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Qnasimomentum in the theory of elasticity and its conservation

V. L. Gurevich* and A. Thellung
Institut fur Theoretische Physik der Uniuersitat Ziirich, Schonberggasse 9, CH 8001-Zu'rich, Switzerland

(Received 3 May 1990)

It is shown that, in the nonlinear theory of elasticity for a macroscopically homogeneous aniso-

tropic medium, there exists, together with the energy, a vector quantity that is conserved. Its prop-
erties are investigated, and a physical interpretation is given. If one considers the dynamical in-

teraction of the elastic strain field with the phonon gas of an ideal crystal, the sum of that vector
quantity and the well-known quasimomentum (also called crystal momentum) of the phonons is
conserved as long as one can neglect the umklapp processes in phonon-phonon collisions. For that
reason the conserved quantity in the theory of elasticity is also called quasimomentum. Possible ap-
plications of this conservation law to various physical phenomena are mentioned.

I. INTRODUCTION

The purpose of this paper is to show that in the gen-
eral, nonlinear theory of elasticity, apart from the usual
integrals of the motion, there is another conservation law
concerning some vector quantity which, for reasons we
shall explain in detail below, we call quasimomentum. It
reflects the fact that the medium is supposed to be ma-
croscopically homogeneous in space. This conservation
law is important for the description of the dynamical
properties of a system of long-wavelength acoustic waves
interacting via elastic anharmonicities. The interaction is
described in terms of a generalized strain tensor. It is
only in a nonlrnear theory that such interactions occur.

%e shall also treat the interaction of this elastic strain
field with short-wavelength (thermal) phonons. (Such
systems have been investigated, for instance, by Gotze
and Michel. ') The phonons will be described in terms of
a distribution function X(k, r, t), which is a function of
wave vector k, position in space r, and time t, and obeys
the Boltzmann equation. If umklapp processes can be
neglected, it will turn out that the sum of the well-known
phonon quasimomentum ' (also called crystal momen-
tum '

) and the quasimomentum of the elastic medium is
conserved in this combined system.

On the one hand, it is interesting to investigate the in-
teraction between a strain field and a phonon field be-
cause it permits one to study such physical phenomena
as, for instance, (nonlinear) interaction between ordinary
sound and second sound or phonon drag caused by an
acoustic wave. On the other hand, a systematic treat-
ment of this interaction permits one to gain more physi-
cal insight into the nature of the investigated elastic
quasimomentum.

It has been shown by one of the authors that phonons
in a liquid can be defined as carrying (ordinary) momen-
tum haik (Eulerian phonons) or zero momentum (Lagrang-
ian phonons). In contrast to this, in the considered case
of a solid, where it is natural to assume that the center of
mass is at rest, the net flow of mass is zero and therefore
the ordinary momentum vanishes. Thus in solids the
quasimomentum of the elastic vibrations (together with

II. CONSERVATION LAWS
IN A NONLINEAR ELASTIC MEDIUM

%e start from the equation of motion

oz'"
~'" =ax, au„ (2.l)

Here, x, ( I = I, 2, 3 ) are the Lagrangian (material) coordi-
nates, u; are the components of the displacement vector,
and E' ' is the density of the elastic energy considered to
be an arbitrary function of the generalized strain tensor
components u; &

=Bu, /BxI. po is the constant mass densi-

ty of the (homogeneous) medium in the space of Lagrang-
ian variables. Here and henceforth the Einstein summa-
tion convention is applied.

the energy) remains the only interesting integral of the
motion.

%'e believe that Gilbert and Mollow were the first to
consider quasimomentum in the phenomenological
theory of elasticity. Their analysis was restricted to the
case of longitudinal waves in a one-dimensional system in
the linear approximation. Kobussen and Paszkiewicz
extended the discussion of quasimomentum and ordinary
momentum to three-dimensional anisotropic elastic
media, but they still retained the linear approximation.

