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New formalism for determining excitation spectra of many-body systems
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We present a new general formalism for determining the excitation spectrum of interacting

many-body systems. The basic assumption is that the number of the excitations is equal to the num-

ber of sites. Within this approximation, it is shown that the density-density response functions with

two different pure-imaginary energies determine the excitation spectrum. The method is applied to
the valence electrons of sodium clusters of differing sizes in the time-dependent local-density ap-

proximation (TDLDA). A jellium-sphere background model is used for the ion cores. The excita-
tion spectra obtained in this way represent well the excitation spectra given by the full TDLDA cal-

culation along the real energy axis. Important collective modes are reproduced very well.

I. INTRODUCTION

In interacting many-fermion systems, the single-
particle excitations following the addition or removal of
one particle are called quasiparticles. In solids, quasipar-
ticles of interacting valence electrons form energy bands,
which can be observed directly using photoelectron spec-
troscopy. In finite systems, the quasiparticle concept is
also useful. The Hohenberg-Kohn density-functional
theory' with the Kohn-Sham local-density approxima-
tion (LDA) has been widely used not only for calculating
energy bands of solids but also for electronic-structure
calculations of atoms and molecules. Recently, the
Hybertsen-Louie approach based on the Hedin GR'ap-
proximation has been used successfully to calculate the
quasiparticle energies of solids ' and clusters.

In addition to the single-particle excitations, the in-
teracting particles exhibit collective modes, which con-
serve the number of the particles and often have clear
classical analogs. One of the most studied collective
modes is a plasmon in solids, which can be detected by
the electron-energy-loss spectroscopy. A plasmon corre-
sponds to a classical longitudinal wave and is often treat-
ed quantum mechanically by the random-phase approxi-
mation (RPA) in linear-response theory. Collective
modes are also known ta exist in finite systems. The gi-
ant dipole resonance of the nuclei is believed to be the
collective motion of the protons relative to the neu-
trons. ' The giant resonances of 4d electrons in atoms
have also been measured. " A recent photoabsorption-
cross-section experiment' has revealed the presence of
the collective modes of valence electrons in sodium clus-
ters. These are associated with surface plasma reso-
nances.

In the present work, we will consider the excitation
spectra of nonmagnetic many-electron systems. In the
linear-response regime (adopting units in which A= l),

the generalized susceptibility of the electron system is
equivalent to the retarded density-density response func-
tion

g(r, r';t —t')= iB(t —t—')(0~[6'(r, t), n(r', t')]~ 0),

where 0 is the step function, R' is the electron density
operator, and ~0) is the exact ground state of the system.
The poles of y(r, r', E ), the density-density response func-
tion in energy space, give the energies of excitations
which conserve the number of the particles, that is, col-
lective modes and other single-particle-hole pair excita-
tions. In the interacting many-electron systems,
g(r, r', E) has to be calculated in some approximate way,
for instance, RPA, the time-dependent local-density ap-
proximation (TDLDA), ' ' the Hedin GW approxima-
tion, and so on.

In the present paper, we discuss a new general and
pragmatic formalism to approximate the y(r, r', E) on the
whole real energy axi-s from the temperature density-
density response function (as the temperature T~0) with

only two diferent pure imaginary energies; y(r, r', iy, ) and
y(r, r'; iy2 ) (0 &y, &y2 ). ' (The temperature density-
density response function is the analytic continuation of
the retarded function and therefore the same expression g
will be used throughout the paper. ) The present pro-
cedure can be applied to y(r, r', iy) calculated in any ap-
proximation. In this work, the new method is applied to
the TDLDA y of valence electrons in sodium clusters.
The jelliurn-sphere background model for positive ion
cores, which is known to work for simple-metal clus-
ters, ' is used. The dynamical dipole polarizabilities cal-
culated from the g in the present formalism are com-
pared with the full TDLDA calculation along the real en-

ergy axis, with emphasis on the positions and the osci11a-
tor strengths of the collective resonances.
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In Sec. II the new formalism is described in detail.
After a brief summary of the TDLDA formalism, the re-
sults of the new formalism applied to sodium clusters,
Na2, Na8, Na, 8, Na2O, Na34 and Na4O, are given in Sec.
III. In Sec. IV, we discuss the advantages of the present
formalism. Section V contains the conclusion of this pa-
per.

