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We present a new scheme to calculate reflection high-energy electron-diffraction rocking curves
based on the technique to solve coupled second-order differential equations developed by Magnus
and others. Furthermore, a layer-doubling method, which was originally developed for the low-

energy electron diffraction, is incorporated into this scheme very naturally.

I. INTRODUCTION

Reffection high-energy electron diff'raction (RHEED)
(Ref. l) is a structural analysis technique that is routinely
adopted for use in molecular-beam-epitaxy (MBE) sys-
tems. In RHEED, the electron energy is'in the range
10—40 keV. Therefore, ordinary techniques utilized in
low-energy electron diffraction (LEED) (Refs. 2—4) are no
longer practical. Since LEED theories are constructed
based on the electron-scattering partial waves in angular
momentum space, many partial waves are needed in or-
der to obtain a reliable answer. Usually, LEED is used in
the energy range 20—200 eV. Thus, in the very-high-
energy range for RHEED analysis, only the plane-wave
method can become a feasible technique. Nonetheless,
constructing a practical RHEED theory is a very difficult
task because so many plane waves participate in the
scattering process, and some of the transmitted waves
can penetrate deep into the solid.

Until now, several theories to calculate RHEED rock-
ing curves have been proposed. For example, Maksym
and Beeby proposed a theory based on the Sams-Kouri
method. Their method is fast, but the evanescent waves
bring about the numerical instability problem. So Mak-
sym has used the layer-doubling technique originally in-
troduced in LEED (Ref. 2) to stabilize the numerical cal-
culation. However, since Maksym and Beeby have
chosen to separate the coefficients and exponential parts
of the plane waves, phase matching becomes a sensitive
part as with the LEED analysis. Peng and Cowley pro-
posed a method to slice a slab normal to the surface.
Their method has an advantage in handling a step, but
considerable computing time may be required. On the
other hand, Zao, Poon, and Tong proposed a theory to
use the R matrix, recursively. They have adopted a tech-
nique to solve the coupled second-order differential equa-
tions developed by Stechel et al. ;' furthermore, a tem-
perature correction was also discussed. Since the R-
matrix method handles plane waves without separating
the coe%cients and exponential part, numerical instabili-
ty does not appear. However, the R-matrix method re-
quires us to choose the position to start the recursion
process. Thus, until we get the converged reAectivity, by
choosing a new starting point, we have to repeat the re-
cursion process for the 8 matrix. In this paper, we pro-
pose a new scheme to calculate a RHEED rocking curve

without separating the plane wave into two parts, as was
done by Zao et al. , and illustrate how the layer-doubling
method can be incorporated into the new scheme.

In Sec. II, we derive the scattering matrices for a slab
using the technique for solving coupled second-order
differential equations developed by Magnus and oth-
ers"' rather than that by Stechet et al. In Sec. III,
those scattering matrices will be combined with the
layer-doubling method very naturally. Furthermore, we
will explain how flexible and efficient the new method is.
Finally, a brief summary is given in Sec. IV.

II. ELECTRON SCATTERING BY A SLAB

4(r)= gP (z)e
s

Substituting Eq. (2) into the Schrodinger equation

(2)

——7'4+ VO=E%,
2I7l

(3)

we obtain the following coupled second-order differential
equations:

d Ps(z)
(z)$ (z),

dz s

where

(4)

with

W Iz) = V Iz) —k 6ss g2 s s s ss

(6)

Equation (6) has two solutions for k, but we adopt k,

In the presence of the periodicity in x-y plane, the
electron-ion interaction potential can be expanded in
Fourier series as (see Appendix A for details)

V(r) = g Vs(z)e's'~,
s

where g=(g„g ) are the two-dimensional reciprocal-
lattice vectors, and p=(x,y). When an incident electron
has the wave vector (k,,

~, k, ), the scattered electron wave
function by V(r) takes the form
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which has a positive or zero real part in this paper. Here,
F. is the incident electron energy; m is the electron mass;
and A is Planck's constant divided by 2m. . Introducing
the column vector 4 as

incident
wave

reflected
aves

$s (z)

(z)

We can rewrite Eq. (4) as

d 4
dz2

or transmitted
waves

dz

. dz.
W 0

dz

(9) FIG. 1. Schematic view of the electron scattering.

where I is the unit matrix, 0 is the zero matrix, g, =0,
and ( W)ss = Was. Defining a column vector 4 to com-
bine 4 and its derivative as

and bottom of the system, respectively. Equation (12)
now becomes

dz

Eq. (9) can be written simply as

(10) 0 AI
4(z, + —,'h) =exp — — 4(z, , + —,'h),

zl

or

(13)

d —=
dz

0 I
8' 0

4(i)=M, &P(i —1),
w~ere

(14)