In Sec. II we start by treating the nonlinear anisotropic
macroscopic elastic medium and show that, besides the
energy integral, there exists a conserved vector quantity.
In order to gain physical insight into its meaning, we con-
sider in Sec. III the dynamical interaction of the elastic
strain field with a gas of (thermal) phonons. We arrive at
the conclusion that the conserved quantity has to be in-
terpreted as the quasimomentum of the elastic medium.
In Sec. IV the results are summarized and further exam-
ples of systems interacting with strain fields are given.
Possible implications for other physical phenomena are
indicated.
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A. Energy conservation

B—( —'p u +E' ')+divg( (=0,Bt'' (2.2)

As an illustration, let us recall that energy conserva-
tion is obtained by multiplying Eq. (2. 1) by u, . The famil-
iar transformations then lead to the continuity equation

The elastic energy density E' ' has been assumed to be
a function only of the strain tensor components Bu;/Bxt,
as is normally done in the theory of elasticity. 9 However
our analysis can be extended to cases where E' ' also de-
pends on higher-order derivatives of u;. In that case, too,
a conservation law of the form (2.5) can be derived with a
generalized flux tensor I"„'('containing additional terms.

B. Quasimomentum conservation

We multiply Eq. (2.1}by u; „andobtain

a BE"'
Pouiui, n

x( u] (
ui, n

where

~(0) B ~

( uiBu„
are the components of the energy flux vector.

(2.3)

(2.4)

III. INTERACTION OF PHONONS
IN A CRYSTAL WITH A STRAIN FIELD

A. Phonons in a strain field

%e assume the phonon frequencies 0 to depend, as
usual, on the wave vector k and a branch index j (which
we shall omit). Following Akhieser, ' we assuine that n
also depends on space and time coordinates via the strain
tensor u, , (r, t). The latter is supposed to be slowly vary-
ing in time and space, in such a way that the following
inequalities are satisfied:"

The left-hand side of Eq. (2.4) can be written as
Iu, , I/Iu, (I «n Bu;(

xp
Iu, , I

«k . (3.1}

Po iuin Po i in Poui in

The right-hand side of Eq. (2.4) is transformed as follows:

(The first inequality is usually referred to as the adiabatic
approximation. )

Under these conditions the phonon distribution func-
tion N satisfies the Boltzmann equation' ' '"

BE(0) B BE' '

ui ~=
Bxl Bu, , l

ui, n

BE' '

Bu; i Bxnax(

ax an ax an ax ax
at ak ar ar ak at

(3.2)

BE(o(
ui n

The result is a local conservation law

BF(0)
——(p uu)+ =0,

Bt '' '" ax 1

where

(2.5)

The third term on the left-hand side describes the rate of
change of the phonon distribution function due to the
coordinate dependence of the phonon frequencies.

We consider an ideal crystal and the case of low tem-
peratures so that the umklapp processes can be neglected.
Then the right-hand side of Eq. (3.2) describes the
phonon-phonon collisions in which the phonon wave vec-
tor is conserved.

B. The elastic medium in the presence of phonons
F„'i'= u, „+6„((,'pou E' '—)—

ut (

(2.6)

is a flux tensor, and —pou, u,
„

is the density of a con-
served quantity whose physical meaning will become
clear in the next section when we consider the interaction
of the strain field with the phonons.

The conservation law (2.5) can also be obtained with
the help of Noether's theorem. It is the consequence of
the invariance of the Lagrangian X = f d r( —,(pou F. ' ')—
with respect to a displacement in space of the deforma-
tion pattern u, (r, t } by an infinitesimal amount e, togeth-
er with a displacement of the region of integration by the
same amount, i.e.,

u, (r, t)~u, (r e, t), 6r=e—
5u;= —u, (e(, St=0 .

This symmetry property of X reflects the fact that the
medium is supposed to be (macroscopically) homogene-
ous.

Equation (2. 1) now has to be supplemented by a term
describing an extra stress due to the phonon contribution,
which is derived in the Appendix. This leads to the equa-
tion

(3.3)

Here,

denotes integration over the phonon vectors k and sum-
rnation over the phonon branches j.

As in Sec. II B, we multiply Eq. (3.3) by u, „andobtain
Eq. (2.5) with an additional term, i.e.,

a(rn)——(pou, u, „)+ +u, „JdgqN =0 .
Bt ' '" Bx, '" Bx(

(3.4)



42 QUASIMOMENTUM IN THE THEORY OF ELASTICITY AND. . . 7347

This is a continuity equation with a source term due to
the phonons. It can be evaluated by using Eq. (3.2).

