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Nonrelativistic zitterbewegnng in two-band systems
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The notion of zitterbewegung and the resulting formalism, originally proposed for relativistic
quantum dynamics, is applied to describe the acceleration of a nonrelativistic electron moving in a

crystal, due to the periodic force experienced. A general linear-combination-of-atomic-orbitals
{LCAOj approach is developed for multiband systems, and the special case of two-band systems is

studied in detail. It is shown that the zitterbewegung determines the minimum spatial extension of
localized wave packets formed by a combination of Bloch functions belonging to a single band, in a
manner that depends strongly on the relative parity of the orbitals entering the LCAO bands. In
the case of two orbitals with opposite parity, one is able to extend the notion of effective mass to
deep defect levels, and to estimate the width of the tails of localized states in glassy semiconductors,
as a function of the separation between the mobility edges.

I. INTRODUCTION

Since the original work of Schrodinger, ' the "zitter-
bewegung" (trembling motion) has been currently re-
ferred to as a relativistic quantum effect leading a Dirac
electron to oscillate around the center-of-mass trajectory,
even in the absence of external fields. According to the
quantum field theories, however, such a trembling motion
should not be a real effect, but only a curious mathemati-
cal consequence of the single-particle picture of the Dirac
equation. Thus the physical relevance of the zitter-
bewegung in relativistic quantum dynamics is a contro-
versial point that we do not discuss further here. We
simply stress that the zitterbewegung is not a relativistic
concept in itself, but can be applied to any free-particle
Hamiltonian giving rise to a self-acceleration. Let, for
example,

H= IH,p(P)I

be a matrix Hamiltonian whose elements H &(P) depend
only on the momentum P. The matrix acts on a finite-
dimensional space of vectors describing an "internal"
phase space. If for the velocity operator U=gradpH one
has

[H, V]WO,

a nonvanishing self-acceleration exists, due to the transi-
tions among the "internal" eigenstates. The resulting
fluctuations around the uniform motion are what we may
call a zitterbewegung, in a generalized sense. An example
has been recently given for a nonrelativistic chain, lead-

ing to a Dirac-like wave equation. In this and in other
cases, such as polyacteylene and graphite, the zitter-
bewegung might appear as a consequence of the pseu-
dorelativistic form of the wave equation. In contrast, we
will now show that the zitterbewegung is a general real
effect for a nonrelativistic particle moving in a crystal, as
a consequence of interband transitions. The main point is

the role of the acceleration in the Bloch formalism. By
means of Bloch's theorem, it is possible to treat a particle
accelerated by a periodic (in space) force as a freelike par-
ticle, characterized by a well-defined wave vector k (rang-
ing in the first Brillouin zone) and momentum haik. The
general form of the Hamiltonian in the k representation
reads, after diagonalization, as

H(k) = g Eb(k}(k)P b(k),
b

where P b(k)=~k, b)(b, k~ is the projector on the Bloch
state ~k, b), with wave vector k, in the bth band, and
Eb(k) is the corresponding energy. In principle, a non-
singular periodic potential yields an infinite number of
bands, though one may refer to few or one of them, under
suitable approximations. Once the Hamiltonian is ex-
pressed as a function of the momentum haik, one is
formally left with a freelike particle, even if the depen-
dence on k is not quadratic. However, it should be clear
that the Bloch formalism cannot really eliminate the ac-
celeration, but only express it in a different form. The
crucial point for the acceleration is the band multiplicity
discussed above. We first notice that the Hamiltonian
H(k) now appears as a diagonal matrix, with elements
Eb(k) depending on the "external" degree of freedom k,
and acting on an "internal" space with dimensions fixed
by the number of bands involved. Apart from diagonali-
ty, this corresponds to the general case, discussed at the
very beginning, which may give rise to a self-acceleration.
To clarify this point, let us consider the position operator
i V&, canonically conjugate to the momentum, and the re-
sulting velocity operator:

U(k}=—ViH= —g [[ViEb(k)]P b(k)
1 1

b

+Eb(k)[VqP b(k)]] .

