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First-principles pseudopotential calculations of the elastic properties of diamond, Si, and Ge

A. Fukumoto
Toyota Central Research & DeUelopment Laboratories, Inc. , 41-1 Aza Yokomichi, Oaza Nagakute,

Xagakute-cho, Aichi-gun, Aichi-ken 480-11, Japan
(Received 13 March 1990; revised manuscript received 22 May 1990)

The reason why diamond has much different elastic properties, in particular a much smaller Pois-
son ratio, compared with Si and Ge is investigated using an ab initio pseudopotential method within
the local-density-functional formalism. Besides the Poisson ratios, the equilibrium lattice constants,
bulk moduli, elastic constants, and internal strain parameters are calculated. Good agreement with
experiment is obtained. In order to eliminate the effects of the equilibrium-volume difference

among these crystals, the reduced-second-volume derivatives are introduced into the individual en-

ergy terms. It is clearly shown that the kinetic energy and the ion-electron interaction energy play
important roles in the response to homogeneous volume change and to distortions, respectively.
The charge-density distributions display much different responses to strains between diamond and
the others.

I. INTRODUCTION

There have been many successful first-principles calcu-
lations on the ground-state properties of a wide range of
solids. Most of them are based on the local-density-
functional theory, where a single-particle Schrodinger
equation is solved self-consistently. Various tech-
niques have been used for applying this theory accord-
ing to the characteristics of the materials. One important
technique is the norm-conserving pseudopotential ap-
proach, which has produced much improvement in the
reliability of the calculations for valence states. We have
applied these methods in order to investigate the elastic
properties of group-IV covalent crystals. A detailed in-
vestigation of these elastic properties is very important
since these materials are widely used in the solid-state de-
vices.

The elastic properties of diamond are different in many
respects from those of Si and Ge, although these three
materials have the same crystal structure. Many pa-
pers ' have been published in which the ground-state
properties of C, Si, and Ge were investigated with the
first-principles pseudopotential calculations. However,
there have been no studies that deal with the similarity
and/or discrepancy of the Poisson ratios among these
three materials. Si and Ge have almost the same values
of the Poisson ratios, while diamond has much smaller
values. In this paper, the equilibrium lattice constants,
bulk moduli, elastic constants, internal strain parameters,
and Poisson ratios are calculated, and several distinctive
features between diamond and the others are discussed.
The most obvious and elementary discrepancy among
them is the equilibrium volume. We introduce a reduced
scale for volume in order to eliminate the effects of the
vo1ume difference. The purpose of this study is to clarify
the causes of the discrepancy and/or similarity of the
elastic properties among the three materials with the re-
duced scale for volume.

This paper is organized as follows. In Sec. II, the cal-

culational procedure is described. Section III presents
the results, and the discussions of the results are given in
Sec. IV. Section V summarizes the present work.

II. METHOD

The calculational procedures are based upon the
Hohenberg-Kohn-Sham local-density-functional formal-
ism. We use hartree atomic units in this paper. The
ground-state total energy of a many-electron system can
be written in the form

E„,= T, [p(r)]+ f V,„,(r)p(r)dr

+-,' f f p'p; drdr+E„, [p],r —r'

where p(r) is the electronic charge density, T, is the ki-
netic energy of a noninteracting electron gas of density
p(r), and V,„, is an external potential which usually
represents the potential due to the nuclei. E„, is the
exchange-correlation energy functional, which is given in
the local-density-functional approximation as

E„,[p(r)]= f E„,(p(r))p(r)dr, (2)

where E„,(p) is the exchange-correlation energy per elec-
tron in a homogeneous electron gas of density p.

