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The average force of kinetic friction that occurs when layered compounds (which are commonly
used as solid lubricants) are sheared in steady state is calculated for a model for such substances, as-

suming that the dissipation is caused by the excitation of lattice vibrations in one surface by the oth-
er. Because at slow speeds shearing is believed to be due to dislocation motion, a model for slow-

speed shearing due to dislocation motion has been formulated. The force of friction is found to be
inversely proportional to the sliding velocity for velocity small compared to the velocity of sound in

the material and proportional to the area of the slipping surfaces. The dissipative stress at a sliding

speed of 1 cm/s is calculated to be 10' dyn/cm'. The dissipative stress, calculated for slippage of
two incommensurate surfaces, is found to be only 10 dyn/cm', however, which opens up the ques-
tion of whether lubrication is caused by slippage of the lubricant relative to the sliding surfaces
rather than by shearing of the solid lubricant crystal.

I. INTRODUCTION

It has recently been shown' that when surfaces coated
with MoS2 by sputtering slide relative to each other, the
MoS2 crystallites orient with their basal planes parallel to
the sliding surfaces. This supports the generally accepted
notion that the fact that layered compounds such as
graphite and MoS2 shear extremely easily in the direction
parallel to their basal planes is one of the reasons for the
low coefficient of friction of surfaces coated with them.
This is also quite likely to be true for some other solid lu-
bricants (such as graphite and graphite fiuoride and cer-
tain dichalcogenides ). Therefore, a study of the resistive
force which occurs when such layered compounds shear
as a function of a load pushing the layers together and
the rate of shearing would be an important step towards
understanding lubricating properties of these solid lubri-
cants on a microscopic level. The problem of the shear-
ing of an fcc structure under a shear stress and a load has
recently been treated using molecular-dynamics tech-
niques. Molecular dynamics is suitable for treating tran-
sient behavior. The present approach treats steady-state
shearing (i.e., beyond the elastic limit) of an infinite crys-
tal, which is not easily treated by molecular dynamics. In
the problem of sliding friction, it is necessary to study a
model with an infinite number of atoms in order to un-
derstand the way in which the sliding kinetic energy is
dissipated among the macroscopic number of vibrational
modes of the crystal because steady-state sliding friction
is precisely the process by which sliding motion of a body
as a whole is converted into thermal (i.e., vibrational) en-

ergy. A conceptually simple model for studying this
problem consists of a slab of a layered crystal structure
with its lower surface in contact with a rigid periodic po-
tential with the same periodicity as a single layer (mean-
ing that each atom in the lower surface moves in a
periodic potential) which is driven at constant speed,
with the upper surface held stationary. The interface be-

tween the lower surface and the periodic potential
represents the slip plane, and the periodic potential itself
represents the part of the crystal below the slip plane.
This model is a direct application of the work of Ref. 4 to
the problem of the shearing of layered solid lubricants.
This article will discuss this model, but it should not be
much more difficult to generalize this to the more realis-
tic case of two such slabs slipping over each other. At
high sliding speeds, the atomic vibrational amplitudes
generated by the moving potential are small and hence
can be neglected in the argument of the periodic poten-
tial. The possible justification of this procedure is studied
by examining the amplitudes of the atomic vibrations
generated in the crystal by its sliding motion in the po-
tential and seeing if they are small compared to the lat-
tice spacing. In performing these calculations, it will be
assumed that the layers which are being slid over the po-
tential contain edge dislocations. If this is not assumed,
the force necessary to cause shearing is considerably
larger. This is a well-known phenomenon in the mechan-
ics of plastic deformation. Furthermore, the actual crys-
tals certainly contain such defects. The calculated force
of friction was found to be inversely proportional to the
sliding velocity and proportional to the surface area. The
case of very slow-speed sliding is then treated in Sec. VI
by assuming that at slow speeds the slippage occurs by
dislocation motion. Using the known behavior of dislo-
cations, a model is formulated for the frictional force due
to dislocation motion, which is similar to recent work on
the damping of solitons in one-dimensional lattices. In
Sec. V, the frictional force generated when a crystal slides
relative to the surface of an incommensurate crystal is
calculated. For the case of a defect-free crystal, it is
found to be 13 orders of magnitude smaller than for the
case of shearing of commensurate layers considered
above, which opens up the question of whether solid lu-
bricants lubricate because of slippage between the surface
and the lubricant rather than by shearing of the lubricant
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itself. It should be possible to make the model quite real-
istic by using the known atomic structure of the layers
(appropriate for specific compounds), using known force
constants between the atoms in a layer and between the
layers. Thus, it is quite likely that the present approach
will allow one to study properties specific to particular
solid lubricants because the method is quite general.

