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The effect of a dense electron-hole plasma on the stability of the diamond lattice of the crystalline
group-IV elemental semiconductors C, Si, and Ge is examined with use of a tight-binding model.
Such a plasma may result, for example, from a short, intense laser pulse. We find that the
transverse-acoustic phonons of Si become soft if about 9% of the electrons are excited from the
valence band into the conduction band. At higher densities of the electron-hole excitations the cu-
bic symmetry of the diamond lattice is destroyed within less than 100 fs after the creation of the
electron-hole plasma. This is much shorter than the time needed for the crystal to melt. The insta-
bility of the lattice then leads directly to a very rapid melting of the crystal structure. Our results
are in agreement with recent experiments using pulsed lasers to induce disorder in crystalline Si sur-
faces. We obtain for C and Ge essentially the same theoretical results as for Si.

I. INTRODUCTION

A theory is presented for the instability of the diamond
lattice of elemental semiconductors due to the excitation
of a dense electron-hole plasma. A recent experiment!
seems to indicate that the diamond lattice of Si distorts
within 100 fs after the application of a sufficiently intense
laser pulse. After this distortion, the atomic structure
metals very rapidly. It will be the main goal of this study
to discuss these surprisingly rapid transitions.

First, the experimental facts are described. A time-
resolved experiment has been performed by Tom et al.'
using an intense laser pulse of 100 fs duration to excite an
electron-hole plasma below the (111) surface of Si. An in-
cident p-polarized probe laser is used to examine the re-
sulting time-dependent changes in the atomic structure.
One observes that the reflected s-polarized second-
harmonic signal, which depends directly on the 3m (C,,)
point-group symmetry of the surface and the cubic sym-
metry of the bulk just below the surface, has practically
vanished within less than 150 fs after excitation. In con-
trast, the reflected p-polarized second-harmonic signal,
which is essentially independent of the cubic symmetry,
has decreased much more slowly (within about 500 fs to a
remaining intensity of 63% of its value before excitation).
Probably, this decrease, together with an equally slow in-
crease in the p-polarized linear reflectivity, corresponds
to the actual melting of the surface region. To under-
stand these results, note that the fastest lattice vibrations
of Si in the diamond structure have a period®* of about
100 fs, and that melting takes at least several periods of
the lattice vibration in order to obtain a thermal distribu-
tion of the vibrational energy. Thus, one may conclude
that the laser-induced electron-hole excitations lead
directly to the destruction of the cubic symmetry of the
diamond structure of Si (as indicated by the loss of the s-
polarized second-harmonic signal), long before the atom-
ic lattice can melt. Since the excited electron-hole plasma
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extends several hundred angstroms deep into the bulk of
the sample, this experiment examines the structural sta-
bility of bulk Si, and not only the stability of the structure
at the surface.

These conclusions are supported by a related experi-
ment, which has been performed by Guidotti et al.* The
second-harmonic signal has been measured at a Si(111)
surface, using s-polarized incident laser radiation. Thus,
there is no second-harmonic generation from the surface
(which requires incident p polarization), and any second-
harmonic signal has to originate from the bulk. Since the
unperturbed diamond structure has inversion symmetry,
there should be no second-harmonic generation from its
bulk. In fact, for low laser intensities no second-
harmonic signal has been observed, but a second-
harmonic signal has appeared at rather high irradiation
intensities, which can excite a dense electron-hole plas-
ma. This suggests that the induced electron-hole plasma
has made the diamond structure unstable, thus destroy-
ing the inversion symmetry and making second-harmonic
generation in the bulk possible.

In order to set up a theoretical model for describing
these experimental observations, it is important to con-
sider the results of other time-resolved experiments on
crystalline semiconductors® and metals.®’ In these ex-
periments, the time-dependent energy distribution of the
electrons has been measured by the absorption of light
after exciting a significant fraction of the electrons by an
intense laser pulse of around 60-100 fs duration, similar
to the experiment of Tom et al. In contrast, the fluence
of the laser pulse has been an order of magnitude smaller
in these experiments.®*” A thermalized electron distribu-
tion is already observed a short time (approximately 10
fs) after the laser excitation of the electrons. However,
the resulting temperature of the electron gas (of the order
of 1 eV) has been much higher than the temperature of
the atomic lattice, and it did require several thousand
femtoseconds to obtain thermal equilibrium between the
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electrons and the lattice. Note that the electron-electron
interaction is much stronger than the effective screened
electron-phonon interaction. Thus, the electron gas
thermalizes very rapidly, whereas the heat exchange due
to inelastic electron-phonon scattering between the elec-
tron gas and the lattice is, in comparison, quite slow.
These conclusions should also apply if we consider the
experiment of Tom et al.! The main difference is that the
much stronger laser pulse induces a mechanical instabili-
ty of the lattice. This results in a rapid exchange of ener-
gy between the electrons and the atomic lattice in the
form of mechanical work. In comparison, the exchange
of caloric heat can be neglected. This energy is then
thermalized in the lattice because of the anharmonic in-
teractions between phonons, and leads to rapid melting.

