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Solitonlike excitations in a spin chain with a biquadratic anisotropic exchange interaction
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Nonlinear solitonlike excitations in a spin chain with a biquadratic anisotropic exchange interac-
tion are investigated using the coherent-state method combined with the Holstein-Primakoft'boson-
ic representation of the spin operators. It is argued that the modified terms of the nonlinear
Schrodinger equation are strongly restricted by the relation between the continuum approximation
(q=d/A, , the degree of the long-wavelength approximation, where d is the lattice constant and k is
the characteristic wavelength of excitation) and the semiclassical approximation (a=1/&S, the de-

gree of the truncation of the operator expansion, where S is the spin length). When assuming that g
and e have the same order (g-t. ) after retaining terms of equivalent order O(e ), the motion of the
Bose operator for the anisotropic case satisfies the nonlinear Schrodinger equation with cubic non-

linearity, and solitonlike excitations are obtained. The other two cases of the relations between g
and e(g-t' ' and g-e') are also discussed.

I. INTRODUCTION

Solitonlike excitations in quasi-one-dimensional mag-
nets have generated a great deal of experimental' and
theoretical ' interest. The soliton solution for the spin
chain has been studied by several different approaches.
In the classical approach, general single-soliton solu-
tions are obtained for a continuum version of the classical
linear Heisenberg chain. In a quantum spin system, a bo-
sonic representation of the spin operators turns out to be
a very suitable method for studying the solitary waves,
because they allow one to include quantum corrections in
a systematic way. In a spin-coherent representation, '

one can work directly with the operators, make no ap-
proximation to the Hamiltonian, and can develop an ex-
act nonlinear equation for the quantum system. The
other coherent-state treatments' ' use a severely trun-
cated Holstein-Primakoff expansion' for S —, and further
approximate H by a Hamiltonian which is biquadratic in
boson operators. Working in the coherent-state represen-
tation of Glauber, ' and making the small-amplitude and
long-wave approximations, one then finds solitary-wave
profiles identical to classical solitons, which is the so-
called semiclassical treatment.

In a quantum spin system, one can introduce the classi-
cal quantity S, =fiS and the condition S, =limy p (AS) is

S- oc

the so-called semiclassical limit. We know that semiclas-
sical treatments use a truncated Holstein-Primakoff ex-
pansion with a small parameter a= 1/&S for obtaining a
properly truncated Hamiltonian and that amplitudes of
Glauber's coherent-state representation expand with the
small parameter ri=d/A, (d is the lattice constant and A,

is the characteristic wavelength) in the continuum limit.
There is the argument that some papers, ' "on obtaining
a nonlinear Schrodinger equation, suffered from a highly
inconsistent conparison of terms (which in fact were of
the same order of magnitude) within the framework of
the Holstein-Primakoff representation. However, we

note that those papers, ' ' based on the Holstein-
Primakoff representation, treated the truncated Hamil-
tonian as an "exact one" and then performed the contin-
uum approximation independently and did not pay atten-
tion to the relation of two perturbations. In fact, for the
coexistence of two perturbations, the relative ratio of two
small parameters plays an important role in obtaining the
proper nonlinear wave equation. Here we briefly mention
the development of shallow-vzater wave theory to support
this point of view.

In shallow-water wave theory, there are two small pa-
rameters: one is p =kh used in the long-wavelength ap-
proximation (k is the wave number and h is the depth of
the water), and the other one is d = 3/h used in the
small-amplitude approximation (A is the amplitude of
the water wave and h is the depth of the water). The rela-
tive ratio of the two small parameters is very important
to obtain the reduced nonlinear wave equation. In histo-
ry there are two quite different shallow-water wave
theories. One is the Airy theory for p~o and 5=0(1)
and the other is the Boussinesq —Korteweg de Veries
theory for 0(5)=0(p ) &&1. These two theories ob-
tained quite different results for wave breaking in a suit-
able depth of the water. In 1953 this contradiction was
solved by Ursell who pointed out that the ratio
U„=5/p (which is so-called Ursell number) determines
the choice of which approximation is the main contribu-
tion. These different approximations correspond to
different physical pictures.