II. FORMULATION OF THE PROBLEM

Let us first consider as a simple model of a layered
compound a simple tetragonal lattice in which the z axis
is taken to be the c axis and the x axis is taken to be the
axis along which the sliding takes place. Let us also as-
sume that energy is dissipated by the vibrational motion
generated by the sliding along the x axis, which is one of
the crystallographic axes. This simple model incorpo-
rates the basic physics of the problem. Later, more corn-
plicated crystal structures will be considered. Although
for graphite and molybdenum disulphide the crystal
structure is hexagonal, since dissipation at slow speeds in-
volves the creation of excitations with wavelengths large
compared to a lattice constant, the exact details of the
crystal structure are not expected to affect the present re-
sults significantly. The upper surface of the lattice (i.e.,
the surface with the lowest z value) will be constrained to
be stationary, and the lowest surface is acted on by a
sinusoidal potential with period a (the lattice constant of
the crystal) which is constrained to move uniformly with
a velocity v. This potential results if we include only the
first few terms in the Fourier series for the periodic po-
tential due to the crystal below the slip plane. For the
lattice considered here, this reduces to a single sinusoidal
potential. Thus, the equation of motion for the model is
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Here, the atoms with j3 =0 are constrained to be station-
ary. For j3=N,
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where Ao=(a /2m )P and a is the lattice constant in the x-

y plane.
Equations (1)—(3) can be inverted to obtain an expres-

sion for xJ]J2J3'

IPxj j j
for j3 not equal to 1 or X, where the atomic positions are
labeled by the lattice vector (j,a,j2a, j3c ), m is the atom-
ic mass, y is the phenomenological damping constant
which accounts for the damping of the lattice vibrations,
and a and P are the force constants for relative motion of
atoms whose x coordinates and whose z coordinates
differ, respectively. For j3 =1,

~ ~
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where Ma, La, and ¹ are the dimensions of the crystal in the x, y, and z directions, respectively, j=(j„jz,j3), and
tvv(k) is the frequency of the vibrational mode of wave vector k. Equations (1)—(5) represent the system as a set of
damped harmonic oscillators (i.e., the lattice vibrations) driven by a periodic driving force, namely the sinusoidal force
in the model. The average force of kinetic friction F,„will be defined as follows:

T
F,„v=(mT) ' dt g A,osin(2m/a)(x N+vt)x (6)

0 J]J2N J]JzN '
J]J2

where T is an appropriate averaging time (which will be defined later for each case considered). Thus, F,„multiplied by
v is the rate at which work is done by the sinusoidal force on lattice vibrations, or in other words, the rate at which en-
ergy is absorbed by the lattice vibrations.

III. THE HIGH-SPEED APPROXIMATION

The main approximation of this section is to replace xj j N in the argument of the sine function in Eq. (2) by xj j N,J]J2

which represents the shifts in the atomic positions in the bottom layer due to dislocations assumed to be present in the
crystal before the sliding started. That is, we are neglecting the displacements of the atoms (due to the sliding) intro-
duced by the interaction with the sinusoidal force field in the argument of the sine, which should be a good approxima-
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tion if A.o is sufficiently small and the sliding velocity is sufficiently large (so that the atoms cannot relax into new
configurations sufficiently quickly). The question of just how small A,o and how large v must be will be examined in this
section. Combining Eqs. (1)—(6), we obtain

F,„=(~A,O/LNMa ) g lS(k)l'. . . , 2[coo(k) —4m v /a ] +(2nvy/a)
(7)

where

ik '
a ik ' a i(2n/a)x.

J[j2
(8)

Let us set j,=jd (j2 )+j in Eq. (8), where j„(jz ) gives the location of the center of the ath dislocation along the x axis
for a given j2 value and j is summed over the width of each dislocation. (The distance between the dislocations is as-
sumed to be large compared to their widths. ) Then, Eq. (8) becomes

S(k)=LM +5o „+f(k,) g e "" ' e
G aj&

It is reasonable to replace ~S(k)
~

in Eq. (7) by its average over all dislocation configurations. This average is given by

( ~S(k)~2) —(LM)2 y 5 + ~f(k )~2 y (e x &da &2 &da'~2 )e y ~2 J2

aa'j2 j2

=(LM)'+5G„+Nd;, M f(k„)l',
G

(10)

where G is a reciprocal lattice vector in the x-y plane,
and

,k i(2m /a)x. +,0

f(k„)=ge " (e '" ' —1),
J

where we have used the fact that for a completely ran-
dom configuration the average over dislocation
configurations vanishes unless a=a'. Also, the average
must vanish for