A theoretical interpretation of these experiments is of
considerable interest, particularly also with respect to the
possibility of annealing layers of amorphous Si using
pulsed lasers.>® Furthermore, regarding theory, no de-
tailed theoretical understanding of the instability of the
diamond structure of group-IV elemental semiconductors
(Si, Ge, and C) resulting from the excitation of a dense
electron-hole plasma has been presented so far. In the
only related previous theoretical work!® using a simple
bond-charge model, it has been estimated that the dia-
mond structure of Si should become unstable against the
[-tin phase if more than roughly 16% of the electrons are
excited from the valence band into the conduction band.
This value is only a very rough qualitative estimate. It is
the main goal of this paper to present a detailed theory
explaining the important experimental facts and permit-
ting a more accurate calculation of the lattice instability
induced by the laser irradiation.

II. THEORY

In our model for the instability, we assume that an ini-
tial pump-laser pulse has excited an electron-hole plasma,
which thermalizes rapidly at a temperature T, due to the
strong electron-electron interaction. Note that the exper-
iments® 7 indicate that the thermalization of the electron
gas occurs very rapidly as compared to the movement of
the atoms. Thus, the temperature T,, as well as all other
properties of the electron gas, should depend only on the
actual positions of the atoms. Note that without excita-
tion one has T, =0, and the usual Born-Oppenheimer ap-
proximation can be used. However, for a dense, excited
electron-hole plasma and correspondingly large electron-
ic temperatures, T, >>0, we have to determine how T,
evolves and how it depends on the atomic structure. As
discussed, the exchange of heat (AQ,) between the elec-
tron gas and the lattice can be neglected in comparison to
the exchange of mechanical work during the time re-
quired for destroying the symmetry of the diamond struc-
ture.!! Hence we assume that'? AQ, =T,AS,~0. Conse-
quently, the electronic entropy remains constant in our
model, AS, ~0. The temperature T, is then determined
from S,(T,)=const, and an appropriate initial value for
S,, which depends on the intensity of the pump-laser ex-
citation. This is essentially an extension of the Born-
Oppenheimer approximation, since the isotherm 7, =0 is
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equivalent to the adiabatic S, =0, as a consequence of the
third law of thermodynamics.'? It should be noted that
the density of the electron-hole excitations is not a con-
stant, but is allowed to change due to the electron-
electron interaction.!? Finally, in addition, we assume,
for the discussion of the induced instability of the dia-
mond lattice, that the volume per atom remains constant,
independently of the distortion of the diamond lattice, be-
cause an effective volume expansion of large regions of
the crystal requires a movement of the atoms over corre-
spondingly large distances, and thus should be much
slower than the instability.'*

A. Elastic constants as a function of the density
of the electron-hole excitations

First, we calculate the bulk modulus B and the elastic
shear constant [c¢;; —c;,] of the elemental semiconduc-
tors for a given value of the entropy S, of the electron
gas. It is convenient to use a face-centered unit cell (with
a two-atom basis), as shown in Fig. 1. Note that the dia-
mond structure is thus represented by a fcc unit cell with
equal lattice constants a =c, and that a shear distortion
a >c leads to the competing tetragonal B-tin structure.”
The equilibrium lattice constants at S,=0 (and T,=0)
are a=c=a, The cohesive energy E,(a,c) per
“tetrahedral” bond (thin lines in Fig. 1) is calculated for
small distortions a ~a, and ¢ ~a,, and depending on S,
using a tight-binding theory, which is discussed in detail
in Appendix A. The unit cell contains 16 bonds and its
volume is equal to ¥,=a}, in the absence of distortions.
Thus, we obtain that the density of the elastic energy of
the distortion is

Ula,c)=16[E,(a,c)—E,(aq,ay)]/V, . (1)

We first consider uniform contractions and expansions
a=c=(1+8/3)a,, where 6=0. Without excitations
(S,=T,=0) we obtain the usual relation between U and
the bulk modulus B, 15,16

O ——

FIG. 1. Schematic picture of the face-centered tetragonal
unit cell for the distorted diamond lattice (a >c¢). The black
dots indicate the position of the atoms and the thin lines indi-
cate the tetrahedral bonds.
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U((1+8/3)ag, (148/3)ay)=1B,5? 2)