The charge density p is determined self-consistently by
solving the Kohn-Sham equation

[—
—,'6+ V,„,(r)+ VH(r)+ V„,(p)]g, (r) =c.;g;(r),

with

p(r)= gn, ~P, (r)~',

where n;, E;, and P; are the occupation number, eigenval-
ue, and the wave function of the one-electron state i, re-
spectively. VH(r) is the electronic Hartree potential,
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VH(r)= f ~, dr',H

and V„,(p) is the exchange-correlation potential,

d(pe„, )

V„,(p) =
dp

There are several approaches for solving these equa-
tions. Among them, the pseudopotential approach
seems to be most suitable for studying the properties of
semiconductors. In this approach, V,„t is replaced by an
ionic pseudopotential. The total energy can be written by

theorem" proposed by Nielsen and Martin in order to
calculate the elastic constants, we obtain C,- 's with a
standard fitting procedure in order to unify the method
for obtaining the Poisson ratio, which will be discussed
later. The elastic constants C» and C, 2 are determined

Etot k ce +Eee +Exc + cc (7)

The individual contributions can be interpreted as the
electronic kinetic energy, the core(ion)-electron interac-
tion energy, the electron-electron Coulomb energy, the
exchange-correlation energy, and the core-core Coulomb
energy (the Ewald energy), respectively. The term "elec-
trons" refers to valence electrons only. The ionic pseudo-
potentials are represented by the norm-conserving nonlo-
cal pseudopotentials, which are shown in Fig. 1. These
are generated numerically through the Hamann-
Schluter-Chiang method. The p potential of C is much
deeper than that of Si and Ge since the carbon atom does
not have p electrons in the core. The d potential of Ge is
more repulsive than that of C and Si for a similar reason.
These potentials are fitted to analytic functions according
to the method of Bachelet, Hamann, and Schluter, '

however we use five Gaussians for fitting the nonlocal
(angular-momentum-dependent) part. The Wigner inter-
polation formula for the exchange-correlation energy is
used both in the atomic and crystalline calculations.

A plane-wave basis set is used to represent the valence
wave functions. The total-energy calculations are per-
formed with the momentum-space formalism. ' There
are two procedures to introduce a cutoff on the
reciprocal-lattice vectors to be included in the basis set.
The procedure with a fixed cutoff' energy of the plane-
wave kinetic energy leads to a varying number of plane
waves when a crystal structure is changed. Another one
with a fixed number of plane waves even when the struc-
ture is varied leads to much smoother total-energy
curves. We employ the latter procedure since it is con-
venient for calculating the smooth change of the total en-

ergy due to strains. The number of plane waves is 537,
283, and 339 for diamond, Si, and Ge, respectively.

The Brillouin-zone k integration is performed by the
special-points scheme of Chadi and Cohen and Mon-
khost and Pack. The number of k points are 10 for the
cubic lattice and 20 and 30 for the lattice with strains
along [001]and [111],respectively.

We calculate the equilibrium lattice constants (a), bulk
moduli (8), elastic constants (C, 's), internal strain pa-
rameters (g), and Poisson ratios (p,,k's) of diamond, Si,
and Ge. The equilibrium lattice constants and bulk
moduli are determined from quadratic fits to the total-
energy values which are calculated for different lattice
constants ranging from —1% to + 1% of the experimen-
tal values.

Although it is convenient to apply the "stress
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FIG. 1. Norm-conserving pseudopotentials of (a) C, (b) Si,
and (c) Ge. The potentials are generated using the method de-
scribed in Refs. 6 and 19.
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1 C11+2C12—2C
P1» 2 C11+2C12+ C44

(10)

by 8 [=(C»+2C,2)/3], and the shear modulus

C» —C,z. In order to calculate the shear modulus, we
introduce a homogeneous tetragonal distortion, in which
the length scales of the three cubic directions are changed
by 1+@, 1+@, and (1+@), respectively, while the
atomic volume is kept constant. The total energy is relat-
ed to C11 —C12 by

E„,=Eo+ 3 Vo(C„—C,~ )e +0 (e ), (&)

where V is the atomic volume and the subscript 0 indi-
cates its equilibrium value. Total energies are calculated
with the value of e varying from —0.01 to +0.01. The
calculation of C44 is more complicated than that of C11
and C,2. A strain e, =e =e„=@4/2 (the Voigt nota-
tion) along the [111]direction of a diamond lattice makes
the [111]atomic bond inequivalent to the other [111],
[111],and [111] bonds. The atomic positions in the unit
cell are no longer completely determined by symmetry.
Kleinman defined an internal strain parameter g such
that the value (=0 corresponds to a perfect strain of
atomic positions and (= 1 corresponds to a rigid bond
length. In order to obtain g, the total-energy values are
calculated for several values of e4 and varying g. g is
determined so that the total energy attains its minimum
value for a fixed e4. Thus, g can be obtained as the func-
tion of e4. C44 is determined from quadratic fits to the
total-energy values per atom. e4 is varied from —0.01 to
+0.01.