Due to the second term in brackets, a self-acceleration is

found as
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a(k}= —[H,v]= —y E (k)& (k)[P $(k), V/P t, (k}] . ~e) = g c,„q~m, p),

The condition b&b' in the preceding sum follows from
the equation P

&
=P t„which yields (V„P ~ )P t,

=P &(VkP &)=0. One of the aims of the calculations in

the following sections is to show that, in general, P b does

not commute with VzP t, for blab' Th. erefore it is seen

that the acceleration produced by a periodic potential re-

sults in a multiband effect which would vanish in the
single-band approximation. By means of the Bloch for-
malism, the effects of the periodic force can be expressed
as the self-acceleration of a free particle, due to the tran-
sitions among "internal" states, corresponding to the
bands. The resulting zitterbewegung is a real effect, just
because it follows from a real force.

In order to study the physical consequences of the zit-
terbewegung in multiband systems, we need to be more
specific about the band structure, without losing too
much in generality. In Sec. II we develop a linear-
combination-of-atomic-orbitals (LCAO) approach to the
band calculation, including ionic interactions and overlap
integrals to a/l orders. This will make it possible to ex-
tend the validity of the next results to a wide class of sys-
tems. In Sec. III the self-acceleration and the zitter-
bewegung, due to interband transitions, are studied for
two-band systems. In Sec. IV the zitterbewegung effects
are calculated for wave packets formed by a superposi-
tion of Bloch states of a single band (equivalent to the
positive- and negative-energy solutions in the relativistic
theory). In Sec. V the results obtained will be applied to
estimate the minimum localization length of defect states
in the gap. This provides a definition of effective mass,
valid for deep levels, and makes it possible to calculate
the extension and overlap of tails of localized states in

glassy semiconductors.

a, n T+g V(r —R ) jP, c&. (5)
j,p f71

By means of Eq. (1} and of the periodicity condition, it
can be shown that

(
an T+ Q V(r —R ) j P = V tt(R„—R ) .

m

(6)

Hence Eq. (5) can be cast in the matricial form

i% g S(R„—R, }—c(R, ) = g V(R„—R~ )c(R, ), (7a)
J J

where

c (R ) = I c tt,'P = 1,2, . . . , G j (7b)

is a G-component column matrix, i.e., a vector in a G-
dimensional "internal" space (bold symbols are used here
only to indicate positions, wave vectors, and velocities).
Similarly,

S(R„)=tS &(R„);a,P=1,2, . . . , Gj,
V(R„)=IV„p(R„);a,P=1,2, . . . , Gj,

(7c)

are G&&G matrices. Expressing Eqs. (2) and (6) in the
coordinate representation, the following relations can be
obtained, for an even local potential V(r) = V( —r):

the time-dependent Schrodinger equation
iAB~qt) ldt=H~+) yields, with the aid of Eqs. (2} and

(3),

BCjpifi+S p(R„—R )
Btj,p

II. GENERAL LCAO APPROACH
TO THE BAND CALCULATION

In the present section we extend to the multiorbital
case the LCAO approach developed, for example, by
Peierls, for a single orbital and including overlap in-

tegrals at any order of approximation. Let

(r n, a) =4 (r —R„); a=1,2, . . . , G

represent a set of G orbitals, localized around the nth side
of a periodic lattice. Let

S p(R„)=P PpS p(
—R„)=P Pt3Sp (R„),

V p(R„)=P Pe V p(
—R„)=P Pt V$ (R„),

where P =+1 is the spatial parity (that we assume to be
defined) of the orbital 4 (r). Passing to the Fourier
transforms in the first Brillouin zone 0„

1c(R)= f dk4(k)e
l

S(R)= f dkr(k)e-'"a,
(a, n ~m, P)—:S p(R„—R ) (2)