This is changed entirely in the presence of an excited
electron-hole plasma, because the excitation of electrons
from the valence band, which consists of bonding elec-
tron states, into the conduction band, of antibonding
character, partially destroys the attractive bonding in-
teraction between the atoms. On the other hand, the
repulsive interaction (which for T, =0 compensates the
attractive bonding force at a =c =a, and determines the
equilibrium bond length) remains essentially unaffected.
The excited electron-hole plasma thus results in an
effective repulsive force between the atoms, and the crys-
tal is no longer in mechanical equilibrium at the lattice
constant a,. In principle, the crystal would then expand
to a new equilibrium lattice constant a(S,)>a,, but we
can neglect this volume expansion on the time scale (100
fs) of the instability of the diamond structure as seen in
the experiment,' because the speed of this expansion is
limited by the velocity of sound,'* as discussed previous-
ly. Thus the elastic energy should be expanded around a,
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U((1+8/3)ay, (1+8/3)ay)=1B(S,)8*—p(S,)s , (3)

where p(S,)=Vy'AU/AV >0 for S,>0. We obtain
B(S,) and p(S,) from Egs. (1) and (3) as the first and
second derivatives of the cohesive energy E,,

p(Se)=—16ao_3%Eb((l+8/3)ao, (148/3)a,) @)

and
2

B(Se)=16ag35%;E,,((1+8/3)a0, (1+8/3)ay) , (5
which have to be evaluated at §=0. To be consistent
with the arguments above, we have to consider shear dis-
tortions, which keep the volume of the unit-cell constant
constant, V=a2c=aé, in second order in the shear dis-
tortion. Thus the appropriate parametrization of the
shear distortion’®""" is a=(14+82)(1+8)a, and
c=(1+8%)(1—28)a,. The elastic shear constant
[¢;; —¢2 ], which depends on S,, is then defined by

U((1+8*)(14+8)ay, (1+8*)(1—28)ay)=3[c,; —c, 18 .

and includes a linear term, due to the outward directed (6)
pressure p of the electron-hole plasma. It is Thus, we find that
_s 30 2 2
[c”—ch](Se)——Tao 5§Eb((1+8 )(1+8)ao,(1+6 )(1—26)00) 5 (7)

which is evaluated at §=0.

We now use a simple phenomenological model for the elastic energy, known as the valence-force-field model,'® which
is particularly useful for a physical interpretation of the numerical results. The tetrahedral bonds of the diamond struc-
ture are explicitly included in this model and the elastic energy per bond is determined by three phenomenological pa-
rameters. Two of these parameters are force constants, called K, and K|, and the third one is a force, F. They can be
directly related to the bulk modulus B, the elastic shear constant [c¢,; —c;, ], and the pressure p. The change in the en-
ergy E;; of a bond between atoms / and j due to an arbitrary distortion is obtained from the corresponding changes in

the bond length and in the angles between this bond and the other bonds of the atoms i and j. Thus,"’

_ K(S,)
ij— 2

K,(S,)
AE

(d;j—do)—F(S,)(d;—dy)+

Here, d,-j=ld,~j|=|Rj—R,~’ is the bond length (R,
denotes the position of atom i) and d, is the equilibrium
bond length. The cosine of the angle 6, between the
bonds of atom i to the atoms j and k is obtained
from the appropriate scalar product as cos6;;
=d;;-dy|d;| 7" |dy|™". The equilibrium angle 6, be-
tween tetrahedral bonds corresponds to cosfy= —1. The
pressure p of the excited electron-hole plasma gives rise
to the additional term involving the parameter F(S,).
Next, we obtain the relation between the macroscopic
elastic constants and the parameters of the phenomeno-
logical model. From Fig. 1 we can see that the
tetrahedral bonds are vectors of the form
d,»j:Rj—R,«=}(_+_a,ia,ic) and the bond length is
d=%(2a2+cz)”2. Thus, the equilibrium bond length
(a=c=a,) is d0=}\/_3_a0. Considering a uniform ex-
pansion, which only involves a change in the bond length
d=(1+8/3)d,, we find from Egs. (4), (5), and (8) that

2(cost9j,-k—c0890)2-i*2(0059,-14,(—00590)2 . (8)
K
f
1
B(S,)=—F=—K(S, ©
)= e3a, FotSe) :
and
V73
(S,)=—>F(S,) . (10)
p € 4d(2) e

A shear distortion, which keeps the volume constant, re-
sults in an increase of the bond length given by
d=1(2a’+c?)~?=(1+28%d,. Two of the three an-
gles 6 of each bond with the three other bonds at a given
atom are changed according to cosf—cosf,=46/3, and
one angle becomes cosf—cosf,= —85/3. Thus, we find
from Eq. (8) that the elastic energy per bond is

E;=(—2d,F+ LK )8, (11)

and that the elastic shear constant [Eq. (7)] is
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V3
[cll—clz](Se)z 2d8[%K1(Se)—d0F(Se)] . (12)

The parameters K,, K, and F can be determined from a
numerical calculation of the elastic constants using these
relations. Alternatively, one can use a simple bond-
orbital model (see Appendix B) to obtain qualitative re-
sults without needing any computer.