Although the Poisson ratios can be evaluated with the
theory of elasticity as

C12
001 (&)

11 12

we also calculate p, .j,
's another way. We introduce

strains of 1% elongation along [ijk) directions. The total
energy is minimized with varying the length perpendicu-
lar to [ijk] .For an elongation along [001], the length of
the three cubic directions are changed to b, b, and c,
where c =1.0la (tt is the equilibrium lattice constant). b
is determined so that the total energy has its minimum
value with a fixed c value. @00, can be obtained as
(a —b}/(c —a}. For an elongation along [111],the unit
vectors are altered to (d, 5,5}, and its cyclic permuta-
tions, satisfying a condition d +25= 1.01a. 5/d is deter-
mined by minimizing the total energy similarly. For an
elongation along [110],we cannot define the Poisson ratio
)tt»o in the ordinary way since the [110]direction and the
[001] direction are geometrically inequivalent. In this
case, we have to define two "extended" Poisson ratios,
say )tt»0 and )tt»o. Therefore, we do not calculate p»0

110 001

with the energy-minimization approach mentioned
above. These values obtained with the theory of elasticity
can be written as follows:

(1 p)(1+2p) 2q
(1—p)(1+2p)+2q

4Se
(1—p)(1+2p)+2q

where p = C&2/C» and q =C44/C».

(12)

III. RESULTS

The calculated lattice constants (tt), bulk moduli (8),
elastic constants (C; 's), internal strain parameters (g)
and their rate of change, and Poisson ratios (jtt,,„'s) are
compared with experiments in Table I. The agreement is
very good. The Poisson ratios shown in the upper row of

TABLE I. Lattice constants tt, bulk moduli B, elastic constants C„, internal strain parameters g,
rates of change of g, and Poisson ratios p;,„ofdiamond, Si, and Ge. The values of p;,„s in the upper
row are obtained theoretically with C„'s, and in the lower row are obtained by the total-energy-
minimization approach with a fixed {1%)elongation along [ijk].

Si

a (A)
8 (Mbar)
C» (Mbar)
C» (Mbar)
C44 (Mbar)

ag/ae,
POOI

»0
P»o
poo 1

Calc.

3.556
4.64

10.97
1.48
5.82
0.12

—2.0
0.119
0.114
0.058
0.052
0.017
0.133

Expt.

3.567'
4.42

10.81'
1.25'
5.79'

0.104

0.045

0.008
0.115

Calc.

5.419
0.979
1.663
0.633
0.793
0.53

—1.2
0.276
0.271
0.180
0.180
0.067
0.355

Expt.

5.429'
0.992
1.675
0.650'
0.801'
0.54'

0.280

0.182

0.064
0.363

Calc.

5.620
0.778
1.377
0.482
0.717
0.51

—1.4
0.259
0.262
0.148
0.161
0.030
0.340

Expt.

5.652'
0.768
1 315
0.494"
0.684
0 54'

0.273

0.157

0.025
0.366

'J. Donohue, The Structure of Elements (Wiley, New York, 1974).
H. J. McSkimin and P. Andreatch, J. Appl. Phys. 43, 985 (1972).

'H. J. McSkimin and P. Andreatch, J. Appl. Phys. 43, 2944 (1972).
H. J. McSkimin, J. Appl. Phys. 24, 988 (1953);H. J. McSkimin and P. Andreatch, ibid. 35, 3312 (1964).

