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We consider the Korringa-Kohn-Rostoker coherent-potential-approximation Green's function

for a disordered system of muffin-tin potentials and evaluate its integral over the Wigner-Seitz cell

rigorously throughout the complex energy plane. The resulting expression is shown to possess a
perfect derivative form, provided the angular-momentum summations are extended to infinity; for a

finite angular-momentum cutoff this result is valid to a good approximation. For real energies our

expression constitutes a generalization of the Lloyd formula for the density of states. The conven-

tional Lloyd formula contains unphysical singularities that are not only unsatisfactory from a for-

mal viewpoint, but also make its use increasingly cumbersome in multicomponent alloys as the
number of atoms in the unit cell becomes larger. Our expression, on the other hand, is free from

such singularities, and thus provides a useful basis for evaluating density of states and its energy in-

tegral in muffin-tin systems.

I. INTRODUCTION

The Lloyd formula for the density of states, p(E), has
proven very useful in discussing properties of the muffin-

tin Hamiltonian. ' In the Korringa-Kohn-Rostoker
coherent-potential-approximation (KKR-CPA) theory of
alloys, this formula expresses p(E) as a perfect derivative
of energy, and thus permits an evaluation of the Fermi
energy without requiring an explicit computation of p(E)
over the occupied states. The Lloyd formula in the
literature is based essentially on the use of the scattering
operator rather than the Green's function, and contains
spurious singularities (e.g. , at free-electron energies, and
at energies where one of the phase shifts for any of the
atoms vanishes), which must be subtracted in an ad hoc
manner in order to apply the formula. Such a procedure
is not only unsatisfactory from a formal viewpoint, but
furthermore becomes increasingly cumbersome to imple-
ment in multicomponent alloys as the number of atoms in
the unit cell increases. We emphasize that the fu11

KKR-CPA Green's function G(z) of course does not
possess any unphysical poles, ' and that the difficulty
arises because some terms in G(z) are dropped in the
conventional derivation of the Lloyd formula.

With this motivation, we consider for the first time the
full KKR-CPA Green's function and its real-space in-

tegral in an analytically rigorous manner throughout the
complex energy plane; the usefulness of complex energies
has become increasingly apparent in exploring the prop-
erties of muffin-tin systems in recent years. " ' In our
treatment, all terms in G(z) are kept, including in partic-
ular terms which are real for real energies. These latter

I

terms do not contribute to p(E) [proportional to the
imaginary part of G(z)], but if dropped they lead to an
unsatisfactory generalization of G (z) in the complex
plane.

We find that the exact integral of KKR-CPA Green's
function over the Wigner-Seitz cell can be expressed as a
perfect derivative for all z, provided the angular-
momentum (L) summations are extended to infinity; for
finite L cutoff, this form holds to a good approximation.
On the real energy axis, our expression for G (z) yields an
analytically satisfactory extension of the Lloyd formula
for p(E). This generalized formula contains no unphysi-
cal poles, and constitutes a useful basis for evaluating
density of states and its energy integral in muffin-tin sys-
tems. We have made extensive numerical tests with our
formula in binary alloys, as well as in complex multicom-
ponent perfect crystals and alloys containing many atoms
per unit cell, and found the results to be reasonable in all
cases.

An outline of this article is as follows. The real-space
integral of the KKR-CPA Green's function is considered
in Sec. II. A discussion of our results is presented in Sec.
III. The Appendix outlines the derivation of one of the
relations used in Sec. II.

II. GENERALIZED LLOYD FORMULA
FOR CONCENTRATED ALLOYS

For the random binary alloy A„B (with y =—1 —x) of
nonoverlapping muffin-tin potentials, the (r, r) matrix ele-
ment of the ensemble averaged KKR-CPA Green's func-
tion G(z) is given in the zeroth Wigner-Seitz (WS) cell
b 16 17

(r~G(z)~r) = —g Yt (r)[xZi"(r & )Jt"(r & )+yZi (r & )Jt (r& )]Yz(r)
L

+ g Yt (r)IxZt"(r)[Too "]tt Z&" (r)+yZt (r)[Too ]tt.Zt (r)I Yt.(r) .
LL'
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Z)" ' )(r)=jt(Kr)(r(" ' ') ' iK—ht(Kr),