B. Determination of the phonon frequency

We now determine the dependence of the frequency of
the transverse-acoustic phonon at the boundary of the
Brillouin zone on the density of the electron-hole plasma.
We use the valence-force-field model and proceed similar-
ly as Harrison.® The wave vector k of the phonon at the
X point is parallel to the (1,1,1) direction, and the trans-
verse displacements of the atoms are described by the
unit vectors e;=2"'/%(1,—1,0) and e,=6 /1,1, —2),
which are perpendicular to k. We can use the inversion
symmetry of the diamond structure around the bond
centers (see Fig. 1), and we find that two atoms move in
opposite directions if they are connected by a bond paral-
lel to k. On the other hand, two atoms move parallel to
each other if they are connected by a bond that is oblique
to k and provides a much larger rigidity against relative
displacements. To calculate the elastic energy of the pho-
non, we assume that the displacement x(z) of the atom
in position (ay/4,ay,/4,a,/4) is given by x(t)
=e,a exp( —iwt) (e; might also be replaced by e,, giving
the same final result) and consider the bonds of this atom.
As discussed above, the displacement of the atoms at
(ay/2,0,0), (0,ay/2,0) and (0, 0, a,/2) are the same,
and the corresponding bonds remain unchanged. In con-
trast, the displacement of the atom at (0,0,0) is
opposite to the displacement of the atom at
(ay/4,a,/4, ay/4) and equal to —x(z). Thus the length
of this bond increases to d=(dj+4|x|*)" !/, giving
d —dy~2a’/d,. Note that this results in an important
negative contribution in the elastic energy for F(S,)>0,
which significantly softens the phonon. In addition, the
orientation of this bond changes, resulting in a distortion
of the bond angles with the other three bonds and a cor-
responding positive energy, which determines the phonon
frequency at S, =0. The elastic energy AE, per atom is
found to be 2 times the change in the average energy AE,
of these four bonds; using Eq. (8) we obtain

AE,=1k|x(1)]*, (13)

where the effective atomic force constant « for the
transverse-acoustic phonon at the X point is
k=2(3K,dy*—Fdy"), which is simply [Eq. (12)]

4
V3

K=

dO[C“—Cn](Se) . (14)

The frequency of the transverse-acoustic phonon at the X
point is then given by

4 _
5 doM 'len—e XS, (15)

2 ~ K
OTAX) = M
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if M is the mass of the atom. It is crucial that the force
F(S,) enters into the force constant  in the same way as
into the elastic shear constant.

III. RESULTS

The details of our numerical calculation and the values
of parameters, which are independent of the particular
element, are presented in Appendix A. The values of
those parameters, which are different for each element,
are given in Table I. Note that the calculation of the
elastic energies is done for constant entropies S, of the
electron gas and that, accordingly, the relative density §
of electron-hole excitations varies if the structure is dis-
torted. However, it is inconvenient to present the results
in terms of the entropy S,, since S, is difficult to interpret
and cannot be measured. Thus, instead of S,, we use the
relative density £4(S,) of electron-hole excitations, which
is obtained for the undistorted diamond structure
(a=c=a,) from Eq. (A8), to characterize the depen-
dence of the elastic constants and phonon frequencies on
the strength of the excitation of the electron gas. Note
that &, is a unique function of S, and corresponds to the
density of the thermalized electron-hole plasma at the in-
stant before any distortion of the lattice has occurred.
Thus, it is appropriate to use &, in the discussion below.

The numerical result for the dependence of the bulk
modulus B and the elastic shear constant [¢,; —c;,] of Si
on the density &, of a laser-induced electron-hole plasma
is shown together with the result for the pressure p of the
plasma in Fig. 2. Note that the volume per atom is kept
constant in the calculation of the shear constant. The
values of the parameters 4; and A4, of the repulsive in-
teraction between atoms [see Eq. (A7)] are chosen in
such a way that p=0 at the experimental equilibrium
bond length (see Table I) and that B agrees with the ex-
perimental bulk modulus (Table I) in the absence of exci-
tations (§,=0 or, equivalently, T, =0). However, these
two parameters have no influence on the dependence of
p, B, and [c,, —c,] on §,, which is entirely given by the
electronic band structure. Our theoretical result for
[c;;—cp,] at £=0is 1.07X 102 ergscm ™ ?, which is in
good agreement with the experimental value?® of
1.02X 10" ergs cm 3 and with the result of a similar cal-
culation by Chadi and Martin.?! Note that this result is
independent of the parameters 4, and 4,.