'C. S. G. Cousins, L. Gerward, J. Staun Olsen, B.Selsmark, and B.J. Sheldon, J. Phys. C 20, 29 (1987).
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(a)C (b)Si (c)Ge (a)c (b)Si (c)Ge

FIG. 2. Contour plots of the valence charge density in the
(110)plane of (a) C, (b) Si, and (c) Ge. The bond-charge maxima
are 3.0X10 ', 8.4X10, and 7.4X10 in atomic units, re-
spectively. The bonding directions are illustrated by the
straight lines. The contours are subdividing between the max-
imum and minimum values into 10 steps. The intervals are
2.9X10 for (a), 8. 1X10 for (b), and 7. 1X10 for (c).

Table I are obtained by Eqs. (9)—(12) with the elastic con-
stants, and those in the lower row are obtained by the
total-energy-minimization approach. Both of them are
almost the same.

Contour plots of the valence charge-density distribu-
tions in the (110) plane are shown in Fig. 2. Similar to
previous studies, ' ' ' very pronounced two-peak struc-
ture of the bond-charge density can be seen for diamond.
The major contribution to this feature is from the p-like
valence bonds. The C atom has a deep p potential near
the nucleus as shown in Fig. 1. This is due to the lack of
core p states. For Si and Ge, the charge contours exhibit
an elongated form in the bonding charge. Although Ge
has a repulsive d potential, it is not effective to the
valence charge-density distribution since Ge has no d
valence electrons. Figure 3 shows the changes of the
charge densities in the (110) plane due to the homogene-
ous volume change (hydrostatic pressure). The functions
plotted are the density at the equilibrium volume minus
the density at the lattice constant increased by l%%uo, after

FIG. 4. The changes of the valence charge density in the
[110]-[001]plane due to the compression perpendicular to [001].
The thick contour denotes zero. The intervals are 5.6X10
for (a), 2.5 X 10 for (b), and 2.4X 10 for (c) in atomic units.

these two densities are projected on the same plane. In
diamond, the most rapidly increasing parts exist along
the bond, which is a common feature with the deforma-
tion density (defined as the valence charge density minus
the density of overlapping free pseudoatoms) in Fig. 1 of
Ref. 18. In Si and Ge, the most rapidly increasing parts
are spread away from the bond, which is not very similar
to the deformation density in Fig. 1 of Ref. 16 (almost
spherical). The density changes in the [110]-[001]plane
due to strains are shown in Figs. 4 and 5. The functions
plotted in Fig. 4 are the density of the stable structure
compared with goo& (with lgo elongation along [001])
minus the density at the lattice constant increased by 1%,
after the similar projection. The two-peak structure can
be clearly seen again in diamond, however the distance
between the two-peak points is rather short. The
difference from Fig. 3 is smaller in Si and Ge. For a
strain along [ill], it is not meaningful to subtract one
density from another as was done above because of the
internal strain. In this case, the atomic positions do not
coincide with each other after the projection. However,
we can obtain some information about the response of the
densities to the distortion. Similar plots for an elongation
along [111]are shown in Fig. 5. The functions plotted
are the density of the stable structure compared to p&»

(a)C (b)Si (c)Ge

FIG. 3. The changes of the valence charge density in the
(110) plane due to the homogeneous volume change. The func-
tions plotted are the density at the equilibrium volume minus
the density at the lattice constant increased by 1%, after both of
them are projected on the same plane. The thick contour
denotes zero. The contour steps are defined similar to Fig. 2.
The intervals are 6.9X10 for (a), 2.8X10 " for (b), and
2.6X 10 for (c) in atomic units.

(a)(' (b)Si (c)Ge

FIG. 5. The changes of the valence charge density in the
[110]-[001]plane due to the compression perpendicular to [111].
The thick contour denotes zero. The left-hand bond is oriented
along [111] and the right-hand bond is oriented along [111].
The intervals are 6.9X10 for (a), 2.7X10 for (b), and
3.0X 10 for (c) in atomic units.
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(with 1% elongation along [111])minus the density at the
lattice constant increased by 1%, after the projection.
Two distributions are projected so that the bond centers
coincide with each other. In Fig. 5, the left-hand bond is
oriented along [111]and the right-hand bond is oriented
along [111]. The bond charges increase more in the
right-hand bond in every material. In the left-hand bond,
the bond charge hardly increases in diamond.

