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Theory of the thermal boundary resistance between dissimilar lattices
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Continuum acoustics allows only three different phonons to be rejected and transmitted for each
phonon that is incident on an interface between two materials. We show that a lattice-dynamical

theory for dissimilar lattices allows more phonons to be generated at the interface since we must in-

troduce a larger unit cell. Numerical examples are given for the thermal boundary conductivity be-

tween two fcc crystals. The additional high-frequency phonons are found to carry an appreciable
amount of the reAected and transmitted heat.

I. INTRODUCTION

When heat is transported across an interface between
two different materials, there will in general be a temper-
ature discontinuity at the interface. This effect was first
observed at the interface between a metal and liquid heli-
um' but has later also been seen at the interface between
two solids. The temperature discontinuity arises because
some phonons are reflected at the interface and it is possi-
ble to define a thermal boundary resistance (Kapitza
resistance), R = Ab, T/Q, where A is the area of the in-
terface, Q is the heat fiow across this area, and 6T is the
temperature difference between the distributions of pho-
nons incident on the two sides of the interface. We have
developed the first lat tice-dynamical theory for the
thermal boundary resistance that can be applied to cases
where the two crystals have different lattice constants or
even different crystal structure.

Since R is geometry independent it should be called a
thermal boundary resistivity. However, we will follow
the terminology as it is defined by Swartz et al. and use
thermal boundary resistance for R, but we will use the
term thermal boundary conductivity for its inverse.

Theoretical estimates of the thermal boundary resis-
tance between two solids have mainly been based on the
acoustic mismatch theory. In this theory, the two media
are regarded as two elastic continua and a perfect junc-
tion between the two is assumed, i.e., the interface is
"welded. " A phonon that is incident on the interface has
a certain probability of being reflected or transmitted and
the boundary conditions allow three different phonons to
be reflected and transmitted, respectively. Another mod-
el uses diffuse mismatch to explain the behavior of rough
interfaces between a solid and liquid helium at higher
temperatures. It is assumed that all phonons are
diffusively scattered at the interface, i.e., an incident pho-
non is reflected and transmitted into all phonon states
with the same energy.

These theories work well for solid-solid interfaces at
low temperatures, but at high temperatures the experi-
mental thermal boundary resistance is, in some cases,
found to be higher than that predicted by the theories. It
has been suggested that the excess thermal boundary

resistance at high temperatures is due to damage of the
surface layer.

Neither the diffusive mismatch theory nor simple ver-
sions of the acoustic mismatch theory takes into account
phonon dispersion or the actual forces that act across the
interface. There is also a possibility that the incident
phonon has such a high frequency that there are no pho-
nons in the other material with the same frequency. A
lattice-dynamical theory is needed in order to include all
these effects which are particularly important at high
temperatures.

Several lattice-dynamical calculations have been made
on one- and two-dimensional lattices. ' The only calcu-
lation on a three-dimensional lattice has been made by
Young and Maris. However, all of these calculations
have assumed that the lattice constants were the same in
the two materials. Here we present a theory for dissimi-
lar lattices.

II. THEORY

A. Similar lattices

First we review the theory of Ref. 8 for similar lattices.
This case is drawn in Fig. 1(a), where we denote atoms
with different masses with circles of different radii, and
we distinguish between different force constants by the
thickness of the line joining two atoms. Assume a pho-
non with wave vector k'" and frequency ~ is incident on
the interface from the left in Fig. 1(a). The outgoing pho-
non has wave vector k'"'. All atoms along one side of the
boundary are in equivalent positions and the phase
difference between incoming and outgoing phonons must
therefore be the same at all interface atoms on one side of
the boundary. This gives us the boundary condition

gout g in+
X X

where r is the common lattice constant and the only ac-
ceptable value for the integer n is zero since we require
all wave vectors to lie in the first Brillouin zone.

