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Line shapes of intersubband and excitonic recombination in quantum wells:
Influence of final-state interaction, statistical broadening, and momentum conservation
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A realistic and comprehensive theory of line shapes for spontaneous recombination of two-

dimensional carriers in quantum-well (QW) structures is developed. Starting from the line shape for
intersubband recombination, which takes into account the QW density of states and the thermal

carrier distribution function, the impact of momentum {non)conservation on the luminescence line

shape is considered. Then Lorentzian broadening due to the finite lifetime of the final states and

Gaussian broadening due to statistical fluctuations of quantum-well eigenenergies characteristic,
e.g. , of interface roughness is incorporated. The effects of Coulomb interaction of the charge car-
riers at low densities are considered quantitatively, including both excitonic bound states and exci-

tonic enhancement above the two-dimensional band gap. For a case study, GaAs QW luminescence

line shapes are investigated. The line-shape evaluation definitely proves that recombination is exci-

tonic at any temperature up to 300 K in contradiction to previous assumptions of some other au-

thors. At low temperatures all lines consist, on a first view, of unresolved doublets which are very

close in energy. The high-energy component is identified as the free-electron —heavy-hole exciton.
Momentum is not found and does not need to be conserved in the free-exciton recombination pro-

cess at low temperatures. At high temperatures, momentum conservation is found to be reesta-

blished: Momentum conservation is understood to depend on the relative amplitude of interface-

roughness-induced lateral potential fluctuations as compared to the thermal energy of the excitons.

I. INTRODUCTION

The objective of this paper is twofold. (1) First of all a
comprehensive and realistic theory of luminescence line
shapes of quantum wells (QW's) is presented. It has been
recognized that a deconvolution of experimental QW line
shapes might provide quantitative, otherwise inaccessible
information on structural and chemical properties of the
two interfaces of the QW (Refs. 1 and 2) or on impurity
incorporation ' at the growth surface as a function of
growth parameters. Excitons (or electron-hole pairs) are
ideal sensors of atomic scale chemical and structural
properties of layers only a few atoms thick as well as of
their interfaces to adjacent layers of different chemical
composition. They act similar to the tip of a scanning
tunnel microscope (STM), yielding, however, informa-
tion on regions not accessible to STM's far below the sur-
face with a principal lateral measure given by the two-
dimensional exciton diameter of dz =20 nm. Characteri-
zation and controlled modification of interfaces are cru-
cial to all advanced microstructured photonic and elec-
tronic devices. In view of such applications a line-shape
theory has to distinguish and treat separately the cases of
free-electron —free-hole recombination and excitonic
recombination for the cases of conservation and noncon-
servation of the wave vector. Additionally recombination
lines are broadened due to the thermal distribution of the
carriers, ' due to statistical effects caused by interface
roughness ' or composition fluctuations, " and due to
final-state interaction ' causing Lorentzian broadening.
Ab initio neglection of any of these effects without physi-

cal justification leads to invalid or inconclusive results.
Parts of such a line-shape theory were established by
us' ' and others' ' recently. But some of the previous
results are unfortunately qualitatively incorrect' ' (e.g. ,
the role of wave-vector conservation was incorrectly
treated' ). Our own preliminary work' ' already incor-
porated all essential broadening mechanisms mentioned
above, however, excitonic and e-h recombination with
and without k conservation were not separately treated.

(2) We will not restrict ourselves here to the presenta-
tion of the details of the line-shape theory but we will
demonstrate the value and power of such detailed treat-
ment by applying it to some experimental results ob-
tianed by us, in order to resolve two long lasting disputes
on (a) whether, and under which circumstances, the toaue
Vector is conserved in recombination in QW's and (b)
whether the room-temperature (RT) recombination at
least in the well-known GaAs model system is predom-
inantly excitonic or free electron f-ree hole —in na-ture.

Various authors (e.g. , Ref. 13) have suggested that for
low excitation at room temperature the spontaneous emis-
sion from undoped GaAs QW's may not obey k conserva-
tion. Our resuIts prove that It does. At very low tempera-
tures, however, k does not need to be conserved since the
carriers {excitons) are spatially localized in potential fluc-
tuations caused, e.g. , by interface roughness.