The dependence of the individual energy terms on
volume or on distortions can be considered to play an im-
portant role in the elastic properties of solids. The first-
and second-volume derivatives of the individual energy
terms of diamond, Si, and Ge are listed in Table II. The
volume derivatives in the elongated lattices are calculated
with the fixed (1%) elongation along [ijk] and varying
the lengths perpendicular to [ijk] T.he first-volume
derivatives are not very varied among the three kinds of
strains, while the second derivatives depend fairly strong-
ly on the kinds of strains. The difference of the equilibri-
um volume among the three materials has much influence
on the absolute values of the volume derivatives shown in
Table II. The kinetic energy scales as V, and the
other terms scale as V ', approximately. In order to
eliminate the effect of the volume difference, we change
the length scale according to the equilibrium volume of
each material. The reduced-second-volume derivatives of
the individual energy terms can be defined as follows:

Kinetic energy,

where the subscript stat represents one of ce, ee, xc, or cc.
The results are shown in Table III. With this alteration
of the length scale, the reduced derivatives of Ek, E„,
and E„, depend, approximately, only on the shape of the
charge densities. The reduced derivative of E„depends
on the density and the (pseudo)potentials. E„ is a con-
stant term independent of the density. Therefore, E„'s
have the same values among the three materials except
for the case elongated along [111]. The discrepancy in
E„ofdiamond for an elongation along [111]is due to the
difference of the internal strain parameters between dia-
mond and the others. Si and Ge have almost the same re-
duced derivatives in every term in every structure since
both have the sitnilar pseudopotentials (except for d) and
similar charge-density distributions. E„and E„are very
sensitive to the different kinds of strains. Diamond has
different values, particularly in these two terms (E„and
E„),compared to Si and Ge. This is due to the deep p
potential and the distinctive two-peak structure in the
bond charge of C. Although much-higher-order com-
ponents are used in the basis functions for diamond, it
has no influence on the reduced-second-volume derivative
of Ek. Figure 3(a) is similar to Figs. 2(b) and 2(c). This
means that higher-order components have few effects on
the changes of charge density.

IV. DISCUSSION

2
m sy3~ Ek

BV

other terms,
2E„„

V
e BV

(13)

(14)

We can confirm with Table I that diamond has very
distinctive elastic features compared to Si and Ge. Dia-
mond has a much smaller equilibrium lattice constant, a
much larger bulk modulus and elastic constants, relative-
ly small C&2, a much smaller internal strain parameter,
and a much smaller Poisson ratio. We discuss the reason
for these features with the response of the individual en-

TABLE II. First- and second-volume derivatives of the individual energy terms in units of ev/A'
aud eV/A, respectively. The values indicated by [001]and [111]are calculated with a fixed length (1%
elongation) along [ijk] and varying the lengths perpendicular to [ijk]

First derivative
Si Ge

Second derivative
Si

Cubic Ei,

E„,
E„

—8.24
—5.22

1.17
1.94

10.4

—0.893
—1.66

0.280
0.356
1.92

—0.665
—1.55

0.272
0.296
1.65

1.3
0.51

—0.05
—0.26
—1.2

0.046
0.052

—0.004
—0.013
—0.064

0.034
0.040

—0.003
—0.010
—0.049

[001] E
E„
E„
E„,
E„

—8.11
—5.30

1.20
1.91

10.3

—0.881
—1.67

0.287
0.351
1.92

—0.655
—1.56

0.278
0.292
1.65

1.2
0.99

—0.21
—0.22
—1.4

0.042
0.074

—0.012
—0.011
—0.075

0.031
0.057

—0.009
—0.009
—0.057

E„

—8.15
—5.05

1.12
1.92

10.2

—0.880
—1.65

0.278
0.351
1.91

—0.661
—1.55

0.270
0.294
1.64

1.3
—0.10

0.16
—0.25
—0.78

0.044
0.055

—0.003
—0.012
—0.066

0.033
0.044

—0.003
—0.009
—0.051
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TABLE III. Reduced-second-volume derivatives of the indi-

vidual energy terms defined by Eqs. (13) and (14).