H=T+ g V(r —R„), (3)

'r= —(A /2m)V, being the kinetic energy. Expressing
the quantum states in the LCAO approximation

be the resulting overlap integrals, such that S &(O)=5 &,

because of the orthonormality of the 6 orbitals in the
same site. The single-particle periodic potential is as-
sumed (but this is not essential) as a superposition of local
potentials V(r —R„),so that the Hamiltonian reads

V(R) = f d kLV(k)
1

Eq. (7a) becomes

iAX(k) = IV(k)@(k) .
Bt

It is an easy matter to show that the matrices X(k) and
8'(k} (k&0, ) are self-adjoint. We now express their ele-
ments in terms of the Fourier transforms y (k) and V(k)
(k ER ) of orbitals and local potentials, respectively:
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X p(k)=pe "S p(R„)

=Q,g y*(k—K„)q)p(k —K„),

W ~(k)=pe "V p(R„)

=Qi g y*(k —K„)qrp(k —K„) (k —K„)
n m

Q)+ g y'(k —K„}
(2m )

X yp(k —K )V(K —K„),

(12)

where K„are the reciprocal-lattice vectors. We expect
that the overlap-integral matrix X(k) is positive defined
for each k, at least in the tight-binding (TB) approxima-
tion, in which X(k) equals identity plus small corrections.
Indeed, the positivity of the eigenvalues of X(k) can be
shown rigorously in the two-band case (a,P=1,2) by cal-
culating the trace and the determinant according to the
first Eq. (11). This makes it possible to choose a non-

singular, self-adjoint matrix p(k), such that

p'(k)=X(k) .

the orbitals have the same or opposite spatial parity. To
show that (14) and (15) hold true for W

&
and X

&
is

straightforward. Since, for any two nonsingular matrices
satisfying (14) and (15), their product and their inverse
satisfy too, the properties transfer to c.

& identically, ac-
cording to the definition (13b).

We stress that, up to now, the only approximation has
been the LCAO expansion (4). Thus Eqs. (11) and (13)
formally account for ionic interactions and overlap in-
tegrals at any nearest-neighbor order. This generalized
LCAO approach provides a direct relationship between
the orbitals (atomic or molecular) and the band structure,
avoiding any intermediate procedure of orthogonaliza-
tion, such as the introduction of Wannier functions, or
the use of biorthonormal systems. For our present pur-
poses, we need only recall that the effective matrix Ham-
iltonian s(k) in Eq. (13c) may give rise to zitterbewegung
effects, because of interband transitions, as discussed in
Sec. I. This will be explicitly shown in the case of two-
band systems.

III. ZITTERBEWEGUNG IN TWO-BAND SYSTEMS

By specializing the preceding formulas to 2X2 ma-
trices (a,P=1,2), and by choosing real orbitals [Eqs.
(15)],one can write

Setting

u(k) =p(k)@(k),

&(k) =p '(k) II (k)p '(k), (13b) eo(k) e, (k)e'

e(k) =Eo(k)L+ b,(k),
where I is the identity, and

(16a)

Eq. (10) can be cast in the form
h(k)=

e, (k)e ' —eo(k}
(16b)

iA =e(k)u(k) .. au(k) (13c) From the properties (14) and (15), it follows that

According to Eqs. (11), (12), and (13b}, the G X G matrix
e(k) is self-adjoint, and its diagonalization leads in gen-
eral to 6 dispersion relations, from which the bands can
be calculated. We stress that the number of bands can be
smaller than G, due to the possibility of complex (or de-

generate) bands. This point will be reconsidered in the
following.

From the properties (8) and from the definitions (9), the
following rules can be shown to apply:

[e„(k)—E2,(k)]
eo(k) = = so( —k),

[ei,(k)+s22(k)]
Eo(k) = =Eo( —k), (16c)

e, (k)=+~Ei2(k)~ =P, P~e, ( —k) .

