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Electromagnetic response of quantum dots
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We show that the many-body interactions do not produce any significant shifts in the far-infrared

absorption frequency for a system of mell-separated quantum dots with parabolic confining poten-

tials. This is in contrast to a result based on the random-phase approximation but in agreement
with recent experimental results.

In recent years it has become possible to fabricate
semiconductor systems in which quantum confinement of
electrons in all three dimensions can be observed. '

These "quantum dots" are of increasing interest because
they can be viewed as artificial atoms whose properties
can be well controlled through the material parameters
and geometry, and which can be arranged in various
periodic or aperiodic structures. Furthermore, it has
been suggested that future computer architectures might
be based on such structures.

The study of electrons in such systems is usually done
by various spectroscopies, most of which utilize elec-
tromagnetic radiation. Recent measurements' of the
electromagnetic response of a system of quantum dots
show that the far-infrared (FIR} absorption frequency is
independent of the number of electrons, N, occupying
each dot. This is in striking contrast to a calculation
based on the random-phase approximation (RPA), which
predicts significant N-dependent shifts.

In this paper we provide a possible explanation of the
lack of variation with N of the observed resonance fre-
quency noted in Ref. 1. In particular, we show that for a
system of well-separated dots the interdot electrodynamic
interaction produces a shift in the FIR absorption fre-
quency that depends on an effective plasma frequency for
the system. For many samples investigated so far, ' this
effective plasma frequency is very small, and therefore, in
practice, the interdot interactions produce a negligible
shift. We obtain this result employing two approaches:
In the first, the dots are modeled as point dipoles allow-
ing interdot correlations to be treated exactly; in the
second, the confining potential for each dot is assumed to
be parabolic and a Hamiltonian approach is used to treat
both intra- and interdot interactions. This latter ap-
proach also explains that there is no shift due to intradot
interactions, irrespective of N. This result, basically a
variation of the Kohn's theorem, has been recently ob-
tained in the context of wide parabolic quantum wells by
Brey et al.

A quantum dot is characterized by quantization of
electronic motion in all the three spatial dimensions. We
consider an array of quantum dots arranged in a two-
dimensional lattice that is taken to lie in the x-y plane.
The confinement in the z direction is assumed to be much

stronger than that in the x-y plane, so that the dots can
be viewed as two-dimensional disks. In current experi-
ments the interdot distances are much larger than the
effective dot size. Then the charge densities in the indivi-
dual dots are well separated (no wave-function overlaps),
and for the purpose of studying the interdot effects we be-
gin by modeling the dots as interacting point dipoles. '

The individual-dot dipole polarizability, a(co}, which
reflects the internal properties of the dot, is to be deter-
mined from the intradot physics. The Maxwell's equa-
tions of the system take the general form

P(RJ)=tz(co) E(Rt) —QP(Rt —R ) P(R~ ) (la)

CO—V[V E(r)]+V E(r)+ E(r),
C2

gee P(R, )5(r —R, ),O'ITN
(lb)

Specifically, we consider a square lattice of dots in the x-y
plane with lattice constant a. The fields E and P are tak-
en parallel to the y direction. In the nonretarded limit
(c h oo), and using standard plane-wave expansions"'
of E and P, we obtain the following dispersion relation
for the transverse mode (propagating along x with wave
number k and frequency co):

1=—4ma( co)/3(k)/a

where

P(k) = v (0)+2 g v (l)cos(kl a),
l=l

4~ (12+ 2)3/2 I 2+ 2

(3b)

where e is the unit vector in the direction of polarization,
and the dipole-dipole interaction is

1 3RR
R R
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H =H, (R,P)+H', (4)

and the center of mass (c.m. ) variables R=(1/N) g,. r,
and P=g,.p, , commute with H'. The radiation dipole
operator g,.er, =eNR, being a pure c.m. variable, then
does not couple to H', which contains all the electron-
electron interactions. Thus the dipole operator, for a uni-
form field, induces transitions only between the states of
H, , and absorption can occur only at the correspond-

The first few values of u (I) are
u (0)= —g(3) ltt= 0—. 382 624, u (1)= l. 1579X 10
u (2)= 1.538 X 10 ', and u (3)=6.4 X 10 . Note that
P(0) =u(0)+2 +v (l)= —0.35943. . . , which is equal to
the value v(0) of Ref. 10 for the interaction between a
square lattice of point dipoles and an in-plane dipole.