In a three-dimensional lattice, Eq. (1) would also be
valid for the k component. The k;"' component is

42 7386 1990 The American Physical Society



42 THEORY OF THE THERMAL BOUNDARY RESISTANCE. . . 7387

determined from the requirement that the frequencies of
the incoming and outgoing phonons must be the same,
i.e.,

+

X &~(ki gi)&o(~I, TI)U, (k„ji)r(ki,ji)

(kin kin kin) ~(kout gout gout)x~ y~ z x ~ y ~ z (2)
+ g fico(k~, g, )NO(coi, T2)v, (k2,g2)t(k2, J2)

k2 j&

(3)
where the prime denotes that co is a different function of
k if the phonon is transmitted. On each side of the inter-
face, there are six values of k, "' that are solutions to Eq.
(2). Only three of these are physically acceptable. We
choose the solutions that correspond to phonons travel-
ing away from the interface or, in the case of imaginary
values of k;"', we choose the evanescent waves whose am-
plitudes are vanishingly small far from the interface. The
ratios of the phonon amplitudes are obtained from the
equations of motion for the atoms at the interface.

From the phonon amplitudes we get the transmission
coefficient, t(k, j), which is defined as the fraction of the
energy that is transmitted when a phonon with wave vec-
tor k and branch index j is incident on the interface. The
heat How across the interface is now obtained from

where Xo is the thermal equilibrium distribution. The
plus (minus) sign indicates that we sum only over those
phonons that are traveling towards the interface in ma-
terial 1 (2).

B. Dissimilar lattices

Now we show how to extend the theory to the case of
dissimilar lattices. In Fig. 1(b) we have two lattices with
3r

&

=2r2, where r, and r2 are the lattice constants to the
left and to the right of the interface, respectively. The
phase differences between incoming and rejected waves
are not required to be the same at neighboring atoms
since the forces acting on neighboring atoms are
different. Interface atoms in equivalent positions in ma-
terial 1 are separated a distance 3ri and Eq. (1) must
therefore be replaced by

(
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For the transmitted phonons we find
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FIG. 1. (a) Location of atoms in a plane perpendicular to the
interface between two similar lattices; (b) location of atoms in a
plane perpendicular to the interface between two dissimilar lat-
tices; (c) location of atoms in (100) planes parallel to the inter-
face for two dissimilar fcc lattices. The lines mark the boun-
daries of different unit cells that are defined in the text; (d) left,
location of atoms in a (100) plane parallel to the interface; right,
location of atoms in a (110) plane parallel to the interface. The
lines mark the boundaries of the surface unit cells.

The k, components are again obtained from Eq. (2). For
three-dimensional simple cubic lattices the equations for
the k components will be identical to Eqs. (4) and (5) and
there will be 27 reAected waves and 12 transmitted waves.
Thus, different lattice constants in the two materials will
allow more phonons to be generated at the interface.

In general we can have different crystal structures in
the two materials. Therefore we will derive a more gen-
eral expression for the k and k components for the out-
going waves. As an example of a more complex case,
consider the interface between two fcc crystals with the
(100) planes parallel to the interface. The positions of the
atoms at the interface in material 1 are shown to the left
in Fig. 1(c) and the positions of the corresponding atoms
in material 2 are shown to the right. The lattice constant
in material 2, r2, is twice the lattice constant in material
1, r&. The boundary for a choice of primitive unit cell in
material 1 is given by the dashed line. It is easily seen
that neighboring unit cells are not in equivalent positions
relative to the atoms in material 2. We must define a sur-
face unit cell that is four times larger (solid line) than the
unit cell in the bulk in order to include all possible in-
teractions with atoms in the other material.

This larger surface unit cell has translational symmetry
along the interface so we can use the arguments for the
siinilar lattice [Fig. 1(a)] to obtain k„""=k '" and

ky ky where k is defined in the surface Bri1louin
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zone. This gives us twelve reflected phonons since we
now have four times as many phonon branches. Usually
we would like to have the phonons defined in the bulk
Brillouin zone and we must then unfold the phonon
branches by adding surface reciprocal-lattice vectors.