Other authors' have recently concluded that the ori-
gin of room-temperature luminescence in GaAs QW's is
free-electron —free-hole recombination in contrast to ear-
lier suggestions by us' ' and others. ' We will show
here that the origin is unambiguously excitonic in single
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QW's in high-quality material. In strongly coupled QW's
or superlattices the situation is different. ' '

The paper is organized as follows. In Sec. II line
shapes for interband recombination in an idealized quan-
turn well are presented for momentum and nonmomen-
turn conservation. Lifetime broadening and statistical
broadening are successively introduced in Secs. III and
IV. Excitonic line shapes are presented and discussed in
Sec. V. In Sec. VI the theory is applied to experimental
GaAs QW spectra at 2 and 300 K in order to resolve the
above-mentioned disputes.

II. FREE-ELECTRON-HOLE —RECOMBINATION
LINE SHAPES

The spontaneous emission rate R (hv)dhv, i.e. , the
number of photons which are emitted per second within
an energy interval [h v, h v+d h v] for interband recom-
bination in an optically isotropic medium is given by
Fermi's golden rule ' and considering only one valence
(VB) and one conduction band (CB)

R (hv) —f dk, f dk„f, (1 f—, )
C V

X5(E, E—
,,
—hv)5(k, —k, ) . (2)

X5(E, E, —h—v), (3b)

where p„p„, and p„d are the conduction-band, valence-
band, and the reduced density of states, respectively, and

f (E) is the occupation probability of a state with energy

The last term on the right-hand side holds for k conserva-
tion. After converting the integration over k into an in-
tegration over energy we obtain, providing non-k conser-
vation

R (h v) —f dE, fd. E„p,(E, )p„(E,, )f, (E, )
0 0

X[1 f, (E,,—)]5(E,. E„——hv) .

(3a)

For the case of k conservation we obtain,

R (hv) —f dE, p„d(E, E„)f,—(E, )[1 f,,
(E—„)]

0

R (h v)dh v= g ~M~ f, (1 f„, )5(E,—E,,

—hv—),
m Rc

C

Let us now consider a semiconductor with isotropic
and parabolic dispersion of energy in the (x,y) plane as,

E, (k, )= k, +E (L, ),
2m

(4a)

f, and f,, are the occupation probabilities of the upper
and lower states of the transition, respectively, n is the in-

dex of refraction, and the matrix element M is averaged
over all polarizations of light. Converting the summa-
tions in Eq. (1) into integrals over the corresponding
wave vectors k, and k, , we have to distinguish between
two cases: k conservation and non-k conservation.

In the former case the matrix element will contain an
additional 5 function 5(k, —k„—k ) which equals
5(k, —k„) if we neglect k (k vector of the photon) which
is typically much smaller than k, and k, . If we further
neglect any explicit k dependence of the dipole matrix
element we obtain

E, (k„, ) = — k„,
2mb

(4b)

and for k conservation

where E is the L, -dependent two-dimensional (2D) band
gap. Inserting the step function B(E) for the density of
states we eventually get for the case of non-k conserva-
tion,

R(hv) —f dE, f dE, m, mhf(E, )

X [1—f (E„)]5(E,, E, —h v)—

R (hv)- f dE, e([(m, +m„)/m„](E, Es))f (E, )[1 —f((m, /m„)(Eg E, ))—]-
o

'
m, +mh

X5([(m, +mi, )/m& ]E,—(m„/mi, )Es —h v),
m„mp

R (hv)- O(hv E)f (E,—+E )[1 f ( —e„, )], —
m, +m

(5b)

(5c)

E, (h)= [hv —E (L, )] .
m, +m&

{5d)

In the limiting case of Boltzmann statistics Eq. {5c)
simplifies to

c, [z, are the reduced conduction- and valence-band ener-

gies, respectively:
m, m&

R (h v) —— 6(h v E)exp[ —(h v —E—}/kT, )] .
m„+m,

(6a)

The half-width [full width at half maximum (FWHM}] of
the recombination line is thus proportional to the carrier

temperature T,
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FWHM=kT, ln2 . (6b)