For large interdot separations, the plasma modes [solu-
tions of Eq. (2)] occur near the poles of a(cu). Since the
polarizability per dot increases with the number of elec-
trons per dot, N, one may rewrite a(tu)=Na'(to), where
a (cu), the polarizability per electron in the dot, is (by vir-
tue of the oscillator sum rule) relatively insensitive to N.
Then the effective scale size for the interdot shift from
the poles of a'(to) is given by an eff'ective "plasma fre-
quency" tv =4m Ne /erna, where e is the dielectric con-
stant of the medium and m is the effective mass of an
electron. The dispersion (k dependence) of the mode,
which is governed by the u (l) (&v(0), is an order of mag-
nitude smaller than the shift. The dispersion relation for
the longitudinal mode (E~~k) can also be derived similar-

ly, and leads to the same shift for k =0, and its disper-
sion, though different, is also very small.

For the InSb sample of Ref. 1 (parameters:
a =2500 A, @=17.9, m =0.014m„resonance frequency
coo=7. 5 meV, and N=3 —20), the interdot shift Atv,

which is proportional to co, is negligible
(b, to/too= —0.36 to —2. 4%%uo) and we conclude that any
shift of the FIR absorption frequency (or lack thereof)
has to be ascribed to the intradot physics. ' Further-
more, since u (l) &(v(0) the dispersion (k dependence) of
the mode is extremely small. In fact, these statements
hold true for other relevant dot systems investigated to
this point. " In order to produce any significant shift in
the absorption frequency due to interdot effects, one has
to substantially increase co . Note that this can be
achieved most efficiently by reducing the interdot separa-
tion, a, since co -a

Now we consider the electromagnetic response of a sin-
gle isolated dot. If the dot is occupied by a single elec-
tron, there are no interelectron effects to consider, and
the (FIR) electromagnetic absorption should occur at the
bare level spacings. Applying the RPA to this system,
and thus making the electron interact with its own mean
field, is conceptually incorrect, and is in clear violation of
elementary quantum mechanics. '

We next ask under what conditions can we expect the
intradot, many-electron physics to produce no shift of
the' FIR absorption frequency with N, as has been ob-
served. In general, the electron-electron interaction pro-
duces N-dependent shifts. However, it will not, if the N-
electron Hamiltonian can be separated into the form

ing interlevel separations, irrespective of the details of the
electron-electron interactions. If, in addition, these level
separations are independent of N, the system will have
the desired property.

Now we turn to the question of what specific confining
potentials V, (r, ) can lead to such separability. The Ham-
iltonian for the N-electron system is given by

1 2 1g P/ N N g PI~J& PI/ Pl Pj
l i) j

(6)

renders the kinetic-energy term separable in the sense of
Eq. (4), since [R,p„]=0. The electron-electron interac-
tion term, u(r, , ), obviously depends only on the relative
coordinates r; which commute with P. Thus the separa-
bility of H essentially rests on whether we can rewrite the
confining potential term, Q,. V, (r;), in a separable form.
The first term in the Taylor expansion,

V, (r;) = V, (r,'+R) = V, (r,')+R VV, (r,')+ (7)

clearly commutes with H, since r,'=r, —R commutes
with P. Each of the higher-order terms, upon summation
over i, has to be separable, or must vanish. This is a
severe constraint on the form of V, (r;), and, in fact, only
the constant, linear, and quadratic potentials give rise to
separability. The first two forms do not produce
confinement. For the quadratic potential, V, (r; )
=

—,'mcoor, , we have explicitly

p2
(8)

2N

2

(9)
i)j

As mentioned earlier, the dipole operator only couples
to H, and, due to the harmonic-oscillator structure of
H, in Eq. (8), only adjacent levels produce nonvanish-
ing matrix elements. Therefore we conclude that the
electromagnetic FIR absorption spectrum of the many-
electron system with the parabolic confinement will have
only one, ¹independent absorption peak, corresponding
to the bare interlevel energy separation of the confining
potential, coo. The same result can also be obtained by a
variation of the Kohn's theorem, as has been shown for
wide parabolic quantum wells in Ref. 9. Clearly, no other
forms of V, ( r; ) lead to separability, and, as a conse-
quence thereof, an N-independent absorption frequency.
This strongly suggests that the confining potentials in
Ref. 1, and possibly other experiments, are parabolic. '