Since b, =(Eo+ei), the diagonalization of e(k) is trivial
and leads to the following dispersion relations:

W.,(k) =+e'~ W.~(k) ~,

X p(k)=+e' iX Ii(k)i,

s &(k)=+e' ~E„&(k)(,

0=(P Pp 1)(vr/4) . —

(15)

These last equations mean that the matrix elements indi-
cated are real or pure imaginary, according to whether

X p(k)=P, PpX p(
—k),

W p(k)=P PpW ii(
—k),

e }i(k)=P Ptic, Ii(
—k) .

If the orbitals ilI (r) are real, one has the following addi-
tional properties:

1
u +(k)= 0

(1+x )'~
r

xe
u (k)= 1

(1+x )'~

&E(k)—Eo(k)x(k)=
e, (k)

E+ (k) =ED(k )+b E(k),
AE(k)=[EO(k)+e', (k)]' ',

corresponding to the normalized eigenstates:

(17a)

(17b)
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We can now calculate the zitterbewegung operator Z(k)
following the method in Refs. 1 and 2 (or the alternative
approach developed in Ref. 9). From the motion equa-
tion in the Heisenberg form, dA /dt =(i/A)[H, 3], Eqs.
(16) yield

JVq =—hv, ,
dt

(18a)

(Eogradi, s, —s,gradi, Eo)
Vz

AAE

0 E'e '

—e ' 0
(18b)

for the self-acceleration. Integrating the first Eq. (18a) by
means of the second one, and subtracting the part of r(t)
proportional to the time, one gets the zitterbewegung
component of the position, in the explicit form

ei(k)gradi. ,so(k) —Eo(k)gradi, si(k)
Z k)=

26E (k)

0 E'e '

E,e

(19)

following from Eq. (18b).

IV. EFFECTS OF THE INTERBAND
ZITTERBEWEGUNG ON SINGLE-BAND

SOLUTIONS

We now consider wave functions
l
ql+ & formed only by

eigenstates u +(k) [Eq. (17b)] belonging to a single band

[Eq. (17a)]. As far as the zitterbewegung is concerned,
these wave functions are equivalent to the positive- and
negative-energy states in relativistic quantum dynamics.
In the k representation, one gets

&klan'+& =f.(k)u, (k); «II, ,

I f, (k)l dk=1,
1

(20)

in terms of the probability amplitude f .
,
(k) in the first

Brillouin zone 0]. A straightforward calculation, based
on Eqs. (17) and (19), yields

& q+ lrlq & =i & q+ lgrad„le+ &

is just the square zitterbewegung operator given by Eq.
(19) with the aid of (17a). From Eq. (21b), the root-
mean-square deviation of the position reads

5r=(5r, , +&Z &}' ', (23)

showing that the localization length of a wave function,
formed by superimposing Bloch solutions of a single
band, is determined not only by the Heisenberg principle,
but also by the interband zitterbewegung. From Eq.
(21b) it follows also that &Z & does not depend on time,
since the time dependence of f+ results in the phase fac-
tor exp( iE+—t Ih ). For sufficiently long tiines, the
spreading effect on 5r„will then dominate in the freely
evolving packet. A formal aspect deserving attention is
that minimizing the functional (21b) with respect to f+ is
equivalent to solving the time-independent Schrodinger
equation:

—&kfi(k)+Z (k)fg(k)=A, fi(k) (24)

in the k space, where Z (k) plays the role of a "poten-
tial. " Since Z'(k)=Z ( —k) [Eqs. (22) and (16c)], the
eigensolutions fi can be chosen with a definite parity in
k. In this case & r„&=0 [Eq. (21a)], and solving Eq. (24)
is also equivalent to minimizing the root-mean-square de-
viation (23). We now apply the preceding method to esti-
mate the minimum 1ocalization length 5r of a wave
packet formed by Bloch functions of a single band. From
Eqs. (22) and (16c), it follows that in the case (a),

