.)

To our knowledge, the effect considered is the second
known example of quantum phenomena in CDW. The
first one was investigated by Bardeen'® and Maki'® in an
attempt to explain nonlinear CDW conductivity in elec-
tric field.

So far we have considered the model of a single chain,
an oversimplified version of a practical CDW conductor.
To understand the impact of the interchain interaction
on the Aharonov-Bohm effect in the CDW, let us first
consider the case of two chains. The corresponding La-
grangian is

L=143+142— W[l—cos(qﬂl—d)z)]—iA (b, +dy)

(12)

where W is the magnitude of the interchain interaction
(for simplicity, we put here L=1, Ny,=1). The Hamil-
tonian is

H=P3+(Py+® /Do) +W(1—coss) , (13)

where ¢=¢,—¢, and 6=¢,+¢,. The wave function
should be periodic in each variable ¢,,¢, with the period
27 which leads to the condition

V(¢,0)=V(p+2m, 0+27)=V(¢p, O0+4m) . (14)

Figure 3 shows the potential profile of the system in
the (6,¢) plane. The periodicity W(¢,0)=Y(¢, O+47)
results in the period of the Aharonov-Bohm effect twice
smaller than that for a single chain, corresponding to
coherent motion of two instantons on both chains, i.e., to
the transfer of the charge 4e over the ring. However,
passing through the barrier W with the probability
exp( —8W1/2) will restore the basic period ®,.

The above analysis can be easily generalized to the case
of an arbitrary number (N) of coupled CDW chains re-
sulting in the Fourier amplitude of the harmonic
®,/(N —p) equal to exp[ —8W!/2p —S(N —p)], where
p=0,1,...,N—1. The interchain interaction exponen-
tially decreases the amplitude of the basic harmonic with
the period ®,, so that, in a highly correlated array of
chains, only the period ®, =®,/N survives.

In an experiment, there are always disconnected chains

W |-/- b

o
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FIG. 3. Potential profile for two interacting incommensurate
CDW’s. The path a results in an oscillating harmonic with the
period ®,, whereas the path b corresponds to a harmonic with
the period ®,/2.

(g <N). This results in that the charge 2ge does not par-
ticipate in the total charge transfer, and the minimum
period becomes ®,/(N —gq) but the corresponding mag-
nitude does not change. Impurity scattering influences
the instanton Aharonov-Bohm effect in a manner
different from that for single-particle flux-dependent os-
cillations.!” Here, the impurities renormalize the
effective phase Lagrangian®® but do not destroy the quan-
tum coherence.

Dissipation, in turn, can destroy the instanton interfer-
ence?!"?? but, in the limit of weak inelastic scattering, will
only result in a slight modification of the one-instanton
action. This problem will be studied in more detail else-
where.

Thus, we have drawn attention to a new manifestation
of the Aharonov-Bohm effect in solids, that of the ex-
istence of a nondecaying current (equivalent to the mag-
netic moment of a ring7), the detection of which can
prove a useful supplement to the existing observations of
the Aharonov-Bohm effect in nonsuperconducting ma-
terials. The system considered, the Peierls ring in the
field of a vector potential, is a second device, after the
small Josephson junction,?? displaying not only quantum
tunneling, but also quantum coherence on the macro-
scopic scale.

An estimate of the magnitude of the oscillating term in
the magnetic moment of a single ring enclosing an area
A,p=—AJIE /9d, is at T=0 K:

e A%(S/Z‘rrﬁ)”zexp(—S/ﬁ) . (15)
0

The preexponential part of this expression is of the or-
der of uy Amaw,/#, where p=e#i/mc is the Bohr magne-
ton and is estimated, for the ring of a perimeter L ~10~*
cm, as ud ~10*up. So small moments can, in principle,
be detected by superconducting quantum interference de-
vice magnetometers.?»?* To estimate the exponential
factor, use the formula for S:

S=E,L/c,, (16)

where E is the soliton energy, of the order of 1 K, and
co~10°"7 cm/s. This follows from the expression
E,=aA(A/D)M/2~1 where D is the width of the con-
duction band, and a~ 1. For NbSe; and TaS;, M=4, and
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A/D ~0.01.! The same estimate follows from the data
on the threshold electric field for nonlinear CDW conduc-
tion.?>2% Therefore, S can be of the order of the action
quantum for a ring of the diameter ~ 1073 cm.

The problem of the magnitude is much more serious
for a correlated array of chains in crystalline CDW. To
make the effect observable, one has to prepare a sample
with the number of chains as small as possible. The op-

timal situation corresponds to N of the order of several
tens, i.e., to a submicrometer transverse size of the crys-
tal. Such an experiment should be very difficult.

The authors acknowledge numerous discussions with,
and helpful comments on, the problem by B. L.
Al'tshuler and B. Z. Spivak.
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