We wish to emphasize that H, is the only relevant
part of the Hamiltonian for the purpose of determining
the FIR electromagnetic response (at k =0) of the quan-
tum dot. In fact, one can replace the interacting system
of N electrons by a single quasiparticle, with charge
e*=Ne and mass M =Nm, oscillating in a parabolic well

1V' pH= g +V(r;) + gu(r; ),
2m

r, =r, —r, r; =~r; . (5)

We note that the identity for quadratic forms,
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with frequency ~o. The corresponding polarizability is
e2

then given by cc(co)=e* /M(coo —~ )=Ne /m(coo —co ),
where the latter expression can also be viewed as the sum
of the polarizabilities of N noninteracting electrons.

Effects of a magnetic field, B, can be easily included in
the Hamiltonian approach. When 8 is perpendicular to
the plane of the lattice, it can be shown that FIR absorp-
tion occurs, in spite of the electron-electron interactions,
at two frequencies:

(10)

The proof of separability is straightforward. Now,

H,
2 CO

+ ,'Nm (co—o+—,'co, )R + L, ,

L, =XPq —YP~ .

While Eq. (10) has been employed before to explain the
experimental results, ' ' its derivation was based on a
single-electron picture (neglecting all electron-electron in-
teractions). We have shown here that for a system of N
interacting electrons the same formula holds. This proof
provides an explanation of why the simple theory used in
Refs. 1, 3, and 4 yielded good agreement with experi-
ments.

In contrast to the above results showing no dependence
of the FIR absorption peak on N, a calculation based on
the RPA, in which a parabolic potential is employed with
two electrons per dot, gives a large positive shift (-40%%u~)

of the absorption peak from coo. This discrepancy raises
the question of the applicability of the RPA for dot sys-
tems. The RPA, in principle, cannot be used for a dot
with few electrons. Furthermore, it can produce accurate
results only when it is used in conjunction with a self-
consistent Hartree calculation of the ground state. There
seems to be considerable confusion in the literature re-
garding this point. The proper procedure is to solve the
coupled Schrodinger-Poisson equations, in which the to-
tal potential consists of the initial confining potential
(parabolic in this case) plus the Hartree potential, which
is determined self-consistently with the charge density be-

ing obtained from the square of the electron wave func-
tions. We have performed a Hartree-RPA calculation for
parabolic quantum dots' and we find that this two-step
method reproduces the exact result (i.e., absorption
occurring at coo) to a high degree of accuracy. A similar

result has been obtained in Ref. 9 for wide parabolic
quantum wells. Basically, a significant downward shift in

the ground-state intersubband separations exactly com-
pensates the upward shift due to the RPA. In contrast,
Ref. 7 omits the ground-state (Hartree) calculations and
therefore the large upward RPA shift remains uncompen-
sated.

We must stress, however, that the special case of the
parabolic potential may not necessarily be considered a
test of the applicability of the Hartree-RPA approach.
As shown above, the dipole interaction operator probes
in this case only the part of the Hamiltonian that is in-
sensitive to electron-electron interactions, and therefore a
Hartree-RPA calculation, which treats incompletely
these interactions, can be expected to produce a correct
result.

The Hamiltonian separability approach continues to be
useful for nearly parabolic systems (through standard
perturbation theory, treating departures from the para-
bolic form as perturbations). It also allows a unified
treatment of the interdot and intradot FIR response. We
can show that the total Hamiltonian for a system of v
quantum dots, with a parabolic confining potential for
each dot, is essentially separable. All the electron-
electron interactions, interdot as well as intradot, go into
H', and play no role in determining the FIR absorption
frequency. All the quadratic momentum and coordinate
terms separate in the same way as before, except that P
and R now refer to the total momentum and the center-
of-mass variable of the whole system. The electron-ion'
interactions consist of intradot and interdot parts. The
intradot electron-ion interaction for each dot is already
taken into account through the parabolic confining po-
tential. The interdot term, on the other hand, is not se-
parable, but approximate separability can be achieved to
a high degree of accuracy through its Taylor expansion in
the electron coordinate,

2

+e r. + [x (d —3d„)+y (d —3d ) —6xyd„d ]+ (12)

where d =b+p, r is an electron coordinate in a given dot,
and p is an ion coordinate in any of the other dots, b be-
ing the lattice vector connecting the two dots under con-
sideration.