[Y(iy)] „=6„™
& +~m

Here, 5 „ is Kronecker's delta. Since every excitation
energy is positive, the square-root matrix of Y can be nat-
urally defined as

[ Y' (iy)] „=6 „([Y(iy)] )' '

II. NEW FORMALISM
FOR EXCITATION SPECTRUM

After the Fourier transformation with respect to time,
the retarded density-density response function in energy
space is given by

Using the new matrix

M(iy) = Y' (iy)N,

Eq. (6) can be written as

,
' X(iy—)=M (iy )M(iy ) .

(9)

(10)

, E &ole(r)lm && le(r')lo&
X r, r';E =

E COm +15

&0 e(r')lm && m le(r)lo&
E+co +i 5

(2)

The first step of our formalism is to calculate the
density-density response function at some pure imaginary
energy iy, and to diagonalize the real symmetric matrix

—,'X(—iy, ):

where co is the excitation energy from the ground state
0 & to the mth excited state of the system, l

m &, and 6 is
a positive infinitesimal. Therefore, the poles of g give the
excitation energies of the system. In a nonmagnetic sys-
tem, we can always use real eigenfunctions both for the
ground state and for the excited states. Hence, we can
rewrite Eq. (2) as E=(MP) (MP) (12)

,'X(iy—,)=P E P

where E(iy, ) is a diagonal matrix with an eigenvalue e,
on each diagonal element and P(iy, ) is an orthogonal
matrix with an eigenvector on each column. Combining
Eqs. (10) and (11),we can obtain

X(r, r', E)=g&ole(r)lm &

1

E corn +l6
or

2
er ~mr ~ (13)

1

E+co +i5

X &mlR'(r')lo& . (3)

where

a,=[M P] (14)

For noninteracting systems, the excitation energies are
equal to the differences between the particle and hole en-

ergies. The matrix elements of the density operator be-
tween the ground state and the excited states are the
products of the wave functions of the particle and the
hole being considered. For the interacting systems, how-
ever, the expression (3) is only a formal device since it is
not straightforward to calculate the excitation energies
nor the matrix elements even if X(r, r', E) is known for a
given E in some approximation. The formalism present-
ed here provides a new approximate way to make the
above expression for g useful.

For convenience, we will use matrix notation

[X(z)],, =X(r, r';z),

N, =
& m le(r) lo& = &Ole'(r)lm & . (5)

X(z) with z =E+i5 (5~0) and z=iy represents the re-

tarded density-density response function and the temper-
ature density-density response function, respectively.
Then, Eq. (3) gives

'X(iy ) =N Y(iy )N—, —

Therefore, every er is positive and again we can define the
diagonal square-root matrix E' . Then, it is easy to
show

M(iy, )=0 E' "P (15)

Here, 0(iy, ) is some row-orthogonal matrix satisfying

OO =1, (16)

Then, Eqs. (9) and (15) give

where 1 is the unit matrix.
To obtain 0, we assume that the number of excitations

(m) is equal to the number of sites (r). (In the interacting
many-body systems, the number of the excitation is gen-
erally much larger than the number of sites. ) Then, all
the matrices are square and 0 is an ordinary orthogonal
matrix (00 =0 0=1). Within this approximation X
with another pure imaginary energy, iy, (y, )y, ), deter-
mines the matrix 0, which now depends not only on y,
but also on y2. To see this, let us define the new matrix
A(iy, ,iyz) as

where N is the transpose of N, and Y is a diagonal ma-
trix: where Z(iy, , iy 2 ) is a diagonal matrix given by
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y] +~m2 2

[—]mn mn
y2+m

(19)

The second step is to diagonalize A, since Eq. (17) states
that the eigenvectors of A give the orthogonal matrix
O(iy, , iy2) and the eigenvalues give (y, +co )/(ye+co ),
and therefore, co . The final step is to calculate X, the
matrix elements of the density operator. From Eqs. (9)
and (15),

The calculated ~ and X depend on y, and y2. Hence,
the reasonable choices of y, and y2 are important in the
actual calculation. This point will be discussed further in
Sec. III. The y, and y2 dependences of the energies of
the important excitations, that is, the collective modes
are found to be weak.