The purpose of this paper is to focus on the relative ra-
tio of two small parameters and investigate solitonlike ex-
citations in a spin chain with a biquadratic exchange in-
teraction. If we assume that g and e have the same order
(ri-e), after retaining the terms of equivalent order
0 (e ), we find that the amplitude of the Glauber
coherent-state representation satisfies the nonlinear
Schrodinger equation with cubic nonlinearity and then
obtains the solitonlike excitations. The other two cases
of the relations between ri and e (ri-e and ri-e ) are
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also discussed. This paper is organized as follows. In
Sec. II, we introduce the Hamiltonian of the system and
express it in terms of the Holstein-Primakoff representa-
tion retaining the terms of order 0(e ) and derive the
equation of motion for the Bose operator. In Sec. II, us-

ing Glauber's coherent-state representation, we perform
the continuum approximation and obtain the nonlinear
Schrodinger equation for the amplitudes. In Sec. IV we
discuss the role of the relative ratio of g and e and the
solitonlike excitations of the system. In Sec. V we make
some comments on our treatment.

II. HAMILTONIAN OF THE SYSTEM
AND THE EQUATION OF MOTION

H =Hz+H~+H~ +H~,
where

(7)

Hz= —
gt, e gS; (8a}

gt =gutt B/J,
HF= —

—,
' g(S; S, ~p)a (p=+1),

(8b)

where A, is the characteristic wavelength of the excitation.
Then the Hamiltonian of the system is written as

The Hamiltonian describing the magnetic chain is

H Hz+HE+Hq +H

where

Hz= —guaB gS; (2)
and

H„=—g, g(S; )

g, =D/J,

Htt = —(g„/2) g (S; S;~p)q (p=+1),

(loa)

(lob)

(1 la)

is the Zeeman energy for external field 8 along the z axis.
In addition,

g„=v(S, ) (1 lb)

HF = —(J/2) g (S;.S, }t„ (3a) Now we treat the Hamiltonian (7) in the Holstein-
Primakoff representation for the spin operators

is the exchange energy representing the anisotropic fer-
romagnetic interaction between nearest-neighbor spins S;
and S, while exchange anisotropy is controlled by a pa-
rameter 5 and is defined as

S;=&2(1—e a, a;)' ea;

=&2[1—e a;a;/4 —e a;a;a; a;/32

(AB) =2 B +2 "B"+(1—b)A B (3b)
—s a; a, a, a;a; a;/128 —0(e )]ca, , (12a)

and S, =&2ea; (1 ea; a;)'—
H„= Dg (S )—

is the uniaxial crystal-field anisotropy, and

Htt = —(vJ/2) Q (S SJ )q

(4)

(5)
and

=&2@a; [1 Ea; a; l4 e"a; a,—a; a; l32-
—e a, a;a; a; a;/128 —0(e )],

S =1—ea a

(12b)

(12c)

is the biquadratic anisotropic exchange interaction be-
tween nearest-neighbor spins S,- and S, For a high-spin
system (S) 1), the biquadratic exchange interaction '

should be considered. This interaction has been shown to
give essential quantative modifications for the thermo-
dynamics of the Heisenberg ferromagnet. ' For 6=0,
it is the case of isotropic exchange interaction which was
studied by Ferrer. '

Introducing the dimensionless variables

H =H/J(S, )

H= G(a;, a;,a;+, a+~)+ 0(e ), (13}

where G is the expression of H in terms of a;, a;, a;+
and a, + forms. The detailed expression is listed in Ap-
pendix A. %e know that the Bose operator satisfies the
following Heisenberg equation of motion:

where e= 1/&S. By substituting Eq. (12) into Eqs.
(7)—(11), we get, after retaining terms of order 0(e ), the
Hamiltonian

S, =S;/S, , (6b)
t (e /JS, )dai/dt =[a,H] . (14)

x =x/A, , 4:6c) Then we calculate the commutation [a, ,H ] as
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(15b)