The first term on the right-hand side of Eq. (12) only
alters the reference energy and is irrelevant for the inter-
level separations. The second term, summed over all the
ions in all the other dots, represents the effect of the net
interdot ionic field at the center of the dot under con-
sideration; for a lattice of dots with translational symme-
try, this term will vanish. The third term, summed over

the ions, leads to an additional force on the electron at r
due to all the ions in the other dots; it is related to the
quadrupole moment of the ion distribution around the
dot under consideration. By symmetry, the effect for
each dot is the same. Essentially, this quadratic term in r
alters the restoring force on the electron and represents
the main effect of the interdot electron-ion interactions.
The higher-order terms (beyond the quadratic) can be ig-
nored when the interdot separation is much larger than
the wave-function spread for an electron, and then separ-
ability is achieved. The full Hamiltonian now only con-
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sists of terms quadratic in momenta and coordinates,
apart from the electron-electron interaction term, and is
thus separable by the same arguments as in the case of a
single dot: H=H, (R,P)+H'. Specifically,

p20, +—'NvmQ Rc.m. 2N vm
(13)

0 =N2 2
0

e

2md
(14)

This expression has a simple physical meaning: the inter-
dot electron-ion interactions soften the restoring force on
the electrons in a given dot; thus the effect of forming a
lattice of dots is to decrease the absorption frequency
from that of a single dot. Therefore the shift from coo is
negative, in contrast to the normally positive shift due to
electron-electron interactions. The interdot electron
effects are absent here, as those interactions are in H',
which does not couple to the total radiation dipole opera-
tor, D=eNvR.

For the ion distribution corresponding to the point di-
pole (p =0) model, with N ions at each site, b = lax+ nay,
Eq. (14) reduces to

where 0 represents the effective oscillation frequency of
the center of mass of all the electrons in the system. It is
also the resonance frequency of the system.

The specific value of 0 depends on the ion-charge dis-
tribution. The additional "potential" due to the ions in
the other dots, represented by Eq. (12), shifts the restor-
ing force constant meso in a given dot by

2 e 2 2

(d —3d„)=g (d —3d )=—gd5 d5 ~ 2d3

where the summation extends over all the ions in all oth-
er dots. We have assumed that the x and y distributions
are the same. The resulting FIR absorption frequency
for a system of dots is then given by

0 —6)0 fQP& (15)
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where co~ has been defined earlier, and the sum
y—:(1/ger)g'(1 +n ) (l, n do no vanish sirnultane-

ously) can be shown to be equal to —P(0) of Eqs. (3).
Equation (15) is consistent with the result obtained from
the dipole-dipole approximation [Eq. (2), for k =0] if
tz(ca) is taken to be Xe /m (cao2 —ca ), as is appropriate for
a harmonic oscillator.

In summary, we have shown that a system of well-
separated quantum dots with parabolic confining poten-
tials will have an (FIR) absorption frequency that will be
insensitive to N, the number of electrons per dot. This
might explain the experimentally observed insenstivity
to N. This result will also hold for other systems with
parabolic initial confining potentials (e.g. , quantum wires,
quantum wells, etc.). A dispersion relation is obtained
for the interdot effects in the dipole-dipole approxima-
tion, and the magnitude of the interdot shift and disper-
sion are shown to be negligible for relevant experiments.
We have also developed a Hamiltonian approach, based
on the concept of separability of center-of-mass and rela-
tive (or difference) variables. This method provides a
proof that only parabolic confining potentials lead to ex-
act separability and N independence. Approximate
separability may prevail under more general conditions; a
systematic development of this approach for a broader
class of systems will be given elsewhere. We have already
shown here how the Hamiltonian separability approach
allows a unified treatment of the interdot and intradot
physics of a system of quantum dots. We have em-
phasized here a first-principles quantum-mechanical ap-
proach, without recourse to any many-body approxima-
tions.
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tions is irrelevant, since these interactions are negligible any-
way.
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