Cubic

E„
E„,

17
2.0

—0.20
—1.0
—4.8

17
3.8

—0.33
—1.0
—4.8

17
3.9

—0.32
—1.0
—4.8

[001] E

E„
E„,

16
3.9

—0.81
—0.88
—5.6

16
5.6

—0.92
—0.84
—5.6

16
5.6

—0.92
—0.86
—5.6

Ek
E„
E„
E„,
E„

18
—0.40

0.66
—0.98
—3.1

17
4.2

—0.19
—0.89
—5.0

17
4.3

—0.26
—0.90
—5.0

TABLE IV. Half bondlengths, atomic radii ( r, ) in units of A,
and their ratios. For the definition of r„see text.

C
Si
Ge

Half bondlength

0.77
1.17
1.22

0.87
1.41
1.47

Ratio

0.89
0.83
0.83

ergy terms and the charge densities to strains.
The lattice constant of diamond is much less than that

of Si and Ge. This is obviously due to the deep pseudo-
potentials of C, in particular for the p state. Whereas, we
can find another interesting discrepancy between dia-
mond and the others by changing the length scale. We
define the atomic radius r, as the point where the
charge-density value of an isolated atom with sp valence
configuration is equal to the average-charge-density value
in the equilibrium volume, that is, 4/Vo. The half bond-
lengths, r, 's, and their ratios are shown in Table IV. Si
and Ge have the same ratio, while diamond has a larger
value. Diamond has a "long'-' bondlength as compared
with the atomic radius. This result suggests that the con-
traction of the volume by condensation occurs more in Si
and Ge than in diamond. This is consistent with the fact
that the change of the charge density of diamond caused
by the homogeneous-volume change shown in Fig. 3(a) is
similar to the deformation density of diamond in Ref. 18,
while that of Si in Fig. 3(b) is not very similar to the de-
formation density in Ref. 16. Diamond has much larger
first- and second-volume derivatives in the kinetic energy
than in the other terms compared to Si and Ge because of
the small lattice constant. Ek has a stronger dependence
on the volume than the other terms. It scales as the
volume to the power of ——'„while the other terms scale
as to the power of —

—,'. The rapidly increasing kinetic en-

ergy with the compression keeps the bondlength "long"
in diamond.

The bulk modulus of diamond is much larger than that
of Si and Ge. However, with the homogeneous-volume
change, diamond has a smaller value of the reduced-
second-volume derivative of E„ than Si and Ge. This is
due to the difference of the pseudopotentials. The other
energy terms have roughly the same reduced-second-
volume derivatives among the three materials. These are
consistent with the results obtained by Martin using the
valence-force-field model. He defined the reduced bulk
modulus B*as

a+ 3P
11 4

(16)

(17)

a (a+p)
a —p
a+p '

(18)

(19)

where a is the bond-stretching force constant and p is the
bond-bending force constant. Small values of C,2 and g
mean a large P. The shear modulus C» —C, z is propor-
tional to p. In order to investigate the contributions to
the bond-bending force constant, the second derivatives
of the individual energy terms with respect to e used in
Eq. (8) are calculated and listed in Table V. The reduced
scale is not used since the volumes are kept constant here.
The large second derivative in the total energy of dia-
mond means that it has strong tendency to keep the regu-
lar tetrahedral configuration. A major contribution of
the large second derivative comes from E„, which de-
pends on the pseudopotentials. The deep p pseudopoten-

8*=(Cii +2Ci2)/3C(),

Co=e /r

where r is the equilibrium bondlength. B* of diamond,
Si, and Ge are 1.091, 1.298, and 1.173, respectively (see
Table III of Ref. 26). His result that diamond has the
least reduced bulk modulus can be considered as having
close relationship to the fact that diamond has a small
reduced-second-volume derivative of E„ in this study.
The large bulk modulus of diamond is only due to the
small equilibrium volume, in which the second-volume
derivative of the kinetic energy is very large. It is impor-
tant again that Ek has a stronger dependence on the
volume than the other terms. The contribution of Ek to
the total energy can be identified as being responsible for
the elastic properties related to the homogeneous-volume
change.