[a, Hz]=gt e a (lsa)

[a,H„]=2g,e a —g, e a —2g, e a, a a, ,

[aJ.,HE]= —( —,')e [(I+6,) pa + +2(1—b, )a ]
P

+(—,')e g(2a..a a + +a.+ a a +a + a + a.+ )
—4(1—b)ga + a + a

. P P

e ~(3a a a a a + +2a a a.+ +a + a.+ a.+ a + a + +2a + a a.a a +a + a~+ a~+ +a + as+p~ s
. P

8—2a + a + a + a a 4aj—+ ajajaj+ aj+ ) +O(e ), (15c)

[a~,Htt]= —
—,'e g„[4(1 b) g a—+ —8(1—6) a ]

P

—
—,'e g„[4+4(1—b, ) ]a —4(1 b, ) pa —+ +[8(1—6) +4]pa + aj+ a~

—10(1—b, ) pa/aja/+
P P P

—5(1 b) pa, +
—a, a, +4+a, a, + a, +

—5(1 b) pa, +
—a, + a, + +8(1—b) a, a, a,

P P P

—
—,'e g„[—(1 —b, )8, /32+82+83]+O(e ),

i (e /JS, )da /Bt=F(a, a, a +,a + ), (16)

where F is the expression of [a,H] in terms of a, a,
0j+p and a + forms.

III. NONLINEAR SCHRODINGER EQUATION

where B„B2,and B3 are expressed in Appendix B. We
now have the equation of motion expressed by bosonic
operators a and a,

long-wave approximation:

a, ~a(x, t),
a,' a*(x,t),

' fa—x- fd—x,1

a + ~a+gpa„+ —,'g a + —,'q p a

(20)

In order to solve Eq. (16} analytically, we introduce
Glauber's coherent-state representation'

a,"Ia & =a,'Ia),
a;Ia) =a, Ia},
Ia)= g I ()),

(17a)

(17b)

(17c) Having retained the terms rt e" of order O(m +n =8),
Eq. (18) becomes

H, =H Ho=H, (a„a,+—,a,*. ,a,*+ ), (18a)

where Ia(i)) is the coherent-state eigenvector for opera-
tor a, and a; is the coherent amplitude in this representa-
tion. The states Ia(i) ) are nonorthogonal and overcom-
plete. The diagonal matrix element (aIA Ia) of an
operator A is denoted by A. These elements are known
to be good operator representatives. ' We believe that
no essential information is lost in this treatment in the
condition of low-temperature excitations. Therefore,
Eqs. (13) and (16) take the forms

+ e) +e)
H, =(aIH, Ia) = —f dx Y(x, t)= —f dhY(X, t),

d g oc

(21)

where Y(x, t) is the reduced energy density and expressed
as

Y(x, t)=C; IaI +Cza„a„'+C3IaI„„

Ho= g„e N g, N ——(1 b)N ——g„(1—b, ) N— ,

where N is the number of lattice sites, and

(18b) +c4(aa* +a*a —(1—5) I~ I „)

Baj
t F(A) (xj. +p&&Q) &cx)+p) .
JS, Bt

(19)

We now perform the continuum limit for the system,
where g=d/A, is the small parameter representing the where

+c, lal +c6lal 1&12

+C7 la I'~„~;+Cs I ~ I,
'

I
~ I,'+ C9 I a I', (22a}
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Ct =[gt, e +2g, —2 —4b(1 —b, )g„]e

C2=[1+2g„(1—b, )]e g

C3= —
—,'[1+Zg (1—h)]e g~,

Y(x, t)=C, )a) +C2a„a„*+C3IaI„,+Cqlal (24)

where C„Cz, C3, and C, are expressed in Eq. (22b) with

g replaced by the lattice constant d. The equation of
motion (23) is reduced to

C4 =
—,', g4e',

C5 =
I
—g, +5[1+2g„(1—6)]—4h g, ]e

1 Ba, , 2i = A, a —A2a„„—A3alalJS, Bt
(25a)

C6 =—
[ [1+2g„(1—5)]—5g„je4rt~,

C, = [Ag„——,'[1+2g„(1—b )]I e rt',

Ca=I 4[1+2g (1 —6)] b, g )—e rl

C =2hg e

The equation of motion (19) becomes

1 a 2

JS, Bt

A4axxzx+(

+(As+A7)a a' +(2A7+As)aa~a'