III. APPLICATION TO SODIUM CLUSTERS

%=[X(iy )] ' 0 E' I' (20) A. TDLDA formalism

Now, from co and N, y(r, r';z) is given directly by Eq.
(3).

In the TDLDA, the density-density response function
t fi

y( „r,;E)=y'(r„r„E)+fdr, f dr4g (r„r 3E)K(r 3r~)y( rr 2E) . (21)

Here, g is the density-density response function of the
hypothetical independent particles in the Kohn-Sham
formalism, and K(r, r') is the kernel given by

The imaginary part of a(co) has poles at the excitation en-
ergies of the system and gives o (co), the photoabsorption
cross section of sodium clusters

d V„,.
K(r, r')=, + 6(r —r'),

ir —r' dp
(22) cr(co) =4m.—Ima(co),

C
(26)

in Rydberg units, which will be used throughout the pa-
per. V„, is the exchange-correlation potential in the
LDA. In the present work, Wigner's interpolation for-
mula for the correlation energy will be used. The LDA
retarded one-particle Green's function is given as

P, (r }P,*(r')
G(r, r', E)=g E —el+i~

(23)

where P, and e, are, respectively the wave functions and
eigenvalues of the self-consistent Kohn-Sham equations.
Then, g can be written as'

y (r, r', E ) =g [P,*(r)P, (r')G(r, r', E;+E }

a(co)= —f dr f dr'zy(r, r', co)z' . (25)

+p;(r)p;(r')G*(r, r', E, E)] . (24)—
Since we adopt the jellium-sphere background model, G
is given as the product of spherical Bessel-type and
Hankel-type solutions of the Schrodinger equation with
the LDA e6'ective potential.

The formalism presented in Sec. II is applied to the
TDLDA g for sodium clusters. The positive ion cores
are replaced by the jellium sphere with the density taken
to be the same as the valence electrons in bulk sodium.
(The Wigner-Seitz radius r, is set to be 4 a.u. ) All the
sodium clusters to be studied (Na2, Na8, Na, z, Na20, Na34,
and Na40) have closed-shell electronic structure and the
jellium-sphere background model is expected to give a
good representation of their electronic structures. In the
next section, we will give the results for the imaginary
part of the dynamical dipole polarizabilities calculated
from the g as

which can be compared to the experiments.
'

The static response function of the system y(0) is a
ground-state property and is expected to be described
well in the LDA. Hence, a small value for y i (0.01 Ry) is

used in the present work. [Equation (24) cannot be used
for an exactly zero energy, because G(r, r', E, ) is singular. ]
As can be seen from Eq. (19), all the eigenvalues of A are
nearly degenerate (close to 1) if y, =yz. Hence, yz should
be considerably larger than y, . On the other hand, if the
choice for y2 is too large, similar eigenvalues are found
close to zero. (Since 0(y, (yz, all the eigenvalues of 3
are between 0 and 1.) Therefore, yz should be compara-
ble with the excitation energies of interest. The classical
surface dipole resonance (surface plasmon) energy, co,", is
0.25 Ry for the metallic sphere with r, =4. This is in-

dependent of the cluster size. The experimental value

co,'"~' is found to have a similar magnitude but to be red-
shifted compared with co,".' (The origin of the shift is
considered to be the surface diffuseness of the electron
density. ) Other single-particle-hole pair excitations are
also expected to be in the same energy region. Therefore,

y2 =0.5 Ry is used in the present work.
Since the systems studied have spherical symmetry, we

can utilize spherical harmonics and only the radial part
of the wave functions has to be solved for numerically on
a discrete grid within the LDA self-consistent calcula-
tion. These discrete points on r are used as the sites in
the present matrix formalism. In this work, uniform
grids with distances of 0.2 (a.u. ) between grid points are
used. The maximum points on r are determined as the
points beyond which the LDA effective potentials are less
than 10 ' Ry, unless otherwise specified. Furthermore,
the Imo. ( co ) for cu with a small imaginary part
(Imam=0. 001 Ry) are calculated in order to give finite
widths to the 6 functions and to display their oscillator
strengths clearly.