C. Qnasimomentnm conservation for the combined system
of the phonons and the strain field

Multiplying the Boltzmann equation (3.2) by haik„and
integrating over dgk and remembering that we assumed
the wave vector to be conserved in phonon-phonon col-
lisions, we obtain

+divQ=O,
at

(3.10)

with

the first term on the right-hand side of Eq. (3.9) the quasi-
momentum density of the (macroscopic) elastic medium
(not to be confused with the ordinary momentum density
po" n ).

In a similar way, the conservation of the total energy
can be derived (cf. Ref. 11 for the linear approximation)

—fdg„Nfik„+ fd(„NAk„
r

"ak, x,

W=( —,'pou +E' ')+ fdgkNfin,

aE'" . an
Qi = — u;+ f dgkNAn

I

(3.11)

a(en)
a"i'I,

Thereby in Eq. (3.2) we have employed the identity

an aN an aN a
'

an a
'

an

The third term in Eq. (3.5) can be integrated by parts to
give

a(en) f„a(an)
a(an)

(3.12)

Each of the densities (3.9) and (3.11) is additively com-
~ posed of two separate contributions, one stemming from

the elastic medium, the other from the phonons. On the
other hand, each of the fluxes (3.8) and (3.12) contains, in
addition, a third term depending on both the phonon and
the elastic medium variables.

IV. SUMMARY AND OUTLOOK

a fd( Na(A' n)

ar„,+ 0 (3.7)

with the Aux tensor

F„,=F„','+ f d g„Nfik„+f d g„N u;„.
I aQ, I

(3.8)

The density of the conserved quantity P is now given by

P„=—pou;u; „+fd(kNAk„. (3.9)

Clearly, the second term on the right-hand side of Eq.
(3.9) is what is called quasimomentum ' (or crystal
momentum ' ) density of the phonons propagating in a
crystal. This is the reason why we obviously should call

Substitution of this expression for the third term in Eq.
(3.5) yields

—fdg„NAk„+ fdg„Nfik„
ax, " "ak,

a f„a(~n)
a " a ,

"'"

—u;„ f dgkN =0 . (3.6)
axi au; i

Addition of Eqs. (3.4) and (3.6) shows that the source
terms cancel and we obtain the following conservation
law:

We have demonstrated [Eq. (2.5)] that the conservation
law found by other authors in the linearized version of
the theory of elasticity is in fact valid in the general non-
linear theory of anisotropic elastic media. The physical
significance of this integral of motion has become clear by
discussing the coupling with a gas of high-frequency pho-
nons. It turns out to be nothing else than the quasi-
momentum of the elastic medium.

The same result could be obtained for a pure crystal-
line metal by considering the interaction of the strain
field with the conduction electrons.

One might also consider a three-component system
consisting of electrons and phonons interacting with each
other and with an elastic strain field. If the Fermi surface
is closed and the temperature is low so that the quasi-
momentum is conserved in electron-phonon collisions (as
well as in phonon-phonon collisions), it is possible to
prove conservation of the total quasimomentum of elec-
trons, phonons, and the elastic medium.

The considerations employing quasimomentum conser-
vation for the interaction of long-wavelength acoustic
waves with conduction electrons of a metal or a semicon-
ductor may be very useful for the analysis of such phe-
nomena as the acoustoelectric effect, i.e., the dc current
due to conduction electrons dragged along by a traveling
acoustic wave. For the case of linear (intensity-
independent) ultrasonic absorption, a quasimomentum-
conservation analysis of this phenomenon has been car-
ried out by Weinreich. ' This approach, however, can
also be used for intensity-dependent (nonlinear) absorp-
tion.

The same considerations can be applied to investigate
an analogous effect in crystalline dielectrics. A traveling
acoustic wave in the course of its absorption should
transfer its energy and momentum to the phonon system.



7348 V. L. GUREVICH AND A. THELLUNG

As a result, a temperature difference may appear across a
sample where the traveling acoustic wave propagates.
This difference can also be analyzed in the same way as in
Ref. 14, i.e., by using quasimomentum conservation.