+(As+A9)a'(a~) +A)oa~a~

where

A, =g„e'+2g, —g, e —2 —4g„h(1 —b, )

(23a)

where A& and A2 are expressed in Eq. (23b) with rt re-
placed by the lattice constant d, and A 3 is

A 3 =2g, e 2h—e 20g—(1—b, )e

+4( 1 —b, ) g,e2+ 4g„e2 . (25b)

Through simple transformation, Eq. (25a) can reduce to
the standard cubic nonlinear Schrodinger equation:

' 1/2232 —iA[t
a(x, t) = W(g, r)e3. (26a)

(26b)

r=t/A, ',
iW, + Wg+2~ W~ W=O .

(26c)

(26d)

Equation (26d) can be solved exactly by the inverse-
scattering transform. A single-soliton solution is

W(g, r) =P sechP(g $0 2k')— —
—2g„[1+(1—6) )e +4(1 b, )g„e—

A ~
=[—,'(1+b, )+2g„(1—b, )(1 e)]rt— That is,

Xexp[ikg —i (k ~ —P~)r —jgo] . (27a)

+4g, e [—,'(1 —b, )+25 ]—g„e

Aq= —,', (1+6)rt + —,'g„(l —A)rt

A, = [-,'+ —",g„(1—b, )
—4g„]e'ri',

A, = [-,'+-', g, (1 —a)]e'q',

A7=[ —(1 b)+ —,'+ —,'(1 b, )g
—]e2rt-

A8 =[ ', 5(1 -~—)g.le'n',

A9 ——4g gg

A i0 =35 e g

(23b)

A, =2g, e' 2b e' ———20g (1——A)e'+4(1 —6)'g„e' 2A'
2a(x, t) = P sechP(x —xo 2kt /A 2

)—
3

X exp[i ( kx cot —go—)],
co = A

~
+ ( k ~ —f3~ ) .

(27b)

&=&a~Ha&/&a~a&

Equation (27b) is a wave packet traveling to the right
with velocity 2k/A ', . lf k is selected as zero, it localizes
at position x =xo and oscillates with frequency co. In the
coherent-state representation, the energy of the system (1)
1s

IV. THE ROLE OF RELATIVE RATIO OF g and e
AND THE SOLITON SOLUTION

We think that it is difficult to find the soliton solutions
of Eq. (23). Here we discuss the degree of the long-wave
approximation (listing three cases of the relative ratio of
q and e) and then continue to reduce Eq. (23).

(i) Firstly, we assume that rt and e have the same order
(g-e), after retaining terms of equivalent order O(e ) of
function F in Eq. (19). The density Y(x, t) [Eq. (22)] is re-
duced as

=JS,'—J Y(x, t)dx
d 3C

4A~=JS,'
A~

Ci C~+ —P+k
d d 5

4 C~ A~P+
3 d

(28)

We can obtain the local magnetization distribution & S
as
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1
C) = [gUttB/Js+2D/J —2—4b(1 —b )vS2],

2A2
=S, 1 — P sech P(x —xo —2kt /A 2)

3

d2
C2 =[1+2vS,(1—5)]

C~=
~ l D—/J+6[1+2vs, (1—b, )]—4h vS, l, (30b)

1

It is interesting to note that if we normalize a(x, t), we
obtain the excitation energy gap E . The normalization
condition sets P= A3/4A2. With the elimination of P
from the energy of the system (28) and setting k =0, we
then obtain the excitation energy gap Eg.