Equation (5a), which is valid only for recombination
without conservation of k, corresponds to Eq. (1) of Ref.
14, although these authors claim that momentum conser-
vation is a prerequisite for its derivation. From Eq. (5c)
we learn, that in the case of k conservation, R is not given
by a convolution of the valence- and conduction-band
density of states with their respective occupation proba-
bilities but simply by a product of the joined density of
states and the occupation functions f, (1 f„,)—.
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III. LIFETIME BROADENING

&(E,')f (E,')p(E,')
P (E„E,') =

2rr (E, E,') + —,'I —(E') (7a)

The recombination of an electron in the CB with a hole
in the VB leaves a hole in the (thermal) electron distribu-
tion function of the CB and vice versa. The distribution
function will be reestablished by a rearrangement of the
carriers within a certain scattering time, resulting in a
finite lifetime ~(E, (I, I) of the final state of the recombina-
tion process. We will now describe this final-state in-
teraction using a model analogous to that first established
by Landsberg for the emission spectra of x rays two de-
cades ago. Each discrete energy level in Eq. (5b) has
to be replaced by a Lorentzian broadened level, with a
broadening parameter I =h/~. Thus the probability P
per unit energy range of finding a carrier at energy E,
due to the broadening of a level at the energy E,' of half-
width f'(E,') is,
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P(E„E,') =L (E„E,')f (E,')p(E,'), (7b)

where L is the Lorentz function. In order to obtain the
contributions of all broadened states at energies E,' to the
energy E, we have to integrate over all E,"s. This
broadening mechanism acts on electrons and holes. Con-
sequently, we have to replace Eq. (5b) by

R (h v)- f "B(E'—E )f (e,')[1—f (a', )]L (hv, E')dE' .

kT,
R (hv)-

E I E' —E
(hv E') + exp —2—

4 kT,

(10)

The broadening parameter I (E') is, in general, a com-
plicated function of E'. One has to sum up over all possi-
ble scattering processes, and even in the case of Fermi
statistics at T =0 K [f(E') =B(EF E')] the expres—sion
remains very complex. Obviously the dominating con-
tribution stemming from the final-state interaction I (E )

reaches a rnaxirnum at the band extrema and decreases
with increasing E'. For the sake of simplicity we assume
I (E') to be proportional to the number of carriers having
energies E")E':

(fE')=& f p(E")f(E")dE" .

If we assume Boltzmann statistics, Eq. (9) can be
simplified and we obtain for Eq. (8)

E' —E
I Oexp —2 dE'

FIG. 1. I,
'a) Theoretical luminescence line shape, calculated

for dift'erent lifetime broadening parameters I 0 according to Eq.
(11). (b) Statistically broadened QW luminescence line shape
[Eq. (16a)], calculated for different values of the standard devia-
tion oF.

By using y =1 o/2kT„y =(E' E)ikT„a—nd
x =(h v Es ) lkT, we o—btain for the line shape

I( h)v-yf, , dy
exp( —2y )

o (x —y)'+ y'exp( —2y)

Figure 1 shows theoretical line shapes according to Eq.
(11) for various values of 1 o. For I o))kT„e.g. , for
large y, the function described by Eq. (11) looks more
and more like a simple Lorentzian, whereas for increas-
ing T, it becomes more and more asymmetric. As de-
scribed later in Sec. V we will observe that at low ternper-
atures the luminescence from QW's with close to ideally
abrupt interfaces (no Gaussian broadening) is almost
ideally Lorentzian. In general the lifetime broadening
parameter I 0 is a function of temperature and may
strongly increase with increasing lattice temperature.

IV. STATISTICAL BROADENING

Let us now consider the inAuence of a statistical distri-
bution P(E, (E ) ) of the 2D band gap E due to inter-
face roughness or alloy broadening, where P is a given
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p„(E,&E, ))=P(E,—&E, &)'p„(E,E ), (13)

where e stands for convolution. To a good approxima-
tion, P (Eg —(Eg ) ) is given by a Gaussian

P(E, —(E, ))=
27TCT F

(Eg —(Eg ) )'
exp

2cT E
(14)

where a.E is the standard deviation of the distribution
function.

A microscopic interface model established by Singh
and Bajaj ' correlates the standard deviation of the en-

ergy O. E with atomic scale parameters of the interface,

d~ 5E
cr+ = 5&p (1 —p) (15)

2a 5LB z g (L )z z

where dI is the average lateral extension of interface is-
lands of height 5, aB is the L, -dependent Bohr radius of
the exciton, p is the averaged coverage of the heteroin-
terface, and (L, ) is the mean QW thickness.