~ j2 —j2 large. To a first approximation,
we have neglected terms in the summation with j2 not
equal to j2. The first term in Eq. (10) should generally
dominate. In order to test the internal consistency of the
approximation used in this section let us calculate the
mean-square atomic displacement of an ion in the j3 =N
plane (i.e., the plane in contact with the periodic poten-
tial) within that approximation, which is defined by

where v h, is the phonon velocity along the z axis. If we
take A,0=0.17X10 (calculated from the elastic con-
stants of graphite by requiring that the force constant
generated by the sinusoidal potential for small displace-
ments gives the observed shear elastic constant c44),
m =10 g, v h„ the phonon velocity along the c axis,
equal to 10 cm/s, v =10 cm/s, and a =3 X 10 cm, we
find ((x )) =0.723X10 cm. Since this is much
larger than a lattice constant and only becomes smaller
than a lattice constant for v comparable to the sound ve-
locity, the present approximation is probably not suitable
for calculating the force of friction for this case. Never-
theless, if we try to calculate the force of friction from
Eq. (7) for this case, we find using the Debye model

F,„/(LM ) = ( m Ao/maN ) g 5( —cv —
coo( k,z ) )

(x )=(LM) ' g x
JlJ2

=0.25(Aoa )/(mv h, v ) =0.25 X 10 (12)

Using Eqs. (4), (5), (9), and (10), we find to zeroth order in

nd;, =Nd;, /I. ,

2
(x ) =(Ao/m ) N ' g [ cu +coo(k)+—iya)]

k

where co=2~U/a, which in the small-y limit becomes,
if we use the Debye model [i.e., coo(k ) = v ~h, k,
+v „(k„+k )],

(x ) ' =0.25(A, ca )/(2mmv „,v ),

(in dyn) for the above parameters but with v 100 times
larger (in order to make (x ) small compared to a lattice
constant). If we divide this by the area per surface atom
a, we obtain a dissipative contribution to the stress of
0.25X10 dyn/cm .

In the above discussion, we assumed that the film
thickness is large compared to the lattice constant c, so
that we could treat k, as continuous. In the opposite lim-
it, we must not replace the sum over discrete values of k,
in Eq. (7) by an integral. In that case, we find that in the
smail-y limit if we use only the first term in Eq. (10), we
obtain an energy conserving 5 function which is not
satisfied for most values of v. Thus in the case of films
which are only a few atomic layers thick, it is the second
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term in Eq. (10) which contributes to the force of friction.
Consider the k, =0 term in the summation over k,
(which should dominate because we shall see that it is in-
versely proportional to u}. Then, using the above result,

I

we find that in the y approaches zero limit (it really only
needs to be small compared to the maximum lattice vi-
brational frequency for the following results to be valid},
(x ) becomes for small nd„

(x ) =(nd;, a/27rv )(AD/m) (a/2rr) f dk„dk ~f(k„)~ 5(tv rv0—(k„,k~, O))

=0.5(2m) (nd;, N a A,0/ym uu ), (13)

where N is the width of the dislocation in units of a. Substituting the values for the above parameters quoted earlier in
this section as well as u =10 m/s, N =10, and y equal to 10%%uo of the frequency 2nu/a, and nd;, =10 (found from
Ref. 6), we find ((x )) ' =0.3X10 cm, which again implies that u must be comparable to the sound velocity for our
approximation to be consistent, implying that this method is not valid unless v is 100 times larger. For this "thin film"
limit, Eq. (7}becomes

F,„/(LM)=(nd;, m A0/am )N '(a/27r) f dk„dk f(k„)~ fi( (2mu—/a) +tu0( k„,k, 0))

= n nd;, Aaa /(Nmu ) = 10 (14)

(in dyn) for N of the order of 1, and the other parameters
the same as above. This gives a dissipative contribution
to the shear stress of order 10 dyn/cm . Although
F,„~LM, the area of the surface in units of the square of
a lattice constant, the appropriate area to use for real lu-
bricated surfaces in contact is known to be the actual
contact area, which increases with increasing load, so
that the force of friction for lubricated surfaces could still
be independent of the total surface area and proportional
to the load. Since the number of atoms in contact in-
creases in proportion to the load, the supporting force
provided by each atom would remain independent of
load, and hence, it is reasonable to take A,o to be nearly in-

dependent of the load.