A2 =
—,'(1+5)+2vs, (1 b) 1——— d~

A 3
=—[2D /J —2h —20vS, ( 1 —b )

1

+4(1 b) vS,—+4vS, ] .

JSc 1 A3 1 A3
E = C1+, C2+, C5

40 A2 12 A2

where

(30a)
(ii} Now we discuss more long-wave excitation and

then assume that g and e have the same order
(rt- e ). After retaining terms of equivalent order
O(e ) of function F in Eq. (19), the equation of motion
(23) is reduced as follows:

i =A&a —Aza~~ —A3alal +(A&+A7)lal a~~+(A6+A7)a a~~

+(2A7+ As)aa~a~+(As+ A9)a'(a~) + A&Dalai (31}

i = A, a —Az'a —A3alal + A, DalaiJS, Bt
(32)

where A, , A3, and A, o are expressed by Eq. (23b) and

A2 1S

A,"= [—,'(1+b, )+2g„(1—b, ) ]g (33}

The soliton solutions of nonlinear Schrodinger Eqs. (31)
and (32) will be discussed in a future publication.

This nonlinear Schrodinger equation is similar to the re-
sult of Ferrer' (for the isptropic case, A, o =0). From
this point of view, the study of Ferrer can be thought as
the special case of g-e ~ .

(iii) If we consider super-long-wave excitation, we can
assume rt and e have the same order (rt-e ). After re-
taining terms in equivalent order 0 (e ) of the function F
in Eq. (19), the equation of motion (23) is reduced to

tern and settled the argument about the so-called highly
inconsistent comparison of terms in obtaining the non-
linear Schrodinger equation. ' ' We think that the re-
sult of Ferrer' can be thought of as a special case of
g-e . From our detailed discussion of the special case
g-e, we obtained single-soliton excitation and an energy

gap in a spin chain with a biquadratic anisotropic ex-

change interaction. This demonstrates that the non-
linearities appear to be due to magnon-magnon interac-
tions and give rise to magnon bound states. Theoretical-
ly, we could not determine which case is more important
because different cases correspond to different physical
pictures. Only from experimental and initial-excitation
conditions of the magnetic system, we can estimate which
case is more suitable. In our opinion, how external con-
ditions influence the different intrinsic solitonlike excita-
tions needs to be investigated further.

V. COMMENTS

We want to make some comments about the relevance
and significance of our treatment of the present problem.
We introduced the method of treating two small parame-
ters in shallow-water wave theory into the magnetic sys-
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APPENDIX A

The detailed expression of function 6 is as follows:

G (a;,a;, a;+z, a, +z) =Hz+Hp+H~ +Hs

where

(A1)

Hz= gee N+g egia, a—;, (A2)
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Hz = —g, N+2g, e pa, a, —g, e pa;a, a, a, , (A3)

2

HE= —(1 —6)N ——g [(a,a,~+ +H. c. ) —(1—b, )(ata, +a,'+ a, + )]
l, P

4——g [(1—b, )a, a;a;+ a, ~
—

—,'(a, a, + a,. + a;+ +a, a, a, a, + +H. c. )]
l, P

6
+ g [(a,a;+pa;+pa;+ a;+pa;+ +a;a;a;a, a;a, + —2a,. a, a;a;+ a, + a,. + +H.c. )]+O(q ),8

l, P

Hq = —g, (1—6) N —g,e g [(1—b, )(a;a, + +H. c. ) —(1—b, } (a, a, +a, + a, + )]
l, P

—
—,'g, e g I2(1 b, ) a; a—, a;+ a;+ —

—,'(1 —h)(a;a,"+ a;+ a;+ +a, a;a, a;"+ +H. c. )

l, P

+[(a;a;+ +H. c. )
—(1—b, )(a; a;+a;+ a;+ )] )

gEQ[3$(1—b, )(a;a, +pa;+pa;+pa;+pa;+p+a;a, a, a;a;a;+p 2a, a;a—;a, +pa;+pa;+p+H. c. )

l, P

+[(a,a, + +H. c. )
—(1—h)(a; a;+a, + a, + )]

X[(1—b)a, a;a;+ a;+p —
—,'(a;a;+ a;+ a;+ +a;a;a;a;+p+H. c. )]

X[(a,a, + +H. c. ) —(1—b)(a, a;+a, + a;+ )]]+O(e ),

(A4)

(A5)

where N is the number of lattice sites.