In the general case where the surface unit cell is n

times larger than the bulk unit cell, we need n surface
reciprocal-lattice vectors, g, to unfold the phonon
branches. The n allowed values for k"" in the bulk Bril-
louin zone will be k„'",k„'"+g', . . . , k,'"+g," ' and simi-
lar for the y components. The same scheme can be used
to obtain the allowed values for k'""' by determining the
corresponding surface unit cell in material 2. In our ex-
ample in Fig. 1(c) the surface unit cell is equal to the bulk
unit cell and we do not get any extra allowed k vectors.

The advantage of this last approach is seen when it is
applied to a grain boundary. In Fig. 1(d) we have the
same material on both sides of the interface but we have a
(100) plane parallel to the interface on the left and a (110)
plane parallel to the interface to the right. The distance
between neighbor atoms in the x direction in the (110)
plane is &2r, =1.5r, . The Brillouin zones to the left and
to the right have now been rotated with respect to each
other, but as soon as the surface unit cell has been
identified, it is straightforward to use the same scheme as
above. In this case the surface unit cells to the left and to
the right contain six and two atoms, respectively. For
each incoming phonon there will be eighteen reflected
phonons and six transmitted phonons.

I 1 1 11111 1 I I 11111)

0 ~ t 5

(see Ref. 8). At low temperatures we do indeed find iden-
tical temperature dependences as is expected with the
acoustic mismatch model, but at higher temperatures the
thermal boundary conductivity saturates at different
values.

It may seem unphysical that we obtain a value for the
thermal boundary resistance even when the two materials
are identical [solid line in Fig. 2(a)], but with our
definition of AT this is not a problem as we show in the
Appendix. As long as you measure the appropriate tem-
peratures this theory is valid even when the two materials
are almost identical. '

III. NUMERICAL EXAMPLES

We have made a numerical calculation of the boundary
resistance between two fcc crystals, both of which have
their (100) planes parallel to the interface. The model
crystals consist of masses, m, , connected with springs
with spring constants K;. We used the method of Young
and Maris to find the solution of Eq. (2). In all cases we
have studied, we have m

&

=1 K, =1, and r, =1. In the
first case we use these parameter values also in material 2.
In order to compare our theory with the acoustic
mismatch theory, we change the mass, spring constant,
and lattice constant in material 2 so that it will have the
same acoustic impedance and the same critical cone as in
the case with r2=1. We get m~=8, K, =2 for r, =2 and

mz =3.375,K2 =1.5 for r2 =1.5. We do not allow for re-
laxation of the atoms at the interface since this would
complicate the calculations. An atom in the lattice with
the smaller lattice constant interacts with 4—6 atoms on
the other side of the boundary, depending on its position.
The corresponding spring constants at the interface are
all chosen to be equal to (K, +K&)/2 to ensure a strong
bonding across the interface. We note that a simple
acoustic mismatch theory would predict identical tem-
perature dependence for these three cases.

In Fig. 2(a) we show the result of our calculations for
three different ratios of the lattice constants: 1, 1.5, and
2, shown by the solid, dashed, and dotted lines, respec-
tively. We have plotted thermal boundary conductivity
against temperature, scaled with the constants
SD ——2.965(K1/mt )1/2A/ka and ~0 ——(K

1 /mt )'/'k8/r 21
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FIG. 2. Thermal boundary conductivity between two
different fcc crystals, both with their (100) planes parallel to the
interface. K, =1, mi =1, and r, =1 in all cases. (a)

K, = 1, m, =1, r, = 1; ———,K, =1.5, m, =3.375, r, =1.5;
. - - ., K, , m, = 8, r, =2, (b) K, =2, m, =8, and r, =2 for both
curves. . . , interface spring constants from Lennard-Jones
potential. , all interface spring constants equal to
(K I +K, ) y2.
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The saturation of the thermal boundary conductivity
in Fig. 2(a) is mainly due to the cutoff in phonon frequen-
cy in material 2, but a detailed study shows that the pho-
non transmission coefftcient (i.e., the ratio between
transmitted and incident heat (lux) starts decreasing well
below the cutoff' frequency. It is only the very-long-
wavelength phonons that have a transmission coefficient
near 1. With dissimilar lattices the transmission
coefficient is considerably smaller than when the lattices
match. There are two possible reasons for this.