The elastic constants of diamond are larger than those
of Si and Ge. This is due to the difference of the equilib-
rium volume discussed above. Another feature is that di-
amond has a relatively small C,2. Diamond also has a
much smaller internal strain parameter. Both of these
two properties have relevance to the bond bending. Ac-
cording to Keating, ' C;~'s and g can be written as
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TABLE V. Second derivatives of the individual energy terms
with respect to the tetragonal distortion e [see Eq. {g)] (in har-
trees).

Si

E

E„
E„,

Etot

—3.6
20

—6.4
1.6

—8.0
4.4

—1.8
13

—4.2
1.1

—5.6
1.5

—1.5
12

—4.0
1.1

—5.4
1.3

tial of diamond attracts valence p electrons close to the
nucleus. The valence s electrons also exist near the nu-
cleus. Both have almost the same radii for maxima in ra-
dial wave functions. The valence d electrons, which have
a larger principal quantum number by 1, are extended
from the nucleus in the C atom. On the other hand, Si
and Ge have shallow pseudopotentials and have different
radii for maxima in s and p radial wave functions. They
have closer radii for maxima in d radial wave function
compared with C. These features make diamond more
stable with the sp bonding than Si and Ge. A similar re-
sult can be also derived from considering the energy ei-
genvalues. A bending distortion introduces a d (or still
higher angular-momentum) symmetry into the sp hy-
bridization. The energy eigenvalues of the p state of the
isolated atom with s p d configuration are —0.78,—0.47, and —0.47 hartrees for C, Si, and Ge, respective-
ly. Those of the d state are —0. 14, —0. 17, and —0. 15
hartrees, respectively. The d orbital existing at relatively
high energy in the C atom causes a rapid increase in E„
with a bond bending in diamond. We can conclude that
the behavior of E„ leads to the relatively small C,2 and
small g in diamond.

Diamond has a much smaller Poisson ratio than Si and
Ge. The influence of the different poo, among these three
materials can be seen clearly in the contour plots in Fig.
4. These figures show the response of the charge densities
to a compression perpendicular to [001]. Si and Ge show
a similar response, and they have almost the same poo, .
In diamond, the two-peak structure can again be seen; it
is hardly seen in the response to the homogeneous-
volume change shown in Fig. 3(a). Moreover, the most
rapidly increasing points are not on the bond. They are
located so that the maximum points of the bond charge
are not brought closer to the neighboring maximum
points by this kind of compression in order to lower the
hartree energy. This is due to the two-peak structure of
the bond charge. This character can be considered to
have some contributions in making the bond-bending-
force constant large in diamond. In the volume deriva-
tives of the individual energy terms, the most remarkable
difference between the lattice elongated along [001] and
the cubic lattice occurs in E„ofdiamond. The ratios of
the second derivative of E„between the lattice elongated
along [001] and the cubic lattice are about 2.0 for dia-
mond and about 1.5 for Si and Ge. This means that, in
real scale, E„ increases more rapidly in diamond than Si
and Ge with the compression perpendicular to [001].

The energy terms, except for E„,have almost the same
tendency between cubic and [001] in the three materials,
as can be seen easily with the reduced scale in Table III.
The small poo& in diamond is mainly due to the fact that
diamond has a different response of the ion-electron in-
teraction energy, compared to Si and Ge, to a compres-
sion perpendicular to [001]. This compression is accom-
panied by the bond bending. As has already been shown
in Table V, E„has the largest effect on the response to
the bond bending. The stability of sp hybridization due
to the deep p pseudopotential in C makes goo& small. To
put it in other words, the large bond-bending force con-
stant in diamond makes C, z relatively small and leads to
a small Poisson ratio goo, through the relation of Eq. (9).