APPENDIX B
Expressions B„Bz,and 83 are as follows:

B,=2+(3a a aaja+ +2a aa+ +a+ a+ a+aj+ aj+ +2a+ a aaa
P

+ i+p i+pai+p i+p i i i+p i+p i+p i i 4 i+p i i i+p i+p

Bz=2(1—6) g (2aj+ a a, + a.+ a +a + a, + a + a a, +2aja a + )

P
—2(1 —b, ) g (2a + a a + a a +a + a + a + a + a +2a + a&+ a )

P
1—

—, ~(3a a a a + a + +2a + a a + a a +a + a + a + a + a +4a + a + a )

P

+ g(2aj+palaJ+paJ+p j+ J+p j+p I+p j j+ al l J+p j f+ laj+p j4

4 ~ J+P J+P J J J J+P J J+P J+P J+P+ J+P J+P J+P J+P J
P

+2a + a a + aja&+2aja + a + +2a. a a, )

+ g (a, + a + a, + a + a, + +2a + a, a a.a +2a + a a + a + a,
4

(81)

+a, +paj+pa, ajaj+p+2a, +pajaj+2aj+paj+paj+p)
—

4 g(3aja a + a + a +2a + ajaj+ a a +a + a + a + a + aj+4a, + a + a }
P

+ g(3 a a. aa+4a, a +2a. a a a+a+, a, , a, a )
4

I t—
—, g (2a + a a a a + +a + aj+paJ+pa + a +2a a + a + +2a + a a + a + a ~ +a + a + a a a )

(1—&)+ g (2a + a a +paJ+paj+aj+paj+paj+pajaj+2ajaj+pajayaj4

+ J-+PQj+PQJ +PQJ +PQJ +P+ QJ +P J +P J +P J +P J- (82)
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/3=2(1 —Q) g(2a + a a.+ a.+ a +a + a + a.+ a a. +aJ+qaJ+qaJ+q+aJ+qajaJ)
P

t—2(1—b, ) g(2a + a a + a a.+a.+ a + a + aJ+ aJ+2aJ+qaJ+ aJ }

P

—
4 g (3aJ aJ a, aJ+paJ+q+2aJ aJ+qa, +q+2aJ+Paj ajajaJ+P+aJ+qaJ+PaJ+qaJ+pa, +4aJ+qaJ+Paj }

P

t—
—,g(2QJ+Paj J+P ~+PQJ+P+2QJyPQJQJ+PQJQJ+QJ+PQJ+PQJ J J+QJ+PQJ+PQJ+PQJ+P J+2 J iai }

P

t—
—,g (3a, a, a, +qa, + a, +2a, + a, a,. + a, a, +a, + a, + a, + a, + a, +2a, a, + a, + +2a, a, a, }

P

—
4 ~ (2aJ+qaJ aJ+qajaJ +2aJ+qa, QJ+Paj+qaJ+P+aJ+Paj+Paj+qaJ+Paj +aJ+qaJ+PaJajaJ +4aJ+Paj +qaJ )

P

+ g(3a a, a a, aj+p+2aj+ ajaJaj+pQj+p+aj+paj+pa + a a +4a a, a + }

P

+ g(2a + a a, a a +2a + a, a + a + a +a + a + a, + a, + a, +
P

+a, + a, + a, + a a +2a, + a + a, + +2a, + a, a )

+ g(3Q a a a a + +2a + a a + a + a +a + a + a + a aJ+4a a aJ+q}
4

4 +( i+Pi i i+Pi+P i+Pi i i i i+Pi+Pi+Pi i
P

i+p i+p i+p i+p i+p+- i+p i+pai+p+ ai+paiai (B3)
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