J)" ' '(r) =j ((Kr) for r ~ R

(2a)

(2b)

where R is the muffin-tin sphere radius, K= V'E—, jt(x)
and h, (x)=jt(x)+in&(x} are the spherical Bessel and
Hankel functions, respectively, and ~1" ' ' is the on-the-
energy-shell matrix element of the A (8) t matrix, related
to the corresponding phase shift 5(" ' ' by the equation

r," '"=—K 'exp(ifi, }sinn, . (3)

Here, L =(i,m) is a composite angular and magnetic
quantum number index, and YL(x) is a real spherical har-
monic. Z&

' ' and J&
' ' are the regular and irregular

solutions of the radial Schrodinger equation, respectively,
in the A (8) muffin-tin sphere, normalized such that

with a similar equation for F . The matrices P, Q, and R
can be written in terms of the free-electron solutions jI
and hI..

P« = f ds W[YL(jt(Kr}) YLjr(Kr)]

QLL
= J ds W[Yt(j&(Kr)}', iK—YL h((Kr)], (lib)

s

RLL = J ds W[ i (Kh—&)'YL, —iKht'(Kr)] .
s

(1 la)

Here, the integrations over the surface of the WS cell, a
prime on the small parentheses denotes an energy deriva-
tive, and the "Wronskian" W[f,g] is defined as

momentum indices)

F"(z)=dr„'/dz+r„'Pr„'+r„'Q+Q 7.„'+R, (10)

The matrix Too
" ' in Eq. (1) denotes the (00) path

operator (in the lattice-site representation) for an A (8)
impurity placed in the KKR-CPA effective medium and
is related to the medium path operator T00: '

W[f (r),g (r)]=f (r)V—g (r) —g (r)Vf (r) .

We now invoke the relation (see Appendix)

FAT0 ~ +yFBTo=B

(12)

T()0
" ' '=[1—(r„'(a) r, '}Too—] 'T(M, (4) T d~g 0=x(Pr„'+Q)+y(Prq'+Q)+Q +x T(g="

where ~, is the CPA scattering matrix. It is useful to
write TLL as dry = d7c

+P TOO TOO
dz dz

00
TLL —1

c
—B

LL +—g in[a, ' —8(z, k)] .
k Z

(13)

in terms of the matrix 8, related to the free-electron
Green's function Go.

Go(r+ R„,r+ R„)= i K g—j &
(Kr, )ht (Kr ) )

L

X YL ( r ) YL ( r )5„„

+ g Yt(r)j&(Kr)
LL'

Using (13), and the CPA condition

T~ ~ +yTO=B Too

the right-hand side of (9}may be written as

G (z) =G) (z)+ G2(z)+ G3(z),

where we have defined

(14)

I

XBtT,jt, (Kr) YL.(r) . (6)

and keeping Eqs. (1) and (7) in mind, we obtain

G(z)=Tr[ xI "(z) yI (z)— —

+xF "(z)Too
"+yF (z) Toc ],

where the trace is over the angular-momentum indices.
By using the regularity of the solution Z ' ' and the

Green's theorem to convert volume integral to a surface
integral, it can be shown that (suppressing angular-

Here, IR„] is the set of lattice vectors. The Fourier
transform of the matrix 8 in the (nn') space gives the
usual KKR structure function matrix.

Our purpose is to derive an expression for

G(z)= J dr(r~G(z)~r), (7)
ws

where the integral extends over the zeroth WS cell. By
defining

F ' '= drYLrZ"' 'rZL ' 'r YL ~ r, 8a

IL ' '= drYL rZ"' 'r J"' 'r YL ~ r, 81

G, (z) =Tr(Q),

G2(z) =Tr N ' g 1n[r, ' —8 (z, k)]
k

+ 1n(r„—rs ) —y 1n(r, —rz )
d

& i d
dz dz

(16a)

—x ln(r, (16b)

Equation (17) can be combined with expression (Sb) forI" ' 'toobtain

G3(z) =Tr[x ( I "+Ps„'+Q)+—y ( Is+Pr& '+ Q)]—.
(16c)

Gz(z) is now in the form of a perfect derivative. To
manipulate G3(z), using Eqs. (11a) and (11b), and keeping
asymptotic form (2a) in mind, we write the part
(Pr„I ~)+Q) in Eq. (16c) as

(Pr g (s)+Q)«, —f ds w[ Y(J (K(I )), YL Z( (r)]
s

(17)
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( I +Pry (B)+Q)LL'

lim f dS.W[YL(J" ' (r))', Y .Z" ' '(r)] .