7394 SAITO, ZHANG, LOUIE, AND COHEN 42

B. Results

N=2 wamemaw LDA
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FIG. 1. Ima(co) for Naz given through the LDA g and the
TDLDA g. Calculations are performed on the line above the
real-energy axis (Imam=0. 001 Ry). The ionization energy IE„I
is indicated by an arrow.

Here, the TDLDA Ima(co) for Naz (%=2, 8, 18, 20,
34, and 40) normalized by the classical static dipole po-
larizability R is given (R is the radius of the jellium
sphere ). In Fig. 1, Ima(co) for Naz given by the full

TDLDA calculation along the real energy axis is shown
together with the LDA Ima (co), that is, y instead of y is
used in Eq. (25). Within the LDA and the jellium-sphere
background model, the Naz cluster is in a simple elec-
tronic configuration; 1s . Since the lowest-unoccupied
state is 1p, the LDA independent-particle response func-
tion g has a pole at c.„—c,p 0 15 Ry. The higher exci-
tations constitute a continuum spectrum above the
TDLDA ionization energy, that is, the absolute value of
the LDA highest-occupied-state energy I

e &, I
=0.25 Ry.

As can be seen from the TDLDA results, the pole in
the renormalized response function y is found at a higher
energy (0.19 Ry) than y because of the electron-electron
interaction given by K(r, r'). Hence, the new pole with a
large oscillator strength in the TDLDA is considered to
be the collective mode of two valence electrons corre-
sponding to the classical surface plasmon, and therefore
is denoted by co, . Since co, is found to be still lower than
the ionization potential, there is no Landau damping for
the co, in Naz. Hence, the finite width of the peak at co, is
due only to the externally introduced Imago.

In Fig. 2, Ima(co) calculated from the present formal-
ism with two different numbers of excitations is given.
The numbers of excitations, or, the numbers of sites used
are 110 and 142, which give the maximum points on r
beyond which the LDA effective potentials are less than
10 and 10 (Ry), respectively. In both cases, the posi-
tion as well as the oscillator strength of the collective
mode is very close to the full TDLDA result. The num-
ber of sites in the actual calculation is finite in the present

N=2 f ull

m=1 —110
~-"-.-- m=1-142

lY

3
0

O

~-10

~0

~o
~0
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

0.0 0.1

I

0.2
co (Ry)

0.3 0.4

FIG. 2. TDLDA Imo. (co) for Na& given by the present for-
malism with two different numbers of excitations (co ), 110 and
142, together with the full-calculation results along the real-
energy axis. The arrow indicates the ionization energy.

As can be seen frotn the definition (1), the density-
density response function y denotes a specific two-

formalism, and the discrete spectrum is given above the
ionization potential as well as below it. Figure 2 shows
that the larger-area calculation gives more excitations in
the continuum-spectrum region with smaller oscillator
strength on each excitation in better accord with the full
TDLDA-calculated spectrum.

In the case of larger clusters, the electronic structure is
more complicated and the excitation spectra have a rich-
er structure than the Na~. Figure 3(a) shows Ima(co) for
Na8. The present formalism still gives the plasma reso-
nance energy cu, and its oscillator strength fairly well, al-
though some poles (or resonant excitations above the ion-
ization energy I E,~ I

=0.25 Ry) are missing.
To see the y, and yz dependences of the excitation en-

ergies in the present formalism, several different sets of y &

and y ~ are used for Na, : (y „y~ ) = (0.01,0.3), (0.01,0. 1 ),
(0. 1,0.5), and (0.001,0.5) (Ry). Their results are shown in
Figs. 3(b) and 3(c) along with the result of the standard
choice for (y, ,yz ). Figure 3(b) shows that the y, depen-
dence of the excitation spectrum is very weak and

y, =0.01 Ry and y, =0.001 Ry give almost the identical
results. The spectrum is found to have a little yz depen-
dence in its higher energy region [Fig. 3(c)]. The impor-
tant plasma resonance energy co, shows a very weak y&
dependence if yz is within a reasonable range.

In Fig. 4, results for Na, 8, Naz, , Na34 and Na40 are
given. Although ~, and its strength in Na4O given by the
present formalism show a little deviation from those
given by the full calculation along the real-energy axis, in
Na, 8, Nacho, and Na34 the present formalism gives the
plasma resonance energies and their strengths which are
very close to the results by the full-real-axis calculations.