P, =P2

(orbitals with the same parity), Z (k} has a minimum in
k=0, since Z (0)=0. It is possible that Z does vanish in
other points of 0„and especially at the boundary, as sug-
gested by the one-dimensional example of Fig. 1. Thus
the solution of Eq. (24) (with fz vanishing at the surface
of 0,) is far from trivial. However, the order of magni-
tude of the minimum eigenvalue A, can be estimated as
given by the ground state of the potential well around

= J f'(k)[igradkf (k)]dk
1

=—&r„&, (21a)

Z (k)

& q'+lr'Iq'+ &
= J„~k[ f+(~if+)+Z'(k)lf+ I']—

1

—:&r,', &+ &Z'&, (21b)

where

[Eo(k)gradkE, (k) —E,(k)gradi, Eo(k)]
Z (k)=

4b, E"(k)

where the subscript "st" indicates the standard expres-
sion of the mean position operator, without zitter-
bewegung. Equation (21a) shows a general property of
the zitterbewegung, i.e., that it averages out to zero for
any positive- or negative-energy solution. ' In contrast,
it can be shown that (see also Ref. 11)

k
D

FIG. 1. The square zitterbewegung operator is plotted in ar-
bitrary units against the wave vector k for a one-dimensional
system of class (a) (orbitals with the same parity), in the tight-
binding, first-nearest-neighbor approximation. Note the para-
bolic minimum in k =0. For further details, see the Appendix.
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k=O, in the harmonic approximation. From Eqs. (22}
and (16c), one has, to the lowest order in k,

8'gF ]
Z (0)= g

k=o
(31}

Z (k) —= g A„A,k„k„,

Eo('B~ E) ) s)(B~ Eo)

26E k=o

(26)

(B„„W&)z 0= —g R„p„„V&(R„), (27)

where R„„is the gth component of the lattice vector R„.
In the TB approximation [for which the LCAO expan-
sion (4) is particularly appropriate], let us neglect the
overlap integrals and thereby set X(k)=—p(k) -=I
E(k) =—W(k) [recall Eqs. (12) and (13)]. From Eqs. (16c) it
follows that

so(0) —= —
—,
' g [ V» ( R„)—V,z(R„)]

:——
—,
' g hV(R~),

where k„(g= 1, 2, and 3) are Cartesian components of k
and B„„=Blr}k„Bk„. From the third relation (9) one
has, in addition,

Es, (k) =25E(k) (32)

is the gapwidth [see Eqs. (17)] as a function of k, and
since et(0) vanishes in the case (30), the next calculations
will illustrate the effects of the zitterbewegung when the

gap in k=0 vanishes, leading the two band to transform
into a single degenerate band. In the case (b), [Eq. (30)],

is nonzero [unless the odd function E,(k) has vanishing
gradient in k=O]. As sketched in the one-dimensional
examples of Fig. 2, the behavior of Z (k) may be rather
complicated in the case (b) [Eq. (30)], and the preceding
method to estimate 5r is not as suitable as in the case (a)

[Eq. (25}]. However, if Z (0) is the absolute minimum in

0, [Fig. 2(a)], Eq. (31) already provides a lower limit to
5r . If Z (0) is a maximum [Fig. 2(b)], its value corre-
sponds to the height of the "potential" barrier spanning
the absolute minima. In this second case, it is perhaps
more interesting to study the diverging behavior of the
barrier when so(0) vanishes [Eq. (31)]. Since

c)(0)—= g V)2(R„) .

