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Two-dimensional treatment of nonlinear thermoelectricity in homogeneous metals
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Electron transport due to large temperature gradients in a homogeneous monovalent metal is

studied. In contrast to linear theory, a nonlinear thermoelectric current depends on temperature
variations not only in one direction but in other directions as well. When a temperature distribution
is essentially two dimensional, the calculated current has circular components. Thus, contrary to
linear theory, it is impossible to use a zero-current steady-state condition to calculate the voltage in-

duced by this effect. A new steady-state condition is proposed which allows currents to complete a
circuit. A thermoelectric voltage is evaluated for the case which closely approximates recent exper-
imental results creating large temperature gradients in metals.

I. INTRODUCTION

It has been generally accepted that large temperature
gradients cannot be produced in metals because of their
high thermal diffusivity, and thus electron-transport phe-
nomena of thermal origin have always been considered
within the framework of a linear theory. ' For semi-
conductors, on the other hand, nonlinear transport phe-
nomena are well known and widely explored. New ex-
perimental data indicate that a nonlinear theory is now
appropriate for metals as well, and this is the purpose of
this paper.

Modern achievements in short-pulse-laser generation
and thin-film technology allow us to produce very large
temperature gradients in metals without sample destruc-
tion. In recent experiments, a pulsed laser was used to
heat a thin metal film deposited on a grating. The edges
of the film were far from the laser spot and thus at a con-
stant, ambient temperature. Typical pulse-duration times
were 0.1—1 ps, and the grating wavelength was A=10
pm. A small potential was developed by each ripple of
the grating, and the voltage was summed across the
N = 10 periods producing a measured voltage of up to 1

V. The large temperature gradients in this experiment (in
metal films) were estimated to be on the order of 10~

K/cm. This technology may permit the development of
small, inexpensive, convenient sensors.

Linear thermoelectric effects cannot account for the
measured voltage. Nonlinear contributions to the ther-
mopower may be a possible explanation of these experi-
ments. Thus new experimental possibilities to create
large temperature gradients force us to reexamine a
branch of physics very popular in the first half of this
century: thermoelectricity in metals.

We have already studied nonlinear thermopower

coefficients in metals in the case of monovalent homo-
geneous metals obeying a parabolic dispersion law where
temperature distribution was one dimensional. In the
present paper, we will enlarge that derivation to include
monovalent homogeneous metals generally, and to devel-

op a two-dimensional theory. The latter is of great im-

portance, because in laser-irradiated thin films deposited
on a grating there are not only large gradients in the x
direction, parallel to the film surface, but also in the z
direction, perpendicular to the surface. Indeed, our esti-
mate of the z gradient is about 10 K/cm. This makes
the usual open-circuit approximation invalid for calculat-
ing the thermoelectric field, since the cold portion of the
film serves to complete the circuit. Similarly, a multidi-
mensional analysis implies that x and z gradients will be
coupled in the nonlinear regime. Developing this idea is
the primary focus of the present work.

In Sec. II we briefly describe the derivation of Ref. 6,
with a particular idea toward generalization to all mono-
valent metals. In Sec. III we consider the two-
dimensional calculation using parameters consistent with
experiment. ' Finally, Sec. IV contains concluding re-
marks, and we discuss new possibilities opened up by this
research. Throughout the paper we assume local thermal
equilibrium, without which temperature would be
undefined.

II. THEORY OF NONLINEAR THERMOPOWKR
IN HOMOGENEOUS MONOVALENT METALS

We now briefly reproduce the results from Ref. 6, with
an eye toward generalization to all monovalent metals
and greater physical insight. We being with an electron
current j arising from large temperature gradients V T as
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j =cr[E —V(g/e) a—V T a—
, V(b, T) a—2V T(b T)

—a3V( V T) a—~( V T) ],
where o is the conductivity, g is the chemical potential,
and a, are the thermopower coefficients. Using the
Boltzmann equation to describe electron transport in the
conventional ~ approximation, and assuming a spheri-
cally symmetric Fermi surface, we find that nonlinear
contributions to the electric current due to V T can be
written as

1j'=e dS dckvk(rv/V/)(rukV, )(rul, V )nk . (2)
477 %Uk

Here k refers to electron state space, Uk and cI, refer to
the electron velocity and energy, respectively, nk is the
electron density at local thermal equilibrium, and dS
denotes integration in k space, as per Ref. 6.