The influence of alloy broadening, which can occur in
ternary and quaternary materials, is analogously de-
scribed by a statistical distribution function of the
eigenenergies P(E""",(E""')) with a standard devia-

tion cr,~~„given by
3 1/2 ~E

6c
"C

o a y
0 327 co(1 co) (16)

a 0B
C =C

0

Here r, is the cluster radius and co the average alloy con-
centration. The distribution functions P (Eg ) and
P(Eg""") are well approximated by Gaussians. Neglect-
ing for the moment lifetime broadening [i.e.,
p„d(E,Eg ) =poe(E Eg )] we obtain from E—q. (12)

(E) E—
p„d(E, (E ) )=—,'poerfc

2lT E
(17)

and

probability density function. Then the reduced density of
states p„d(E, (E ) ) is obtained by summing over all ener-

gies E, weighted with P (E, (E ) ). If P is a continuous
function

p„,d(E, (E ))=f P(E, (E„))p„~(EE )dE . (12)
0

Providing P(E, (E ))=0, if E &0 and
P (Eg, (Eg ) ) =P (Eg —(Es ) ) (which is the only physical-
ly meaningful assumption), we can extend the integration
interval in Eq. (12) to —co and obtain

volute with P(E, (E ) ):

I(h, (E, ) ) =I (h, E, )*P(E,—(E, ) ) . (18b)

100

50

The peak of line (18a) is shifted to lower energy with
respect to the peak of line (18b) by AE =o +lkT, due to
carrier thermalization. Thus, the spectral maximum of
luminescence is not identical to (E ) in the case of
thermalization and QW widths derived from experimental
peak photon energies are incorrect.

In QW samples having large statistical broadening it is
indeed justified to neglect the lifetime broadening as com-
pared to the Gaussian broadening at low excitation densi-
ties. Providing carrier thermalization the luminescence
line shape is then given by Eq. (18a). Figure 1(b) shows a
number of such calculated line shapes for different values
of crE. A clear shift of the peak to low energies with in-

creasing eF is observed. With increasing oz lkT, I(hv)
becomes more and more a simple Gaussian —the thermal
broadening [Eq. (6b)] becomes neglectable as compared
tO O.E.

We would like to remark, however, that even at lowest
temperatures the FWHM of QW luminescence is usually
by no means a simple measure of the statistical broaden-
ing, although this is believed by the large majority of au-
thors. In order to obtain meaningful results a deconvolu-
tion of the two components of the exciton doublet (see
Sec. VI), an accurate analysis of each line shape and a
separation of the different contributions to the FWHM is
essential. With increasing temperature the contribution
of the low-energy component disappears, but since
thermal broadening becomes increasingly important and
the FWHM again is not a simple measure of the statisti-
cal broadening. Thus incorrect results are obtained at
any temperature.

Eventually we have to combine both lifetime and sta-
tistical broadening: The line-shape function Eq. (10) has
to be convoluted with the Gaussian according to Eq. (18)
to get the final line shape. If large growth islands are
present at the interfaces, where interisland thermalization
cannot take place, " we have to sum over all possible

25

(18a)

'

(E„)—hvI (h v, (E ) ) —erfc "— f (s, )[1 f (E, )] . —
20 E

Here c, and E:,, are defined by Eq. (4c) and erfc{x) is the
complementary error function. Equation (18a) de-
scribes the situation where the carriers laterally tkermal-
ize into the regions of lowest E (x,y). If such thermaliza-
tion is not effective, we have to calculate first the un-
broadened line shape I(h v, E„)and then we have to con

0

1 60 1 61 1 62

Energy (eV)

1 63

FIG. 2. Line-shape fit {solid line) of experimental lumines-
cence data Idots) including lifetime and statistical broadening
[Eq. (17)).
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(E ), of the different islands:

I*(h, (E ))= g I(h, (E );)'P((E ), ) .
i =1

(19)

V. EXCITONIC EFFECTS

Equation (19) describes the line shape for interband
recombination. The luminescence is conjectured, howev-
er, on the basis of time-resolved experiments to be dom-
inated by excitonic recombination. Thus we have to in-
clude the influence of bound and unbound hydrogenic
states of the free exciton on the QW luminescence line
shape. Again we have to consider the question of k con-
servation.