IV. , THE FORCE OF KINETIC FRICTION
AT SLOW SPEEDS

Slow-speed shearing is believed to occur by dislocation
motion. Layered compounds are known to possess edge
dislocations with a slip plane at the interface between two
layers. When slippage occurs between two layers at slow
speeds, it occurs by the motion of these dislocations. In

I

our model, the region below the slip plane is replaced by
a periodic potential. Therefore, the dislocations in ques-
tion occur in the crystal above this potential. The atomic
displacement due to such a dislocation can be represented
by

x~ ~
~=u(j, a —vdt —xd ~

) (15)

and

sin[(2ir/a )u (j,a ud t —xd )—]= g(j, a ud t —xd —),

where the index a labels the dislocations. Substituting
this expression into Eq. (6) and using Eqs. (4) and (5), we
obtain

where xd is the x coordinate of the center of the disloca-

tion, which is taken to be a function of j2 to take account
of the fact that the dislocation line is in general not
straight, and vd is the dislocation velocity. For a dilute
concentration of dislocations, g is replaced by

gg(j, a vdt —
xd~

—),

uF„/LM=(cavd/mLa )(LNM )
' g f dru

z z z z
[ —~'+ ~o(k }1'+y'~'
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where we have taken the averaging time T in Eq. (6) to be La /vd, the time for a dislocation to traverse the surface and
where

g(co)= f dere ' 'g(v„t) . (17)

The last summation in Eq. (16) may be replaced by its average over all possible dislocation configurations, which are
taken to be completely random. Then, its summand will be zero unless +=a'. The summand will also be zero if j2 and

j2 are sufficiently far apart (i.e., more than a few lattice constants). To a first approximation, they will be taken to be
equal in this summation. Then, converting the summations over k„,k, k, to an integral and converting the Kronecker
data on k to a delta function using
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g5 g„ I +G =fdk 5(co/uo k +6 )

/c„

we obtain in the y approaches zero limit

(LM) 'F,„u =vino;, c(2mm) 'Log fd k~g[uo(k„+G„)]~ uo(k„+G„)5[u k„—coo(k)]
G„

(19)

or

(LM) 'F,„u=0.5no;, uokuc(2nm) 'g fdk~dk, ~g(uk„, )~ ~v&
—

vz~ (20)

where uz is the phonon velocity in the x-y plane and k„; is
the ith solution to the equation

u'k„' —co'(it) =0 (21)

where k„,k, are restricted to the first Brillouin zone but
k„runs throughout all of k space. If we write

—iUk„ t
g(vok„)= fdt e "g(ut)=vz 'g(k„, ), (22)

where

g(k„;)=fdx e "' g(x),

then

F,„/(LM ) =0.5(2m. ) no;, Avc(mv )

X g f dkydk, lg(k. ;}I'Iuo —
v, I (23)

The present treatment is quite similar to the treatment of
the damping of the motion of solitons in a discrete lattice
given in Ref. 10. Since in the limit of continuum disloca-
tion theory coo(k) takes the form v k, Eq. (21) has no
solutions in this limit, implying that the frictional force
obtained here comes about from the discreteness of the
lattice, as it does in soliton theory. ' The discrete
changes in the soliton damping rate found in Ref. 10
occur because as the soliton velocity decreases, certain
phonon modes which were excited by the sliding soliton
at higher speeds are no longer excited. It is easy to see
from the arguments in Ref. 10 that this results from there
being a gap in the phonon spectrum which is about —,

' of
the phonon bandwidth. In our case, at least for thick
films, there is no gap in the phonon spectrum. Even for
thin films, since we are considering proportionally small-
er values of the ratio of ko to the phonon bandwidth than
were considered in Ref. 10, the resulting gap will be
smaller compared to the bandwidth. Therefore, such

l

effects should not occur in the present case. Further-
more, we are considering smaller sliding velocities. Using
the fact that u =n«su&, we find

F,„ /(LM)=(4m) 'n
;o, A (earn vu) 'g ~g(k„;)~ (24)

Using the fact that

g(k„, )=g(27r/a)= f dx e "g(x)=0.01l, (25)

for some reasonable models for g(x) (e.g., the one in Ref.
10}, where I is the width of the dislocation and taking
u =1 cm/s and I =10 cm, we obtain (in dyn}

F,„=0.5no;, (Aol ) (mavv (26)

which corresponds to a stress of 10 dynfem, which is

comparable to the shear strength of nickel and hence
much too large for a lubricant.