For the compression perpendicular to [111], the
response of the charge densities shows a considerable
discrepancy between diamond and the others, as shown
in Fig. 5. Diamond strongly favors the sp hybridization
and it makes g small. The small g (or the large bond-
bending force constants) of diamond makes the [111]
bondlength (and other equivalents) still shorter than the
[ill] bondlength compared with Si and Ge. In order to
compensate for the increase in nuclear Coulomb repul-
sion, bond charge increases much in the bond along [111]
(and its equivalents). It hardly increases in the [111]
bond. This feature is weaker in Si and Ge because the g's
are larger. The most rapidly increasing points of the
charge density are not on the bond in diamond, for a
similar reason to the case of the compression perpendicu-
lar' to [001]. Considering the individual energy terms,
many features can be found in Tables II and III. The
difference of the second-volume derivatives between the
lattice elongated along [111]and the cubic lattice is much
different from the difference between the lattice elongated
along [001] and the cubic lattice in diamond. The first
derivatives of E„and E„vary reversely. The signs of
the second derivatives of E„and E„are changed. Dia-
mond has the least absolute value of the second-volume
derivative of E„ in the compression perpendicular to
[111],while Si and Ge do not. Si and Ge have almost the
same second derivatives in the reduced scale, except for a
small difference in E„. The effect of the difference of the
bond-bending force constant does not appear directly in

E„as in the case of the compression perpendicular to
[001]. These complicated features are due to the internal
strain. Diamond has about one-fourth the value of g
compared with Si and Ge, since the sp hybridization is
more stable in C. Consequently, the second-volume
derivatives of E„and E„ increase (negatively decrease
for E„)greatly in diamond. They make major contribu-
tions to the increase of the total energy in diamond by a
compression perpendicular to [111]and lead to a small

p&]& in diamond.
We have made it clear that the cause of the small C, 2

(relative value), g, and goo, of diamond can be attributed
to the stability of sp hybridization, to which E„plays a
major role. The values of p I » are affected by E„ in-
directly through g. The volume derivatives of E„are
very sensitive to the various kinds of strains and have
much different values between diamond and the others in
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the reduced scale. The contribution of E„ to the total
energy can be identified as being responsible for the
different elastic properties related to distortions between
diamond and the others.

V. SUMMARY

We have investigated the elastic properties of diamond,
Si, and Ge. The calculated lattice constants, bulk modu-
li, elastic constants, internal strain parameters, and Pois-
son ratios agree well with experiments. Diamond has
many different features in these properties compared with
Si and Ge. This reason has been investigated by eliminat-
ing the effect of the equilibrium-volume difference. In the
reduced scale, the lattice constant of diamond is large.
The large bulk modulus of diamond is due to its small
equilibrium volume, where the kinetic energy has very
large second-volume derivative. The difference of the
elastic constants, internal strain parameter, and Poisson
ratio goo, are due to the different response to distortions
of E„, which has the most distinctive values of the
reduced-second-volume derivatives between diamond and
the others. The response to a strain applied along [111]is
more complicated than that along [001] since the internal

strain has an influence on the former. The response of
E„and E„makes p»& small in diamond. The charge
densities display clearly different response to these strains
between diamond and the others since diamond has dis-
tinctive two-peak structure of the bond charge and
strongly favors the sp hybridization.

In conclusion, the differences of the lattice constants,
bulk moduli, and the absolute values of the elastic con-
stants are concerned with the response to the homogene-
ous volume change, where the kinetic energy plays an im-
portant role. The differences of the relative values of the
elastic constants, internal strain parameters, and Poisson
ratios are closely related to the stability of the sp hybrid-
ization, where the ion-electron interaction plays an im-
portant role. The distinctive features of diamond can be
attributed to the character of a single atom. The most
essential point is that the C atom has a smaller volume,
that is, a deeper p pseudopotential than Si and Ge be-
cause of the lack of core p states.
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