IV. DISCUSSIGN
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(o) N=8 full
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FIG. 3. TDLDA Ima(co) for Na8. (a) Results given by the present formalism (solid line) and by the full calculation along the real-

energy axis (dashed line). In the present-formalism calculation, the standard values of y, and y2 (0.01 and 0.5 Ry, respectively) are
used. The arrow indicates the ionization energy. (b) Results given by the present formalism with three different y, values, 0.1, 0.01,
and 0.001, Ry (y2 is fixed at 0.5 Ry). Results with y, =0.01 and 0.001 Ry are almost identical and the difference does not show up in
this figure. (c) Results given by the present forrnalisrn with three different yz values, 0.5, 0.3, and 0.1 Ry (y &

is fixed at 0.01 Ry).

particle Green's function. Finite- (nonzero-) temperature
Green's-function theory tells us that a knowledge of g on
an infinite number of points on the imaginary axis, in
principle, gives the unique analytic continuation of g on
the upper-half plane. However, it is not straightforward
to do the analytic continuation in the calculation for real
systems. In the present work, we have given an approxi-
mate way to describe the behavior of g(r, r', z ) from g on
two points on the imaginary axis. By restricting the
number of excitations to the number of sites, excitation
energies and their strengths, which give the explicit form
of y(r, r', z ), are determined from the values of y(r, r'; iy, )

and y(r, r';iy2) with linear algebraic calculation If more.
excitations were assumed, y on more than two points
would be necessary to determine the excitation energies

and their strengths. In that case, however, we have to
solve a nonlinear optimization problem, which still needs
further manipulations and is beyond the scope of this pa-
per.

The excitation energies and their strengths given by the
present theory have been compared with the results by
the full calculation along the real-energy axis. And the
comparison has revealed that the present formalism gives
the collective excitation energies and their strengths very
well. Since the formalism can be combined with any ap-
proximation for calculating the density-density response
function, one of the advantages of the present method is
that we can estimate the energies and the strengths of the
important collective excitations from y(r, r', z) on only
two different energy points. Without this approach, it is
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(c) N=34 full
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(d) N=40 full

present
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FIG. 4. TDLDA Ima(co) for (a) Nal8, (b) Naacp, (c) Na34 and (d) Na4p. Solid lines represent the results by the present formalism,
and dashed lines are the full-calculation results along the real-energy axis.

necessary to calculate y on a large number of points
along the real-energy axis. Therefore, the present formal-
ism is especially useful in cases where the approximation
for y to be used is too time consuming to evaluate.

In addition to the behavior around the collective exci-
tations, the present y(r, r', z) describes the behavior
around z=iy& and iy2 fairly well. In the present work,
we have used a very small y, giving a good static limit
(z ~0) for y. In that case, o (cv) given by the present for-
malism through Eq. (26) satisfies the following sum rule'
with sufficient accuracy:

f ~ 0'(co)
d

277

0 ~ C
(27)

where a(0) is given from p(r, r';0) evaluated directly us-
ing Eq. (2l). Equation (27) is equivalent to the usual
Kramers-Kronig relation between Rea(0) and Ima(co).

In the standard perturbative (diagrammatic) many-
body theory, the time-ordered density-density response
function g gives the screened Coulomb interaction
propagator Was

W(r, , r2, E)=v(r, , r2)+ fdr3f dr4v(r, , r3)g (13 r4, E)v(r4, r2),

Rey (r, r', E)=Rey(r, r', E),
Imp (r, r', E ) =sgn(E) lmy( r, r', E ) .

(29)

where v is the bare Coulomb interaction. g is related
to the retarded g as

Therefore, the present formalism gives a useful expres-
sion for &through Eqs. (28) and (29). The representative
poles in 8' given by the present formalism enable us to
use contour integration which is a powerful technique in
the diagrammatic theory. For example, the self-energy of
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the electrons in the GR'approximation of Hedin is given
by

X(r, r', E)=f . e ' 'G (r, r';E —z)Wr, r';z),—i hz G8'
—oo 2&1

(30)

where G is the time-ordered one-electron Green's
function in the GS'approximation. The evaluation of X
using the contour-integration technique with finite num-
ber of poles is straightforward. On the other hand, the
continuum excitation spectrum given by the full calcula-
tion along the real-energy axis does not give us an easy
way to evaluate X.