Recently, experimental techniques have been devised
to measure the dissipative force which occurs when a lu-
bricating film is sheared between two oscillating sur-
faces. " Therefore, we will now consider the energy dissi-
pated in a period when a lubricating film is sheared har-
monically. To determine this energy, we will use

sin[2ma 'tc(jia —A sinco, t)],
where cuI is the frequency with which it is being sheared
and A is the amplitude of the dislocation motion caused
by the shearing motion in Eq. (3) for the force which
simulates the effect of the part of the crystal below the
slip plane. This potential is slid harmonically and the
upper plane of the crystal is held fixed, as is assumed in
Sec. II. For purposes of obtaining a rough estimate, we
assume that the dislocations are shifted rigidly. Substi-
tuting this expression into Eq. (6) and multiplying by T,
which is taken to be 2m/co„gives b,E, the energy dissi-

pated in one period,

bE/(LM)=(2m/co, )Bono;, m '(2n) a c f d k fdco[g(k„)J„(k„A )] ~„=„& 5(coo(k) —co )

=(2m/co, )Aono, ,m '(2m ) a c f d k[g(k„)(k„A /2n )"] /coo(k) ~„ (27)

where 3 is the amplitude of the oscillations and we have
taken the large n limit of the Bessel function. Using the
fact that for k„«2n. /I, g(k„)= I, and replacing coo(k) by
u k, where u is a directional average of the phonon ve-

locity, we obtain

bE/(LM)=(AO/uz) no;,ace ' ln/(2' A/c)oI

10
—15 (2&)

in erg, taking u =10 cm/s and A =10 cm, the value
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of A used in Ref. 11. From this value of hE we find an
effective viscosity comparable to that measured in Ref. 11
by the following argument: Dividing this energy by
10 ' cm, the area of a surface unit cell, we obtain an
energy loss per unit surface area of 1 erg/cm . Dividing
this by the amplitude (10 cm) of the oscillations gives a
mean stress of 10 dyn/cm . The effective viscosity is ob-
tained by multiplying this by the thickness of the film
(which is about 10 cm) and dividing this by the mean
velocity (which is of the order of the amplitude divided
by the period, or about 10 cm/s). We obtain an
effective viscosity of the order of 10 P, which is compa-
rable to the value found in Ref. 11.

V. SLIPPAGE AT THE INTERFACE BET%'EEN
TWO INCOMMENSURATE LATTICES

In Ref. 12, films which are incommensurate with an os-
cillating substrate were found to slip with very low dissi-

I

pation. In fact theoretical studies have shown that weak-
ly coupled one-dimensional incommensurate structures
can slide relative to each other with no dissipation. '

Therefore, it is of interest to study the frictional stress be-
tween two crystals which are incommensurate with each
other by the present methods. In the spirit of the preced-
ing sections, we will replace this problem to a first ap-
proximation by the sliding of a crystal lattice whose sur-
face interacts with a periodic potential of period incom-
mensurate with the lattice periodicity. This is accom-
plished by replacing 2'/a in Eq. (3) by 2'/b, where b/a
is an irrational number. In this article the approximation
of Sec. III will be used. Also, we will consider only the
case of a defect-free crystal, for which xj j & is equal toJi J2N

j,a. Then, from Eq. (4), we obtain

(x ) =(Ao/m, ) N 'g [ —(2trv/b) +(2n.v „/b) +v „,k, +iy(2rrv/b] (29)

by using the Debye model for coo(k). Making the usual replacement of N 'gt, by (c/2n) fdk, , valid for
thick films and performing the integration, we find for v && vph,

((x )) =A, cb/(4mv „,v „)=0.5X10 (30)

(in cm), using the previous values of the parameters in this equation and taking b to be of the order of 10 cm, imply-
ing that the approximation of Sec. III of neglecting atomic displacements in the potential is valid. Equation (6) for the
mean force of friction becomes

F,„/(LM)=0. 25(A,o/m )(clb)fdk, Im( co +v~—„Q +v h, k, iyco)— (31)

where co =Qv and Q =2'/b, which gives

F,„/(LM)= (16m') '(Ao/m )c(vph, vp ) '(yv /vp Q
)

10
—19

(in dyn), which implies a dissipative stress of 10
dyn/cm, if we take v =1 cm/s and y=0. 1Qv or about

10 Hz. Thus the dissipative stress is a factor of 10'
smaller for the shearing of an incommensurate interface
than that for a commensurate one, which opens up the
question of whether solid lubrication occurs by the shear-
ing of the interface between the sliding surface and the
lubricant material or by the shearing of the lubricant.
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