&P(z, + —,
'
h, ) = exp

I t

The solution of Eq. (11) is formally written as"'
0 A;I

4&(z; —
—,'h, ),

0 AI
'='"P

hW(z, ) 0
(12)

Using Eq. (14) repeatedly, we have

(15)

where A, =z, —z, , For simplicity, let us divide the sys-
tem shown in Fig. 1 equally into (n —1) slices. Namely,
h =z, —z, , =(0—zo)/(n —1), z, + —,'h =zo, and

z„+—,
'

A =0, where z=0 and zo are the coordinates of top

4(n) =M„4(n —1) =M„M„& M24(1) =84(1),
(16)

where
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U is the unitary matrix which diagonalizes V(z)

[[V(z)]ss. = Vs s (z) ), and W is also diagonalized by the

same U (see Appendix B for details), 8, a"re defined in

Eq. (17), and [f(A, )] =f (A., )5, for any form of func-
I

tion, f, of k. Equation (16) is then written as 4, (1)=

—ik z~gl B

s s

(20)

transmitted waves, respectively. At z =z& (=z]+—h),
the electron wave function and its derivative are

P(n) B„B,~ 4(1)
[4(n)]' 8„8„[4(1)]' (18)

—ik zB
gN

s .s

Using the proper boundary conditions, we can determine
the unique electron-scattering wave function.

Now, let us study further the following two scattering
cases, shown in Fig. 2, so as to reduce the computing
time by taking into account the character of Vs(z). The
first one is where the incident electron comes from above
the slab (case I), and the second one is where it comes
from below the slab (case II). In both cases,
h =(z„—za)l(n —1) is used.

In case I, the electron wave function is written as

and

[@,(1)]'=

—ik zB—ik t e
Sl SISI

respectively, where

—Ik zB—lkg tg gesw sNSI

iK@—,(1), (21)

g, (r)= '

sg rIk~[+s) p+ik z
e + r e

s
(k~ gj p —k

s

Z Zg

(19a)
(19b)

where r
g

and t are coefficients of reAected andSg 1 Sgl

k

is a diagonal matrix. On the other hand, after the calcu-
lation of 8„ for this slab by Eq. (17), and using Eqs.
(18)—(22), at z =z„(=z„+—,'h) the electron wave func-
tion and its derivative become

case I

incident
wave

reflected
waves

4, (n)=

—rA. z
gl

e

0

0
0

ik z~
gi

rg g
e

ik z~gy
rg ge

=8„4,(1)+8„[4,(1)]'

=(8„—iBi~ K)4i(1) (23)

and

case II

transmitted
waves

transmitted
waves

[4~(n)]'= iK—
—ik z~

e

0

0
0

+iK

ik z~
gI

rg ge

ik z~g~ A

rg ge

ZL

=8~, 4,(1)+8~2[4,(1)]',
=(B~, iB~~.K )@,—(1), (24)

Zp

incident
wave

reflected
waves

—ik z
gle

0

ik z~
gir e

respectively. Equation (24) can be modified as

iK '.(8„—iB~, .K)4&, (1)

FIG. 2. Schematic view of the electron-scattering process for
two cases: case I, where it comes from above the slab; case II,
where it comes from below the slab.

0
0

ik z~g~r e

(25)
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N, (1)=

—ik zB
gi 8

S,S

lk zA

e

0

Then, using Eqs. (23) and (25), we can obtain the formula
for the transmitted waves:

and

[4{(n)]'=

ik z&

ik, t, e
Sl Slgl

ik zz
lk tg g

e
g y SNgl

=iK&,(n), (32)

—ik z
gN B

t e

and that for the reflected ~aves:

0
0 respectively. From (16), 4{(1)is connected with 4 {(n) as

follows:

4, (1)=M2 '4{(2) =M2 'M, ' M„'4,(N)

ik zAgl
rg g

e

Ik zA

rg se

—ik zA

e

0

0
0

(27)
Defining

b»
g —]

b2]

=B '4, (n) . (33)

(34)

and using Eqs. (31) and (32), Eq. (33) can be written as
where

T =2[(B{{—tB {q K )+ tK (B2{ iB22'K—)]

and

=[(B{, iB,2
K—) iK —(B~, iB22 K)—]

X[(B{{—iB{2 K)+iK ' (B2{ iB2q K)]—

(28)