Thus, from Eq. (27),

QR„„R„,[b, V(R„)V,2(R )
—b, V(R )V,2(R„)]

g [b V(R„)AV(R )+J4V, (R2„)Vi (R2)]j
t?,J

(28)

X (k)

1.5—

1.0—

05-

(a)

In the TB approximation, b, V(R„) and V&2(R„) vanish
exponentially with increasing ~R„~. Hence, in the first
nearest-neighbors approximation, the leading term in Eq.
(28) becomes

hV(D) V,2(0)—b, V(0) V,2(D)
A„=-

[b, V(0)+ b, V(D)]'+4[ V„(0)+V|2(D)]'

K
D

XD„D,+ (29a)
5.0—

where D is the basic lattice vector. By using Eqs. (26) in
Eq. (24), 5r turns out to be given by the square root of
the only nonvanishing eigenvalue of the matrix (29a):

b, V(D}V,~(0)—b V(0)V, 2(D)
5r =—D

[b, V(0)+6V(D)] +4[ V,2(0)+ V,2(D) ]

(29b)

2.5—

In fact, matrices in the form (29a) have zero eigenvalue in
the subspace orthogonal to the vector D. In the case (b),

P) = —P2 (30)

(orbitals with opposite parity), Eqs. (22) and (16c) lead
one to conclude that k=O corresponds either to a max-
imum or to a minimum of Z (k), because

E
D

E k
D

FIG. 2. The square zitterbewegung operator is plotted in
units of the square lattice vector D against the wave vector k
for a one-dimensional system of class (b) (orbitals with opposite
parity), in the same approximations as in Fig. 1 ~ (a) The case of
gap and bandwidth comparable in k =0. (b) A gap small com-
pared with the bandwidth (see also the Appendix).
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Eqs. (16c) yield, to the lower orders in k,

~o=Eo(0}+—g kpk (8, Eo)t=o
YJV

&i= Xk, (~„Ei)~=o.
rl

(33)

In the limit of small Eo(0), one may assume

~B„r.,B E, ~))~EoB„„Eo~ in k=o. This condition and the
two expressions (33) can be used in Eq. (22) to obtain the
leading term of Z (k):

~0(0) g (~ s1 )k=o

Z (k)=- 7l

4 ao(0)+ Qk„k„(B„e,t}„e,)k —o

eo(0)( gradqE, )o

4[so(0)+k
~~

(grad„c, , )o]'

2

(34a}

where the subscript "0" ineans that the gradient of e, (k)
(with components i}„E,) is calculated in k=o, and k~~ is
the projection of k on the gradient itself. By considering
the integral fZ (k)F(k)dk in a finite region around the

origin, for any regular function F, in the limit Eo(0)~0,
one gets from Eq. (34a) the following:

(k) ~kl~l ~
5 kll) for r.o(0) 0 .

In fact,

(34b)

Z (k)—=

Z (0) for k
1

II
—

Z2(0)

1 1
for k ))

k4Z2(0) II Z2(0}

(34c)

with Z (0) given by Eq. (31). Of course, the first condi-
tion on k~~ in Eq. (34c) refers only to the order of magni-
tude. By means of Eqs. (34b) and (34c), it can be shown
that for small but finite eo(0), Eq. (21b) yields

(Z2)==~Z(0)~ f ~f, (O, k, )~2dk, , (35)

V. APPLICATIONS

The results obtained in the preceding sections can be
regarded as a formal relationship between the crystal
band structure [as given by so(k) and a, (k)] and the local-
ization length of states originated by a single band. In

where the wave vector k has been expressed as (k~~, ki), in
the components parallel and perpendicular to (grad&a&)o.
Setting k~~

=0 in Eq. (35) is justified if f+(k) is smooth
around the origin in a region of order ~z(0)

~

'. In par-
ticular, from Eqs. (23) and (35), it follows that

( 2) iz(0)i 3m.
(36)

kM 8

for any spherical wave packet, localized in k space
around the origin, in a region of order k~ &&1/~Z(0)

~

(this result is independent of the dimensionality of k,
apart from a factor).