GLL'( k) cLL'
D(}11) D(J)

I I

+J((vR )BLL (z, kj))''(aR ), (24)

(18)

The right-hand side of (18) arises from the singularity in
(8b) at the origin from the irregular solution J" ' '. We
now write the regular wave function ZI ' ' as

Z A ( B )
( p z ) y

A ( B)
( )q A ( B )

( & z ) (19)

where ()()(" ' '(z) is an energy-dependent renormalization
factor independent of r such that p(" ' )~r' for r~0. 's

The integral in (18) can then be evaluated, and the result
1s

lim f dS W[YL(J" ' '(r)}', YL,Z(" ' '(r)]

=d In/)" '(z)5LL, .
dz

(20)

Using (20), (18), and (16) yields

G3(z) = — Tr(x 1n(t)" +y 1n(t ) .
d
dz

(21)

D(" '(z)=r lnZ, " ' '(z, r)~„
a

rn
(22)

related to the corresponding ~ matrices by

1 1 h(()cR )

J)(~R ) D(" ' ) DP J((aR ) J)(xR~ )

(23)

where Dl ' is the logarithmic derivative for the spherical
Bessel function, defined via (22) by replacing Z( by j ((ar).
We also require the angular-momentum representation of
the free-electron Green's function

The form of G(z) obtained by substituting (21) and
(16b) into (15) deserves some comment. For real energies,
ImG3(E) is real, and thus gives a vanishing contribution
to ImG (E). Note that the individual terms G, (E),
Gz(E), and G~(E} possess spurious singularities which
cancel against each other. In particular, G)(E) and

Gz(E) both contain free-electron poles, the latter arising
from singularities in the KKR structure functions
8(E,k) at free-electron energies. Similarly, both Gz(E)
and G&(E) are individually singular when 5„(B)~0.The
Lloyd formula for integrated density of states in disor-
dered alloys in the literature has been based essentially on
the use of Im[Gz(E)], which is justified provided the free
electron and other unphysical contributions in Gz(E) are
properly subtracted. We emphasize that Gz(z) does not
possess the properties of a physical Green's function, and
is thus difficult to extend into the complex plane. With
this motivation, we will now manipulate G, (z) and
rewrite G(z) in a form in which the individual contribu-
tions are properly behaved.

For this purpose, we introduce the A (8) logarithmic
derivatives at the muffin-tin radius

where DI' ' denotes the logarithmic derivative for the
spherical Hankel function hl. Finally, by manipulating
(1 lb), we write G, (z) as

G, (z)= g i—af . drh((lrr)JI (ar)YI (r)YL(r)
ws

din '
+ "'"

(25)
dz

Equations (22)—(24) can be used to eliminate the r and
B matrices in (16b) in favor of the D and Gp matrices, re-
spectively. The resulting expression for Gz(z) together
with Eqs. (16c) and (25) for G&(z) and G, (z) can be
shown to yield

G (z) = — Tr —g ln[Gp '(z, k)+D"' D']-
dz

+x in[/ "(R )[1—G, (D "—D')] j

+y in{/ (R )[1—G, (D D')]j—

where

+X(z), (26)

X(z}=g ix f—drh((~rj), (~r)YL(r)YI (r)
ws

d j((~R ) 1 d+ g [lnGp(z k)]LL
z K 2 k

(27)

and the KKR-CPA Green's function 6, and the associat-
ed "logarithmic derivatives" D' are the self-consistent
solutions of the CPA equation:

xG, +yG, =6,. ,

where

(28)

G, =X ' g [G() '(z, k)+O'J' —D']
k

G =(G +Dc D A (B))—)

(29a)

(29b)