We obtain an approximately linear increase of B(§&j)
and p(§,) for increasing values of £;,>0, whereas the
shear constant [c;; —c;](§) decreases (see Fig. 2). This
decrease is more rapid for small £, than for large &, since

TABLE I. Various parameters of the tight-binding model.

C Si Ge

dy (A) 1.55 2.35 2.45
e) (eV) —17.52 —13.55 —14.38
£) (V) —8.97 —6.52 —6.36
B, (10" ergscm 3) 5.45 0.99 0.77
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FIG. 2. Numerical results for the dependence of the bulk
modulus B, the elastic shear constant [¢;; —c¢;, ], and the inter-
nal pressure p of Si on the relative density &, of a laser-induced
electron-hole plasma. Note that elastic distortions around the
T =0 equilibrium diamond structure are considered.

the temperature 7, of the electron-hole plasma has to in-
crease for an increasing density §,. Note that the first
derivative (3/9&)[c; —c,] has a logarithmic singularity
for £,—0, as discussed qualitatively in Appendix B; see
Eq. (B20). Thus the shape of the curve for [c,; —¢, (&)
in Fig. 2 is not very accurate for small §,<0.01, because
of numerical difficulties due to this singularity. However,
the results shown in Fig. 2 should be reliable for larger
£>0.01, which are of primary interest. The shear con-
stant vanishes and becomes negative at £,=0.09, which
corresponds to an absolute density of excited electrons of
around 1.4X 10?2 cm ™3, a value which might well have
been reached and exceeded in the experiments.'*
Obviously, the crystal structure cannot develop very
rapidly a uniform shear distortion.?? Instead, one has to
consider the instability of phonons. Only the transverse-
acoustic phonons, which are related to the elastic shear
constant, become unstable in the presence of an electron-
hole plasma. The strongest instability results from the
phonons with a large wave vector, such as, for example,
the transverse-acoustic phonon at the X point. From the
valence-force-field theory [Eq. (15)] and from the theoret-
ical result for the elastic shear constant (Fig. 2), we find
that the frequency of this phonon is wray,=3.5X 10"
sec ™! in Si and in the absence of excitation (£,=0), using
the fact that M =28.1 amu. Note that a reasonable
quantitative agreement?® is achieved with the experimen-
tal value® Dexpr=2.8X 1013 sec”!. We further obtain
from Eq. (15) that the frequency of the phonon decreases
for an increasing density &, of the electron-hole plasma,
being roughly proportional to the square root of the elas-
tic shear constant. This results in a considerable soften-
ing of the phonon already for small values of &, as can be
seen from the results presented in Table II. The phonon
becomes soft around £;,=0.09 and becomes unstable for
larger densities of the electron-hole plasma; see Table III.
Essentially, all transverse-acoustic phonons will be-
come soft or unstable in the same way, and it is interest-
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TABLE II. Dependence of the frequency wrax, of the
transverse-acoustic phonon at the X point at the boundary of
the Brillouin zone and of the time-averaged displacement & of
the atoms, due to lattice vibrations, on the density &, of the
electron-hole plasma. Note that these results are only valid dur-
ing a very short time after the excitation of the plasma (see text).
The atomic lattice is assumed to be at room temperature
(T,=300 K=0.03 eV).

WTAX) a

& (1083 s71) (A)
0.00 3.5 0.122
0.02 2.8 0.153
0.04 2.3 0.186
0.06 1.7 0.252
0.08 0.9 0.475

ing to examine the displacement of the atoms around
their equilibrium position due to these phonons. We use
some simplifying approximations, which have already
been introduced in phenomenological theories of melt-
ing.?* Note that there is just one transverse-acoustic pho-
non mode per atom because only one-third of all phonons
are transverse acoustic. The average frequency @y, of
the transverse-acoustic phonons is estimated’’ to be
Bra=107ax) At &y, this corresponds to a phonon ener-
gy of fiwp,~0.017 eV. Thus, assuming that the lattice is
at room temperature, k,7,=0.03 eV, we can use the
equipartition theorem!? to estimate the average displace-
ment & of the atoms due to the lattice vibrations at
thermal equilibrium. From the average force constant
K=M®o%, and Lka’~1kyT,, we obtain

172

kT
2 Joram (€] (16)

M

&(go):

Without excitation (£,=0) we find that @(£,)~0.122 A,
which is reasonably small compared to the bond length of
2.35 A in Si. For an increasing density £, we obtain a
significant increase in the average displacement; see Table
II. Note that @(&,) = [wra(&y)]” " diverges as the pho-
nons become soft. The frequency of the transverse-

TABLE III. Dependence of the phonon frequency wr, ) (see
caption of Table II) on the density &,. Note that the phonon be-
comes unstable for these large values of £, and that the frequen-
cy is thus imaginary. &(¢,) is an estimate for the average dis-
placement of the atoms at ¢, =100 fs after the generation of the
electron-hole plasma, and ¢,, is approximate lower limit for the
time when the crystal begins to melt.