sap

(37a)

where ~D~ is the basic lattice vector. Equation (37a)
shows that 5r decreases as the inverse square root of the
gap. This result has a fairly transparent interpretation.
Since 5r is the minimum localization length for a super-
position of single-band Bloch functions, one expects that
Eg p

corresponds to the maximum binding energy of a
possible bound state; i.e.,

$2E, (0)=
2M, 5r

(37b)

as obtained by applying the Heisenberg principle to a
suitably defined particle of effective mass M,~. This eval-
uation of the binding energy is rigorous if the bound state
is hydrogenlike. According to this interpretation, Eqs.
(37a) and (37b) provide a definition of the effective mass:

$2
M,~=

/grad&a, /o/D/
(37c)

for the deepest acceptor jdonor state in the gap of the
two-band system. For shallow states, in contrast, Kohn's
theory predicts the same effective mass as the Bloch
states in each band. '

A further application of Eqs. (37) is to estimate the
tails of localized states' in a disordered semiconductor
[of class (b)], under Mott's hypothesis of sharp mobility
edges E„E, in the valence and conduction band, respec-
tively. ' By definition, the gap width Eg p

entering Eq.
(37a) separates extended states. If we consider crystals,
such that E, (k) has a minimum in k=o, we expect that
in the glassy phase the gap E, (0) spanning the extended
states is measured by the distance between the mobility
edges [ifE,P(0) were not a minimum, its value would in-
clude, totally or in part, the bandwidth of the extended
states]. Then we assume that

Eg, (0)=E, E, . — (38)

For the localization length A,&(E) of a state with energy F.
in the gap (g=u, c indicates the band which the state

the case (a) [Eq. (25)] of orbitals with the same parity, the
zitterbewegung "potential" Z (k) in Eq. (24) is paraboli-
cally attractive in the origin [Eqs. (26)], and the minimum
localization length 6r can be estimated according to Eq.
(29b).

In the case (b) [Eq. (30)] of opposite-parity orbitals [in-
cluding many semiconducting systems, whose highest
bands are formed by bonding (even) and antibonding
(odd) orbitals], the zitterbewegung "potential" Z (k) is
divergingly repulsive around the origin, at least for van-
ishing E, (0)= ~so(0)~ [Eqs. (34)]. In this case Eq. (36)
provides an estimate for the localization length of wave
packets centered around k=0, with spatial extension
1/kM. We are particularly interested in this class of
functions, because they include the ground state of most
defect spectra. Since k is limited to the first Brillouin
zone, for the minimum localization length of these states,
one has
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originates from), the following expression is currently as-
surned

X,(E)=B,ylE E—,l, (39)

the B&'s being phenomenological constants. According
to the present results, two energies E,&(g= U, c) will exist,
such that A,&(E,&)=5r . The quantity ~E~~ E&—

~
now

represents the width of the ( tail in the gap and can be
calculated by using Eqs. (38) and (39) in Eq. (37a), with
the result that

8(
~E,] Eg~ =— +2M, fr(E, E, )—, (40a)

(40b)

i.e., the distance between the lower edge E„of the tail
originating from the conduction band and the higher
edge E„of the tail originating from the valence band.
The transition of the quantity (40b) from positive to nega-
tive values, occurring at a certain critical value of
E, —E„marks the onset of the overlap between the tails
of localized states, and thus the onset of the metal-
insulator transition a la Mott.

M, ff being given by Eq. (37c). Another quantity of in-

terest, in view of a Mott metal-insulator transition, can be
calculated from Eq. (40a):

E„E„=—(E, E„)'—
(B,+B,)+2M,s

X (E E)'i ——
C U

ty, especially for small-gap semiconductors, in which the
distinction between shallow and deep defect states tends
to vanish.