At this point we generalize the result obtained in Ref.
6, given by Eq. (2) above, by introducing the relaxation
time r(k), instead of r(sl, ). This removes the condition
of a spherical symmetry in k space, and then Eq. (2) is
valid for all metals with a single conduction band. In the
simplest case (Bloch model), where ek=(A'k) /2m, m is
the electron mass, and r(e„)= sl, , we obtain for j '

duced by small deviations of the total electron density
from its average value. This, in turn, changes the total
electron flux, which depends not only on relative veloci-
ties, but also upon the variation in total electron concen-
tration. The electric field required to neutralize this con-
centration effect is precisely the nonlinear effect discussed
above.

It should be noted that nonlinear contributions to the
thermoelectric field in a given direction depend not only
on variations in this direction, but also on other direc-
tions. For example, in the two-dimensional case the non-
linear thermoelectric field in the x direction may be writ-
ten as

p a' , j a' p a'
T2 Q~ 3

(7)

The first two terms stem from derivatives in the x direc-
tion, while others depend on z gradients also. The conse-
quence of this equation will be considered in the next sec-
tion.

7' kar (p)j'=cr [V(b T )+ 4 TV(b, T)],
15me

(3)
III. TWO-DIMENSIONAL

NONLINEAR THERMOPOWER

where r(p) is the relaxation time averaged over the Fermi
surface, and k~ is the Boltzmann constant. It follows
from Eq. (3) that

o. ) =C) T
rr'k~ r(p )'

me
a;=C,

m'k~r(p)
i =1,3, , (4)

where C, = —", , C2=C3= —",, . This is the major result of
Ref. 6.

Fortunately, Eq. (4) is very general. We note that a
precise knowledge of the shape of the Fermi surface and
of the exact r(k) dependence only changes the numerical
value of the coefficients C;. For free electrons when ~ is
independent of energy, for example, C; =1.

At the high-temperatures relevant here, r(p) = 1/T due
to electron phonon interaction. Separating out
temperature-dependent terms, and combining everything
else into constants p and y, we can rewrite Eq. (3) more
generally as

We now apply the general theory of nonlinear thermo-
power reviewed in the preceding section. We are only in-
terested in the nonlinear contributions, and so we restrict
ourselves to the situation where linear effects cancel out.
Thus we insist that points A and B between which the
thermoelectric potential is developed be at the same tem-
perature. Further, we are interested in two-dimensional
effects, the two dimensions being along the x axis, and the
z axis perpendicular to the surface. We assume that no
temperature gradients exist in the y direction. This
geometry closely matches the experimental circumstances
described above.

In the previous paper, we assumed a stringently sta-
tionary state in which j=0. ' ' ' But in the two-
dimensional case, curlE=O contradicting Eq. (6), and we
should use the continuity equation,

+divj=O .
Bt

2 [pV(ET )+@TV(b,T)] .
T2

The stationary condition now becomes
(&)

dlvj =0, (9)

Setting j=0 in Eq. (1), we obtain a general expression for
the thermopower coefficients valid for all monovalent
metals at high temperatures,

E =aVT+ V(AT )+ V(hT) . —
T2 T

(6)

We can provide a physical interpretation of Eq. (6) as
follows. The net electron flux is from high- to low-
temperature regions, because the electron velocities are
greater at high temperatures. The electric field required
to counter this flux is the first-order effect, but it is pro-

V 0 Vp+ V(b, T )+ V(b, T) =0 .
T2 T

(10)

A general solution to Eq. (10) is readily found to be

which is a much less stringent constraint. In effect, it al-
lows for the circuit to be completed in the cold part of
the film. We now separate the electric field into linear
and nonlinear terms, so that E= —V(P+Po), where P is
the nonlinear term. By assumption, all linear contribu-
tions are zero, and thus combining Eqs. (9) and (5), we get
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E(r) = —VP

V 2
V(b, T )+ V(b, T)

T2
(r —r')dr' .

There is another way to find the electric field in Eq.
(11). Taking the curl of Eq. (5), we get

FIG. 1. Temperature distribution along the surface of the
61m resulting in a nonlinear thermoelectric voltage.

0=2 [V'T X V(hT )]+ [VT XV(AT))+Vx'
T3 T2

(12)

T(x,z) = To+ ( T, singx + T2sin2gx)exp( —az), (13)

where g =2m. /A is the wave number of the grating, and ~
is a parameter associated with laser irradiation which, in
the case of sufficiently thick films, is roughly proportional
to the reciprocal of the skin depth. This model is actually
very general since any continuous temperature distribu-
tion can be written as a Fourier series.

We can find j by expanding Eq. (12) in a Fourier series.
Only terms of zeroth order will contribute to the voltage
V», and for T„T,&& T0 this yields

Solving this equation yields both j and E. Integrating E
between points A and B gives us the measured voltage.