OTAX) alty) I

& (108 s (A) (fs)
0.10 1.1 0.278 330
0.12 1.8i 0.471 204
0.14 2.2i 0.635 167
0.16 2.5i 0.796 145
0.18 2.8 0.996 130
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acoustic phonons becomes imaginary if the density of the
electron-hole plasma is further increased [for &,>0.09, it
is wha(&)<[cy;—c121(E0) <0], and the displacement
x(t) of the atoms thus increases exponentially in time, in-
stead of doing the usual oscillation. Neglecting anhar-
monic forces, we find that the average displacement a(z)
at a time ¢ after the excitation of the plasma is

a(t)~apexp( —idpat) ~apexp(3|orax)lt) , (17

where &,~0.122 A is the average displacement before
the excitation (at £,=0). Based on this exponential
growth, we now estimate the minimum time required for
melting. The distance between the atoms in the planes
perpendicularly to the tetrahedral bonds (see Fig. 1) is
D=a,/V2=2(%)""%d,. The network structure of the
bonds!® is destroyed if the average displacement becomes
too large in comparison to this distance, a(t)>D /2.
Thus the crystal could only begin to melt a certain time
t,, after the excitation of the plasma. From the condition
a(t,,)=D /2 and Eq. (17), we obtain the estimate

t=t01AxIn(D /2a,) . (18)

Results for the average displacement @(¢,) at ¢, =100 fs
after the excitation of the electron-hole plasma and for
the time ¢,, are shown in Table III. Note that & is ex-
pected to be slightly too large and ¢,, to be somewhat too
small because anharmonic forces, which would moderate
the exponential growth, are neglected in Egs. (17) and
(18). However, we conclude that the displacement a(t;)
becomes a significant fraction of the lattice constant, such
that the symmetries of the diamond lattice are destroyed
within 100 fs after the excitation of a sufficiently dense
plasma. Further, our results for ¢,, indicate that the crys-
tal should begin to melt in the presence of the plasma
within a time of around 200-300 fs. Thus, these results
are in good agreement with the experiment' on laser-
induced disorder in crystalline Si surfaces.

It is of interest to discuss whether our theory could
also shed some light on laser-induced annealing of amor-
phous Si layers. Pulsed lasers have been used in these
earlier experiments® to anneal layers of amorphous Si on
a single-crystal substrate. A conversion of the amor-
phous layer to coarse-grained polycrystalline Si has al-
ready been obtained at rather low laser fluences, which
could not have fully melted the amorphous layer. Thus it
is not possible that the crystalline-Si layer has grown epit-
axially from the liquid Si on the crystalline support. In-
stead, the usual explanation8 assumes that the laser has
melted only a narrow surface region, being a small frac-
tion of the amorphous layer, and that crystalline Si then
resolidifies from the molten surface region. Note that
amorphous Si melts at temperatures much lower than the
melting point of crystalline Si. Thus it is expected that a
melt front propagates inwards through the entire layer of
amorphous Si, leaving behind a fully crystalline Si layer.
In contrast to this interpretation, Van Vechten et al’®
have argued that the surface region might not have melt-
ed and recrystallized during this annealing process. They
have suggested that the rather dense electron-hole plas-
ma, which is excited by the absorbed laser light, might
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decrease the rigidity of small crystalline regions, existing
within the amorphous phase, with respect to shear distor-
tions. Thus, these microcrystals become soft (or plastic),
without losing the tetrahedral bonding network of the di-
amond structure. A spontaneous nonthermal reconstruc-
tion of the amorphous regions in between the microcrys-
tals might then become possible, since the energy barrier
against annealing, due to the rigidity of the microcrystals,
is eliminated. We can conclude from our theoretical re-
sults that the rigidity of the diamond lattice against shear
distortions is indeed reduced in the presence of an
electron-hole plasma. This might have an important
effect on the solidification of liquid Si to crystalline Si fol-
lowing the melt-front propagation.® On the other hand,
Van Vechten’s alternative model® requires that crystalline
Si has a plastic phase for high densities, §, of the
electron-hole plasma (e.g., [¢;; —¢;,](§)—0 for increas-
ing &), in order to make a nonthermal annealing effective.
However, assuming that the crystal does not expand
significantly, we do not obtain such a plastic phase. In-
stead, the diamond structure becomes unstable
([c1;—c¢121(£) <<0) if £ exceeds a critical value, and rap-
id melting is expected, as discussed previously. Thus,
there should be strong competition between nonthermal
annealing processes and melting in amorphous Si after
the excitation of an electron-hole plasma. Clearly,
though, more theoretical work is necessary, particularly
with respect to the time-dependent changes in the atomic
structure.