The first reason is that the present theory introduces
extra outgoing phonons in addition to the three reflected
and three transmitted phonons that are allowed for simi-
lar lattices. The extra phonons can carry an appreciable
part of the outgoing heat, especially for the ratio 1:1.5 of
the lattice constants. In this case we find that for 20% of
the incoming phonons the extra reflected phonons carry
more of the reflected heat than the "ordinary" reflected
phonons do. Similar numbers hold for the transmitted
heat. The extra phonons carry heat only at high frequen-
cies. At low frequencies, the extra phonons are all
evanescent and carry no heat.

The second reason is that the bonding at the interface
is weakened as the atoms on opposite sides of the inter-
face no longer match. The thermal boundary resistance
is very sensitive to what forces we assume at the inter-
face. An example of this is shown in Fig. 2(b), where the
upper curve is calculated with equal spring constants for
all interactions across the interface. The lower curve is
obtained with these spring constants calculated from a
Lennard-Jones potential. In the latter case the spring
constants vary by 2 orders of magnitude since the dis-
tances between interacting atoms are very different. In
fact, one pair of atoms dominates the interactions at the
interface. In a real crystal the atoms at the interface
would relax to new equilibrium positions and the force
constants would be similar in magnitude. On the other
hand, we would then have two layers of atoms that do
not have the structure of either lattice, which would
make it more difficult to transmit phonons.

It is not possible to separate the effect of the "extra"
phonons from the effect of the weakly bonded interface
due to mismatch of the atoms at the interface. The ex-
istence of additional reflected and transmitted phonons
requires that there is no one-to-one correspondence of the
atoms on the two sides of the interface and vice versa.
However, in all cases we have studied the net effect is a
smaller transmission coefficient.

We expect that our theory will have its main applica-
tions to certain grain boundaries where it is possible to
use a relatively small surface unit cell. It will probably be
necessary to allow for relaxation so that realistic forces
between atoms on opposite sides of the interface can be
calculated. The phonon amplitudes must then be ob-
tained from the equation of motion for the atoms in the
second plane from the interface.
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AppENDIx

It has been argued' that it is not correct to use Eq. (3)
since it leads to a finite value of the thermal boundary
resistance even when the two materials are identical. The
problem is related to the thermal equilibrium distribution
that has been used in Eq. (3). If we have a net flow of en-

ergy the phonon distribution cannot be the thermal equi-
librium distribution. This apparent "paradox" has been
resolved' by introducing the actual phonon distribution
that corresponds to a net heat flow.

However, Simons' used the total phonon distribution
in his derivation while we have used the phonon distribu-
tion for the phonons that are incident on the interface. It
is important to distinguish these two cases. When theory
is compared with experiment it is important to know
what temperature the thermometers are measuring. '

According to Katerberg et al. , most experimental setups
measure the temperature of the phonons that are incident
on the interface.

We will show that Eq. (3) is consistent with the ordi-
nary theory for the thermal conductivity when the two
materials are identical. Since the materials are identical
and all transmission coefficients are equal to 1, we can
write Eq. (3) as

—=—g Pcv(k, j )v, (k, j)[NO(cv, T& ) No(cv, T2 )]. (A—l)
k, j

g l, dNO—=—g Rcv(k, j)v:(k,j)r(k, j) dT
dT
dz

(A2)

where the summation now extends over all phonons in
the Brillouin zone. The factor in front of the temperature
gradient is seen to be the familiar expression for the
thermal conductivity. Thus, we have shown that Eq. (3)
is consistent with the usual theory for the thermal con-
ductivity when we assume that the two materials are
identical.

We have made the derivation in this Appendix to stress
the fact that Eq. (3) is not unphysical even when the two
materials are the same, as long as the proper tempera-
tures are used. A discussion on which experimental set-
ups measure temperatures appropriate to Eq. (3) has been
given by Katerberg et al.

For a phonon that hits the interface, the mean time back
to the last scattering event is r(k, j). Phonons that are
scattered will have a distribution that corresponds to the
temperature at the place where the scattering occurred,
i.e., T=v, (k, j)w(k, j)dT/dz. This gives
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