The quasimomentum integral for the elastic strain field

may prove to be useful for an even wider class of physical
systems such as, e.g. , amorphous dielectrics.

There, the high-frequency phonons, as a rule, cannot
be described by a wave vector. However, considerations
based on energy and momentum conservation can be
used in regard to the elastic strain field itself.

A further example of this sort is crystalline dielectrics
at high temperatures. Here the quasimomentum within
the phonon system is not conserved. However, it still
may be possible to describe the motion of the elastic con-
tinuum by the (nonlinear) equations of the theory of elas-
ticity as long as the dissipative terms due to viscosity and
heat conduction are negligible.

Another problem for which the quasimomentum in-
tegral may turn out to be helpful is the derivation and
discussion of two-fluid equations for Lagrangian pho-
nons. '

One may conclude that the analysis of the quasi-
momentum integral of motion in the nonlinear theory of
elasticity and clear understanding of its physical origin
may help to treat a number of nonequilibrium phenome-
na in solids.
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APPENDIX: PHONON CONTRIBUTION
TO THE STRESS TENSOR

Here we are going to derive the extra term in Eq. (3.3)
due to the phonons.

Let us assume that in a crystal, together with the real
deformation u; ((r, t), some virtual deformation 5u; ((r, t)
is created. The latter is supposed to be created during a
time interval 5t short enough for the real deformation to
remain unchanged. This means in fact that we consider a
virtual deformation in the presence of a constant real de-
formation. The virtual deformation is supposed to obey
the inequalities (3.1).

Our purpose is to calculate the variation of the total
energy (

' "' of the phonons linear in 5u; (. This can be
written as

56'P"'= f d r cr', t'")5u;, .
t

We are going to express it in terms of the phonon distri-
bution function N and thus find the phonon contribution
to the stress tensor, crII'").

The derivation proceeds along the same lines as in Ref.
11, with the difference that the phonon frequencies 0 are
now considered to be nonlinear functions of the general-
ized strain u, ), while the tensor cr,f"' is, in general, asym-

metric (cf. Ref. 9}.
The energy of the phonon system is given by

d P"'= fd'r fdg„enN, (A2)

where N and 0 are the phonon distribution function and
the phonon frequency in the presence of both the real and
the virtual deformation.

The change in the energy of the phonon system caused
by the virtual deformation during a time interval 6t is

given by

5@(ph) —f dt j (ph)

0

= f dt f d r fdgkfi(nN+nN) . (A3)

According to our assumptions the virtual deformation is
slow enough that the first inequality (3.1) is satisfied.
Then it does not change directly the occupation numbers
of the phonon states. Indeed, the occupation numbers N
are adiabatic invariants that remain unchanged under the
action of slow perturbations.

In such a case, the change of the phonon distribution,

N, can be found from the Boltzmann equation

an aN an aN
ak ar ar ak

aN
at

It follows from this equation that the integral of the
second term in the parentheses of Eq. (A3} vanishes.
Indeed, the term

f dgkh'n

~ a an'- ~ a an'-
2 ar ak 2 ak ar

The integral of the first term over d r is transformed into
the surface integral of the normal component of the ener-

gy flux carried by the phonons. We assume it to vanish.
In the second term, the integral over the volume of the
first Brillouin zone,

fdk N
ak ar

is transformed into an integral over its surface. It van-
ishes if one takes into account periodicity of the in-
tegrand as a function of k at opposite faces of the Bril-
louin zone.

Now we are going to calculate the contribution of the
first term in the parentheses of Eq. (A3). In this term, we
should replace N by the actual phonon distribution func-
tion, N, since we are interested only in the linear terms in

is zero because of conservation of the total energy of the
phonon system under phonon-phonon (as well as
phonon-defect) collisions. The difference

„anaN „-anaN
ak ar ar ak

can be written as
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5u, i. Integrating over time, we have

5t 't'" = Jd r Jd(„%5QX,
o'It"'= fdt RÃ

Bu;(
(A4)

where Thus, the extra term to be added in Eq. (3.3) turns out to
be

Comparison with Eq. (Al) yields

(~h)

Bxl

a ~„a(rn) (A5)
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