The dependence of the parameters K, K;, and F of
the valence-force-field model on the density &, of the plas-
ma is obtained from the numerical results (Fig. 2) using
Egs. (9), (10), and (12). The results are shown in Fig. 3
using dimensionless atomic units, which are convenient
for a theoretical discussion. It is interesting to make a
comparison with the analytical results of the simple
theory presented in Appendix B, which depend only on
the bond length of Si (d;=4.43 a.u.). In Appendix B we
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FIG. 3. Phenomenological parameters K, K, and F of the
valence-force-field model [see Eq. (8)], derived from the numeri-
cal results presented in Fig. 2. Note that these results are given
in a.u. and that 1 a.u. corresponds to the following Ehysical
units: 96.8 eVA  for K,, 27.2 eV for K,, and 51.3 eV A ~! for
F.
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find that K, and F should increase roughly linearly with
&, with a coefficient between 0.21 and 0.24 [using Eqgs.
(B22) and (B14)] for K and between 0.31 and 0.36 [Egs.
(B23) and (B15)] for F. This is in good quantitative agree-
ment with the results of Fig. 3, which also show a nearly
linear increase with a coefficient, which is approximately
0.23 for K, and 0.35 for F. For £,=0 we find from Ap-
pendix B that K,=0.146 [Eq. (B7)], which agrees rather
well with the numerical value of K;=0.138 (Fig. 3). The
dependence of K, on &, is qualitatively well reproduced,
but the decrease of K (&,) for small &, [Eq. (B19)] is
overestimated by a factor of about 3 (see discussion in
Appendix B). It is important to note that the force con-
stant K, remains positive throughout the region, where
the elastic shear constant becomes negative and where
the diamond structure becomes unstable. Thus the rigidi-
ty of the lattice against bond-angle distortions is
effectively only reduced, but not lost in the presence of
the electron-hole plasma. The diamond lattice thus only
becomes instable because of the pressure p of the excited
plasma and because the crystal cannot expand rapidly
enough to a new equilibrium lattice constant.?%?’

The numerical results for the elastic constants of C (see
Fig. 4) and Ge are very similar to the results for Si (see
Fig. 2). The theoretical results for the elastic shear con-
stant [c;,—c;,] at =0 (or T=0) are 9.37X10"
ergscm > for C and 0.80X 10'? ergscm 3 for Ge. Both
are in good agreement with the experimental values of
9.51X 10" ergscm™* for C (Ref. 28) and 0.81X 10"
ergscm > for Ge.”’ The dependence of the shear con-
stant of C and of Ge on £ is then almost the same as for
Si, if the shear constant is scaled by an appropriate con-
stant factor. Most important, the shear constant van-
ishes for £,=9% for all three elements. Note that this is
in agreement with the main result of Appendix B [Eq.
(B25)], which indicates that the dependence of the shear
constant on the bond length and the density of an
electron-hole plasma should be roughly the same for C,
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FIG. 4. Numerical results for the bulk modulus B, the elastic
shear constant [¢,; —c,], and the internal pressure p of carbon
in the diamond structure, depending on the relative density &, of
a laser-induced electron-hole plasma.
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Si, and Ge.

In summary, a simple tight-binding model has been
used to examine the instability of the diamond lattice re-
sulting from a laser-induced dense electron-hole plasma.
We find that the transverse-acoustic phonons of the dia-
mond lattice of Si, Ge, and C become unstable if more
than about 9% of the valence electrons are excited into
the conduction band. Thus, the symmetries of the dia-
mond structure are very rapidly destroyed, leading after-
wards to a similarly rapid melting of the crystal. The
crystal does not become unstable for smaller densities of
the electron-hole plasma, but a significant softening of
the transverse-acoustic phonons is expected. This ex-
plains the main experimental facts' referred to in the In-
troduction.