The quantity X(z), Eq. (27), can be shown to vanish in
the limit of 1~~. We have computed X(z) in 3d metals
for different I values and energy ranges, and estimate that
in most cases of interest with I ~ 2, X(z) is quite small. '

By neglecting X(z) in (26), and keeping (29) in mind, we
obtain our final formula

+x lnI [))'j"(R )] 'G„j

+y lnI [1i) (R )] 'GB j
—lnG, . (30)

G(z) = — Tr —g ln[Gp '(z, k)+D'~' D']-
dz X
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It is interesting to consider limiting forms of Eq. (30).
For a perfect 3 crystal, setting G ~

=G~ =G„
D"=D =D', and g"=f, yields

G (z)~ Tr in/ "(R
dz

1
ln (31)

G (z, k)+D'1' —D"

In the free-electron limit, G~ =G =G, =Go, D' '=D',
P"= P =ji, and G (z)~GO(z).

We emphasize that the Green's function
[Go '(z, k)+D'~' —D'] ' possesses the Herglotz property

hand side of these equations. These quantities can also of
course be computed directly by carrying out the real-
space integral in Eq. (7) numerically. The latter pro-
cedure, however, is cumbersome and becomes more so in
complex systems, and furthermore, since there are many
equivalent ways of dividing the volume of the unit cell
into contributions from individual atoms in a multicom-
ponent alloy, it will lead to ambiguities in defining the
density of states. Formulas (26) and (30), on the other
hand, are free from such complications, and form a natu-
ral basis for discussing densities of states in muffin-tin
systems.
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APPENDIX: DERIVATION OF EQ. (13)

III. DISCUSSION

For a finite L,„ in the angular-momentum summa-
tion, the exact result (26), keeping (27) in mind, does not
naturally possess the form of a perfect derivative, al-
though as noted above, in the limit L,„~O, the part
X(z) vanishes, and the perfect derivative form [(30)] is
obtained. Equation (30), while it is expected to be a good
approximation, is not exact for finite L,„. In numerical
tests, we find that for a given L,„, (30) will in general
possess unphysical free-electron singularities, which
move to higher energies with increasing values of L

Concerning the extension of various quantities into the
complex plane, it is noteworthy that much of the existing
KKR-CPA literature proceeds by writing the Green's
function in terms of the scattering operator T defined by

G =Go+G0TGO

We emphasize that the scattering operator T does not pos-
sess the physical properties of a Green's function in the
complex plane. In particular, the path operators associat-
ed with T (z) are not Herglotz, and do not possess a proper
spectral representation. Our experience is that T(z) is a
poorly behaved quantity for extending the KKR-CPA
theory into the complex plane.

The physical essence of Eqs. (26) and (3) is that they al-
low us to evaluate the real-space integral of the KKR-
CPA Green's function in a formal manner. The density
of states and the integrated density of states in the alloy is
straightforwardly related to imaginary part of the right-

The expansion (6) for Go, when used in the operator re-
lation

dGo = —Go(z),
dz

(A 1)

can be shown to yield, for num (suppressing angular-
momentum indices),

d gnm y gnspgsm+gnmQ +Qgnm
dz

(A2)

where the matrices P and Q are defined by Eqs. (1 la) and
(lib), respectively. By using (A2) for dB/dz, together
with the multiple scattering equation for the path opera-
tors, '

7nm g + y gnsZsm

sWm

it is straightforward to obtain the identity

(A3)

dr„' dg nm7nn+ 7m!!
N „dz „~ dz

g F'T" Pg r, ' —Q
———Q, (A4)

N

valid for a general system of muffin-tin potentials. Here,
F' is defined by Eq. (10). Equation (13) follows upon
averaging both sides of (A4) within the CPA, and rear-
ranging terms.
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Note that the correction term X(z) in (26) does not depend on
the potentials, and is a universal function for a specific lattice
and a particular choice of the muffin-tin radii. X(z) can be
computed straightforwardly by numerical integration.
Exact result (26) can be used to obtain approximate forms oth-
er than Eq. (30). One useful possibility is to extend the L
summation in the first term on the right-hand side of (27) to
infinity (without doing so in other terms), so that this term
can then be evaluated via a direct integral of the real-space
free-electron Green's function.