The application of the present formalism to extended
systems is an interesting problem. The formalism in
Fourier space has been done and will be discussed else-
where. "

V. SUMMARY AND CONCLUSION

In this work, we have presented a new formalism to ap-
proximate the excitation spectrum of interacting many-
body systems from the density-density response function
on two pure imaginary-energy points. The basic approxi-
mation used is to restrict the number of the excitations to
the number of sites in the real-space grid considered. The
new method has been applied to the valence electrons in
sodium clusters in the TDLDA with a jellium-sphere
background model. The results show that the present
formalism gives fairly accurate collective-mode energies
and their oscillator strengths compared to the full calcu-

lation along the real-energy axis, which is much more
time consuming. Since the present formalism can be ap-
plied not only to the TDLDA but also to any approxima-
tions for the density-density response functions, the for-
malism will be especially powerful in predicting collective
excitations of systems where the full calculation in the
desired approximation is impossible. Moreover, in some
applications, the approximate excitation spectra obtained
by the present formalism are more useful in the diagram-
matic theory than the continuum spectra given by the full
calculation.

ACKNOWLEDGMENTS

%'e would like to thank X. %. Wang for his helpful
comments. The work of one of us (S.S.) was supported by
NEC Human Resources International. One of us
(M.L.C.) acknowledges support from the Miller Institute
for Basic Science and another (S.G.L.) acknowledges sup-
port from the John Simon Guggenheim Foundation.
This work was supported by National Science Founda-
tion Grant No. DMR-88-18404 and by the Director,
OfBce of Energy Research, OSce of Basic Energy Sci-
ences, Materials Sciences Division of the U.S. Depart-
ment of Energy under Contract No. DE-AC03-
76SF00098. Computer time on the Cray Research, Inc.
supercomputer at the National Magnetic Fusion Energy
Computer Center (Livermore, CA) was provided by the
OSce of Energy Research of the U.S. Department of En-
ergy

'Present address: Xerox Corporation, Palo Alto Research
Center, 3333 Coyote Hill Road, Palo Alto, California 94304.

'P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
L. Hedin and S. Lundqvist, in Solid State Physics, edited by H.

Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York,
1969), Vol. 23, p. 1.

5S. B. Zhang, D. Tomanek, M. L. Cohen, S. G. Louie, and M. S.
Hybertsen, Phys. Rev. B 40, 3162 (1989).

M. P. Surh, J. E. Northrup, and S. G. Louie, Phys. Rev. B 38,
3162 (1989).

7S. B.Zhang, D. Tomanek, S. G. Louie, M. L. Cohen, and M. S.
Hybertsen, Solid State Commun. 66, 585 (1988).

~S. Saito, S. B.Zhang, S. G. Louie, and M. L. Cohen, Phys. Rev.
B 40, 3643 (1989).

See, for example, D. Pines, Elementary Excitations in Solids
(Benjamin, New York, 1964).

' G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod.
Phys. 55, 287 (1983).

' See, for recent work, M. Richter, M. Meyer, M. Pahler, T.
Prescher, E. v. Raven, B. Sonntag, and H. E. Wetzel, Phys.
Rev. A 39, 5666 (1989).
K. Selby, M. Vollmer, J. Masui, V. Kresin, W. A. de Heer,
and W. D. Knight, Phys. Rev. B 40, 5417 (1989).

'3A. L. Fetter and J. D. Walecka, Quantum Theory of Many
Particle Systems (McGraw-Hill, New York, 1971),Chap. 5.

' M. J. Stott and E. Zaremba, Phys. Rev. A 21, 12 (1980).
A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).

'6A short discussion of the present formalism has been given in
Ref. 8.
W. A. de Heer, W. D. Knight, M. Y. Chou, and M. L. Cohen,
in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and
D. Turnbull (Academic, New York, 1987), Vol ~ 40, p. 98.

' W. D. Ekardt, Phys. Rev. 8 31, 6360 (1985).
' W. D. Ekardt, Phys. Rev. B 32, 1961 (1985).

E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
S. B. Zhang, S. Saito, S. G. Louie, and M. L. Cohen (unpub-
lished).