If k is conserved only K =0 excitons can recombine,
where K is the center of mass k vector of the exciton in

If L, shows only fluctuations by 1 monolayer at each
interface we have n =3. Figure 2 shows a fit of an experi-
mental luminescence line according to Eq. (19). Extreme-
ly large growth islands of several pm size were directly
observed using cathodoluminescence imaging. ' Thus we
have to consider three different (,E ), values, i =1—3

and suppressed interisland thermalization. (The origin
of the splitting of each (E ); line into a doublet is dis-
cussed elsewhere. ' ) The fitting parameters I, o z, and

T, are shown in the Fig. 2. Even in this situation of
largely reduced interface roughness, a finite E broaden-
ing within each growth island is still observable.

the (x,y) plane. It conservation together with the
Coulomb interaction of the electrons and holes leaves no
degree offreedom for the recombination energy. In anal-

ogy to Elliott's theory of excitonic recombination in
three-dimensional isotropic semiconductors, one gets
for the contributions of the two-dimensional K=0 exci-
ton states below the QW subband minimum and for the
excitonic enhancement above Eg: ' (1) h v (E, bound
hydrogenic eigenstates at h v= E„with

ExE„=E ——,n =0, 1,2, . . . (20)g
( ) )p

2

and oscillator strengths f„
f„—(n + —,') (21a)

(21b)
2w1+exp
X

X= Ex
hv —E

] /7

E~ =exciton binding energy .

(21c)

Basically the discrete eigenstates [Eq. (20)] are again
lifetime and statistically broadened. After summation
over all K eigenstates of the free exciton, assuming
Boltzmann statistics and including for the time only sta-
tistical broadening, we obtain for the line shape

(2) For h v) E, the excitonic enhancement factor f, of
the oscillator strength is

2
C

Ix(h v) =
oo

exp
o E&2' „=, ( n + —,

'
)
'

Ex
hv —(E )+

(n + —')
2

20' p
2

2

+I(h v, (Eg ) )

2K
1+exp

X

(22)

I~"(hv, (E ))= g I~(hv, (E ))q .
A =h}1,]h

(23)

Again, if long-range potential fluctuations are present
in the QW (e.g. , large growth islands) one has to sum up
over all (Eo ), involved, according to Eq. (19). If k is
not conserved, the excitonic line shape is simply obtained
from Eq. (18b) by replacing the joined density of states by
the center-of-mass excitonic density of states, which are
identical. Parabolicity of the bands and k independence
of the matrix elements has been assumed.

VI. APPLICATION TO EXPERIMENTAL RESULTS

Figure 3(a) shows the luminescence spectrum of a 5 nm
QW measured at 300 K on a semilogarithmic scale (dots).

where I(hv, (E ) ) is given by Eq. (18b). In addition one
has to sum over heavy- and light-hole (hh and lh) exciton
states:

In addition a theoretical fit using Eqs. (22) and (23) is
given. The fit is close to perfect. On this scale we find
some contribution of interband recombination to the
luminescence. There is clear evidence, however, that the
excitonic contribution absolutely predominates by nearly
1 order of magnitude. The pronounced contribution of
the K=O exciton states is beautifully displayed. The
comparison to a simple interband line shape according to
Eq. (19), which is additionally depicted, demonstrates
clearly that the experimental obserUations cannot be un-
derstood neglecting excitonic effects at room temperature

Figure 3(b) shows low-temperature luminescence data
together with a fit according to the model assuming no k
conservation. Although at T, =15 K (kT, =1 meV) only
the lowest 1S [X(e,hh)]„, exciton state is occupied at
low excitation density, a fit with a simple Gaussian
(dashed line), or Lorentzian according to Eq. (22) fails
completely. In particular, the clearly visible high-energy
Boltzrnann tail is not accounted for. This pronounced
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e hh)] emission is observedBoltzmann tail of the [X(e, ]„
11 our low-temperature experiments on g
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Obviously these observations canno e pot be ex lained by
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VII. CONCLUSION
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