4,(1)=

ik zB
e

0

0
0

—&k zB+rsge

—ik zB+
SNgl

(29)

Equations (26) and (27) illustrate that T and R take
care of the phase advance and change of every beam
which is produced by incident g, beam. When the whole
system is treated as one slab, by setting z„=0 and
za=zo, (R )~ calculated by Eq. (29) has sufficient in-

Sg I

formation to obtain the reflectivity. An important point
is that (R )s s and ( T ) (i = 1,2, . . . , N) have the

l J t J
scattering information not only for the g& incident beam,
but also for every g incident beam. If we remember how
they were derived for the g, beam, it may be easily under-
stood. Namely, R and T have the complete informa-
tion of every scattering process in case I.

Next, we consider the case where the incident electron
comes below the slab (case II). The electron wave func-
tion can be written as

and

=b„4,(n)+b, ~[4{(n)]'

=(b„+i b, 2. K)4,(n)

Ik
gl

0

—ik zB+ gi

s s

[4,(1)]'=iK
0
0

—iK
—ik zB+ gN

SNS1

=b2{+{(n)+bp2[@{(n)]

=(b„+ib„K)C,(n} .

Equation (36) can also be modified as

iK ' (bz, +ib22.K)4, (n)

(35)

(36)

1i,+(r) =

gl ~ + i (k))+g .p —ik z
e +~r e 7

s

Z Zg

{{k{{+g)p+ik z
t e Z

. s

(30a)

(30b)

ik zB
gl

0

0
0

—ik zB+ g)
rg ge

—ik zB
r+ e

SNSl

(37)

w'&ere r and t + are coefficients of reflected and
Sgl Sg 1

transmitted waves, respectively. At z =z~, the electron
wave function and its derivative become

From Eqs. (35) and (37), we can obtain the formula for
the transmitted waves:

4,(n)=

ik zA
gl

tg ge

ik zAt+ ~
"'

SNgl

4,(n)=

rk z
gl A

s s

ik z
+ g&, A

s s

ik zB
e

0

0
0

(38)
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—I k z~+ gl
rg ge

ik z~
gl

and that for the reflected waves:

(39)

But, since Eqs. (28), (29), (40), and (41) take care of the
phase advance automatically, we can use the layer-
doubling method of LEED without worrying about the
phase matching at all. According to the layer-doubling
scheme, scattering matrices in cases I and II are given by

—Ik z~„+
gNgl

where

T+ =2[(b()+ib) 2K) —lK '(b2)+lb22'K)]

and

R +=[(b»+ib, 2 K)+iK ' (b2, +ibz2 K)]

R ~ =R +T +R~ (I R—+R~ ) 'T

T =T (I R—+R ) 'T

(40) and

R ~+=R ~++T~ R '+(I R~ R—+) 'T~+,

(42)

(43)

(44)

(45)
x[(b„+ib„K) iK—' (b„+ib„K)] ' . (41)

Similarly to case I, Eqs. (40) and (41) take care of phase
advance and change of every beam, and the complete
scattering processes for any I incident beam in case II are
included in T+ and R +. Let us illustrate in the next
section how the computing time for the RHEED analysis
can be reduced by using those scattering matrices given
by Eqs. (28), (29), (40), and (41).

III. LAYER-DOUBLING METHOD

Let us consider the scattering matrices for the com-
bined system of two slabs as can be seen from Fig. 3. In
LEED, since the scattering matrices are calculated at the
center of the slab, phase matching becomes sensitive.

PV fV
~ ~aN- p ~ag-
~ ~ $ ~ ~

respectively, where a and P denote the respective slabs.
Equations (42)—(45) have very clear physical meanings.
The scattering process should be interpreted from right
to left in those equations. For case I, R ~ includes the
following processes: namely, the incident electron is sim-

ply reflected by slab a, or transmits slab a, and after re-
peating the multiple scattering between slab a and slab P,
is reflected by slab P and transmits slab a. Similarly, the
following processes are included in T ~ . Namely, the
incident electron transmits slab a and then slab P, or
transmits slab a and, after repeating multiple scattering
between slab P and slab a, transmits slab P. It may also
be easy to find the scattering processes included in R
and T ~+ for case II. Since the present theory is natural-
ly incorporated into the layer-doubling scheme, we can
reduce the computing time considerably in RHEED
analysis as follows. As shown in Fig. 4, we divide the
solid into two domains. In domain I, the crystal potential
is not periodic in the z direction, but in domain II the
crystal has periodic potential in the z direction. Then,
treating domain I as a set, we calculate scattering ma-
trices. However, in domain II we calculate them only
once for one period of the potential because other scatter-
ing matrices are identical due to the periodicity of the po-
tential in the z direction. We then use Eqs. (42)—(45), re-
peatedly, from the top slab to deep inside the solid until
the converged R is obtained. Considering that the am-
plitude is proportional to the velocity of an electron, the