A further application of the preceding results has been
considered for the tails of localized states in disordered
semiconductors. Following Mott's theory of the mobility
edges, ' it has been argued that such tails are limited by
two cutoff values of the energy, depending on the
difference E, E,—of the mobility edges [Eq. (40a)]. The
overlap of the two tails is also shown to depend on
E, E„—[Eq. (40b}]; so that in systems displaying a Mott
(metal-insulator) transition, the decrease of the gap be-
tween the extended states is now expected to play a cru-
cial role. This agrees with the argument that, even in
crystalline systems, zitterbewegung effects (favoring delo-
calization) are relevant if a metal-insulator transition
occurs, from a two-band to a single degenerate-band
structure, as remarked in Sec. IV. A special case of this
behavior has been studied in Ref. 3 as the "ultrarelativis-
tic" limit of a Dirac-like wave equation.
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APPENDIX

In this Appendix we calculate the zitterbewegung "po-
tential" Z (k) [Eq. (22)] in the one-dimensional case, with
a tight-binding, first-nearest-neighbor approximation, so
that the overlap-integral matrix given by Eq. (2) becomes

S(R„—R, ) =l5„J, (A 1)

VI. CONCLUSIONS

In the present paper the notion of zitterbewegung and
the resulting formalism, originally proposed for relativis-
tic quantum dynamics, ' have been applied to the inter-
band transition in a crystal. A generalized LCAO ap-
proach has been developed for the band calculations, in-

cluding ionic interactions and overlap integrals at any
nearest-neighbor order. Since any intermediate process
of orthogonalization has been avoided, the connection be-
tween band-structure and LCAO orbitals is straightfor-
ward. In particular, we have shown that the parity of the
orbitals has important effects on the interband zitter-
bewegung at small wave vectors. We have studied in de-
tail two-band systems of class (b), i.e., formed by two or-
bitals with opposite parity [the case (a) of orbitals with
the same parity is formally more complicated and,
perhaps, less interesting for practical applications]. The
main result stands in the forrnal expression of a fairly
simple idea, i.e., that donor/acceptor states can be more
sharply localized in a large gap, than in a small one.
However, to express this relationship in a quantitative
way is not as simple. While setting E, = fi l(2M, fry, )—
may look a natural choice, what effective mass M,z is ap-
propriate to determine the minimum localization length

, is a nontrivial question, which we have tried to
answer [Eqs. (37)]. The resulting definition of eff'ective

mass, valid for deep defect levels, should be of some utili-

and the Hamiltonian matrix given by Eq. (6) becomes, in
turn

V(R„—R, ) = V(0)5„+V(D)5„+, , + V( —D)5„

(A2)

where D is the distance between first-nearest-neighbor
sites on the one-dimensional lattice. By means of Eqs.
(Al) and (A2), one can invert Eq. (9) and write

s(k) = IV(k) = V(0)+ V(D}e'" + V( D)e—(A3)

s, (k)=a, +/3, coskD (j =0, 1), (A4a)

in the case (a) of orbitals with the same parity. In con-
trast, the same calculation yields

so(k) =ao+Po coskD,

c, , (k }=P, sinkD,
(A4b)

in the case (b) of orbitals with opposite parity. The
definitions (22) and (17a) can now be applied to Eqs.
(A4a) and (A4b), to obtain

according to the definitions (12) and (13b). From Eqs.
(A3) and (16), the general structure of the matrix 6 can
be found as
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in the case (a), and

P,(Po+ao coskD )
Z2(Ic) =

[(ao+Po coskD ) +P2 sin (kD) ] 4
(Asb)

(aoP, —a,Po) sin (kD)
Z (k)=

[(ao+PocoskD) +(a&+Pi coskD) ] 4

(A5a)

in the case (b). Equation (A5a) has been used for Fig. 1

with ao=0. 5, po=0. 2, a, =0.6, p, =0. 1 (arbitrary units).
Equation (A5b) has been used for Fig. 2(a), with

ao/p~ =2, po/p, =2.5 (gap and bandwidth comparable at
k =0), and for Fig. 2(b), with ao/P, =0.12, Po/P, =0. 10
(gap small compared with the bandwidth at k =0). In
the last case, the value in k =+7r/D is 625, in units of
D . This is the reason for the apparent divergence at the
boundaries in Fig. 2(b).
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