These results are quite general, but for the sake of
specificity we now model the temperature distribution in
a manner that closely approximates the experimental evi-
dence described in the Introduction. In Ref. 6 we have
considered a sawtooth geometry, but in the paper we use
another analytical form adequate to describe the experi-
ments. This is (Fig. 1)

the thermal relaxation time may be evaluated as
~=8 /g, where 8 is the distance between points with
different temperatures, and y is the thermal difFusivity.
For the discussed temperature distribution we find that
r„=A/y=l0 sands, =h /y=10 ' s. Thusthepo-
tential associated with the z gradients should follow a
laser pulse rate of about 0.1—1 ps, whereas those associat-
ed with x gradients will decay more slowly. While the
presence of a substrate can significantly change this quali-
tative result, it is nevertheless noted that two, time-
differentiated signals are experimentally observed.

In order to evaluate V in Eq. (16), we must extract the
temperature distribution from the experimental data.
This is easy to do in the case of h & 5, where 5 is the skin
depth, about 0.05 pm. In this event, x=1/5=2X10
crn '. Assuming T, =150 K, T2=50 K, g =2~X10
crn ', and N =10, all consistent with experiment, then
for monovalent metals with linear thermopower of
ao= 10 V/K, we calculate Vo =0.05 V. Assuming that
no parameters change as a function of h, we obtain for V

V0 V0V= = forh&5
3ah h 0

V=Vo for h (5.
It would appear from Eq. (18) that the thinner the film,

the greater the potential, but this is misleading. For very
thin films, thermal diffusivity will tend to equilibrate tem-
perature gradients, especially in the z direction, and thus
reduce the value of V0. Thus there is an optimal thick-
ness at which nonlinear effects will be maximized, at
about h =5. For thinner films, a detailed calculation
would requrre a knowledge of the thermal difFusivity.

It should also be mentioned, however, that the voltage
measured in the experiment is larger than that calculated
by Eq. (17). One possible reason for this is the fact that
transition metals and semimetals were used in the experi-
ment. These systems have overlapping conduction bands,
and even linear thermopower measurements yield results
1—2 orders of magnitude larger than the monovalent ma-
terials assumed in the previous calculation. For transi-
tion metals, the nonlinear terms increase significantly be-
cause of the greater length required for the interband
transition of electrons, particularly because of the longer
transmission time between d and s zones. Detailed calcu-
lations of this will be given elsewhere.

(14)

Here j0 is the constant of integration which we can find
from the condition of zero net current as

f "g,dz =0, (15)
0

where h is the thickness of the film.
From Eq. (14), we can calculate the potential induced

over N ripples as

1 —exp( —3~h )V= V0 (16)

where

V0=2mN[P(17g 4x )+ ', yTog2] . — —
0

(17)

It is now important to mention that the induced volt-
age consists of two components: the first term in Eq. (17)
stemming from gradients in the x direction, and the
second term originating from gradients in the z direction,
as per Eq. (7). The thermal relaxation times for these
gradients are very different. In the absence of a substrate,

IV. CONCLUSION

In this paper we kave considered the electron transport
phenomena arising in monovalent metals under large

T]T2j„=goo exp( —3az)[P(17g2 4a. )+9yTog—i] jo . —
0
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temperature gradients. We have found nonlinear contri-
butions to the therrnopower and carefully studied the
case when voltage is generated between two points at the
same temperature in a homogeneous material. This volt-

age equals zero in linear theory, and the experimental
measurement of such a potential constitutes experimental
support for this theory.

In our previous paper, we considered the effect of gra-
dients only in one dimension. In this paper, we have dis-
cussed the dependence of this effect on film thickness.
For very thick films, we find that the potential goes to
zero since the cold bulk serves to complete the circuit.
For thin films, the potential goes to Vo. However, for
very thin films, Vo becomes smaller because temperature
gradients in the z direction are reduced due to thermal
diffusivity.

The theory may be extended to include thermomagnet-
ic phenomena as well. This case is most interesting when
linear effects cancel, leaving only nonlinear terms.
Another interesting issue will arise when the film thick-
ness and/or grating wavelength is on the order of the
electron free path. Finally, at low temperatures but with
large temperature gradients, phonon drag must be con-
sidered.

Nonlinear thermoelectric phenomena have many tech-

nical applications. For example, very small, cheap and
convenient sensors may be produced. ' Analogous use
could be made from similar thermomagnetic devices.

We have assumed local thermal equilibrium
throughout. There is some experimental evidence to in-
dicate that this may not be a valid assumption in all cir-
cumstances, in which case a new theory must be
developed.
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