PU PV
a%+ p ~a@+

~ ~ a ~

FIG. 3. Layer-doubling scheme of slab a and slab P, whereR,T and R ~,T ~ are scattering matrices defined in
Eqs. (28) and (29) for case I. R +, T + and R ~+ are those
defined in Eqs. (39) and (40) for case II. Furthermore,
R ~,T ~ and R ~+, T ~ are those for the combined slab.

FIG. 4. Domain I, nonperiodic potential domain in the z

direction; domain II, periodic potential domain in the z direc-
tion.
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reflectivity can be obtained by

g rer
s

k
(R )

Sl

Similarly, the transmittability can be obtained by

(46)
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s

k
( T lss

Sl

(47)

APPENDIX A: CALCULATION OF Vz(z)

In the case of thin film, (R ) and (T )s given bySSl SSl
Eqs. (28) and (29) are sufficient to calculate Eqs. (46) and
(47).

IV. SUMMARY

We have proposed a new method for RHEED analysis.
Since our method takes care of phase advance of the
scattering waves automatically, the layer-doubling
scheme is incorporated into it very naturally. We can
then be very flexible in choosing the way to implement
the calculation of RHEED rocking curves.

Since the electron form factor can be fitted approxi-
mately by a sum of Gaussian functions as'

f(G)= f v(r)exp(iG r)d r
h2

= g a, exp
b;

G2
16m

(Al)

we use it to calculate V (z), where U (r) is the electron-ion
interaction potential. Thus, after the Fourier transform
in x-y plane, we can obtain

LU

Vs(z) = —f g U (r —R)exp(i g p)d p
R

M= —g f U(p, z —R, )exp(ig p)dp. exp( —ig R~~)a R

ao2 4'

(2 Ry), g ff (g, G, )exp[ —iG, (z —R, )]dz exp( —ig R~~)
R

2ao 11

(2 Ry)g g a,
a R 1=1 bi

1/2
'

( R )2

exp —b,g-
4b,

exp( —ig R (A2)

where R are the ion coordinates; 3, the total area; a the
area of a unit cell; ao the Bohr radius; and Ry the ryd-
berg. In Eq. (A2), g"' and g" indicate that summation is

done in the whole volume, or in the unit cell, respective-
ly. In RHEED, inelastic damping of the electron scatter-
ing is included by replacing Vs(z) given in Eq. (A2) by
(1+ie) V (z). Usually, @=0.1 is taken.

be diagonalized as follows:

U 'W(z) U=- (B1)

APPENDIX B: CALCULATION OF EQ. (15)
where using the eigenvalues of V(z), XO, , A, , can be written
as follows:

(1+is)ko, —k
$2 I

Defining a matrix X as

0 hI
h8'(z) 0

we can conduct the following calculations:

W'(z) is not in general a Hermitian matrix. However,
since [V(z)] .= V .(z), given by Eq. (A2), forms a
Hermitian matrix, the unitary matrix, U, to diagonalize
V(z) can be found. Even if we include the inelastic
damping by replacing V (z) by (1+i@)V (z), the same
matrix U can diagonalize ( I+ie) V(z). Besides, kg25N—
is already diagonal. Therefore, as Zao et al. have point-
ed out, the same matrix can diagonalize IV(z), too. Then,
W(z) can be diagonalized as follows:

(B2)

(B3)
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0

0

U
—

1

J

U 0
expX

U
—

1

0

0 XI+X+ +
2t

U 0

0 U

+h

0

I 2! 0
+ + ~ ~ ~

X40 g5
~' '5.

0 I I 0

0

0 g& A, 0
g2 t 0

0 I +3! 0

0
4 +.

cosh(hk, )

0

0 0 hI (h A. ) 'sinh(hk, )

cosh(h A. ) h A, 0 0
+

0

(h A. ) 'sinh(h A, )

Therefore, we can obtain

cosh(h A, ) A. 'sinh(hA, )

A, sinh(hk) cosh(h A, )
(B4)

U 0 cosh(h I, ) I, 'sinh(h A. )

A, sinh(h A. ) cosh(h A. )

U
—

1

0

0
(B5)

where [f(2)], =f (A. , )5," for any type of function of A. .
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