APPENDIX A

We use a tight-binding model to calculate the cohesive
energy per bond, as well as the electronic entropy and the
density of the electron-hole excitations for finite tempera-
tures of the electron gas. First, the total cohesive energy
per tetrahedral bond is given by!®2%:3°

E,=E,+E, , (A1)

where E_ is an attractive energy due to occupation of
bonding electronic orbitals and E, is a repulsive energy
between the atoms, which determines the bond length.
E, is determined from the electronic density of states p(e)
of the semiconductor, which we obtain from a tight-
binding Hamiltonian H.!® Note that we suppress the
spin indices because we consider a nonmagnetic system
and that we use atomic units (#=e=m,=1) in our cal-
culation. Thus,

— 0, + +
H= 2 saciacia+ 2 tia,jﬂciach s
I,a

La,j,B

(A2)

where a and B denote the atomic orbitals (s,p,,p,,p,),
and the €2 are the energies of these orbitals for the free
atoms (see Table I). It is convenient to use a face-
centered tetragonal lattice containing eight atoms and 16
tetrahedral bonds (see Fig. 1). Only hopping between
nearest-neighbor atoms i/ and j (corresponding to the
tetrahedral bonds) is included in H, and we use
Harrison’s universal parametrization for the hopping ele-
ments ¢. If n=d,; /d is the unit vector in the bond direc-
tion d;; =R; —R;, we obtain

tisjs :nssod -2 ’

t d ?=—t (A3)

ip#js = "uﬂspa isjpM ’

tip,‘jpv:[n#nv(nppa_"ppv)+8uv77ppv]d 2,
where p and v=1,2,3. We use 1,,,=—1.4, n,,=1.84,
Mppo = 3-24, and 7,,,= —0.81. These values have been
obtained by Harrison from a fitting to the band structures
of C, Si, and Ge. This Hamiltonian results in a band
structure with a valence band and a direct gap which are
in good agreement with the band structures of these semi-
conductors. The conduction band is only roughly ap-
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proximated and one does not obtain an indirect gap
below the direct gap. However, the overall density of
states of the conduction band is reasonably well repro-
duced, and fairly good results are obtained for the dielec-
tric constant that is related to the structural stability.!®
Note, that the d 2 dependence of the hopping elements
relates rather well the different band structures'® of C, Si,
and Ge to the different bond lengths d. An increase in d
results in a decreasing bandwidth and a decreasing gap.
Similarly, the changes in the band structure of one ele-
ment due to a small change in the bond length (e.g., in
the case of elastic distortions) is well reproduced.

The electronic density of states per bond p(e) is ob-
tained by diagonalizing the Hamiltonian H, using the
periodicity of the lattice and normalizing p(e) to four
effective  tight-binding electron states per bond
fﬁ:dap(£)=4, which corresponds to the basis of eight
different electronic orbitals (if spin is included) per atom.

For finite temperatures, 3, =(kgT,)” !, of the electron
gas, one gets

E = f dsef €)p(e) —(e?—i—sg) , (A4)
where f(€)={1+exp[Be(£—y)]}‘l is the Fermi-Dirac

distribution. The chemical potential u depends on T,
and it has to be determined to give the correct number of
two electrons per bond,

[ Tdefledple)=

The electronic entropy S, results from the fractional oc-
cupation f (&) of the electronic states and is given by!?

S,=—ky [depe){fe)nf(e)+[1—f(e)]
XIn[1—f(e

(AS)

)1}, (A6)

In our numerical work we replace the integration by an
appropriate sum over special points in the first Brillouin
zone for the face-centered tetragonal lattice. A sum us-
ing 16 inequivalent points has given almost the same re-
sults as a sum based on 54 points, with a relative error of
less than 1%. The convergence of the sum is very rapid
because of the high electronic temperatures and the pres-
ence of a gap around the chemical potential u. The re-
sults presented in this article are based on the sum using
16 points, which is thus accurate enough. It should be
noted that these 16 points correspond to 64 inequivalent
points in the first Brillouin zone of the diamond lattice.

The repulsive energy per bond, E,, is mainly due to an
increase in the kinetic energy of the electrons upon
compression of the bond, and accounts for the effects due
to the nonorthogonality of the atomic orbitals.”? 3! This
energy should be nearly temperature independent because
it depends essentially only on the total number of elec-
trons, which is temperature independent. We use a sim-
ple Born-Meyer form,

E,(d)= A, exp[ — 4,(d —d,)], (A7)

where dy=1V"3a, and parameters 4, and 4,. Without
excitation (§=7T,=0), the total energy per bond has to
give a mechanical equilibrium at a=c=a, and the
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correct bulk modulus B,. Thus, the values of 4, and 4,
are determined using Egs. (4) and (5) together with the
conditions p(0)=0 and B(0)=B,, respectively.

The relative density £ of the electron-hole excitations
in comparison to the total density of valence electrons is
obtained from the number of holes in the valence band.
Thus,

=4[ deli-f(e)lpte)

where € lies in the gap and corresponds to the Fermi en-
ergy at T,=0. The factor | arises because there are two
electrons per bond and f f dep(e)=2. The absolute

density of the electron-hole excitations is then given by
32a, €.

(A8B)

APPENDIX B

The tight-binding Hamiltonian H yields rather com-
plex valence and conduction bands. However, a simple
discussion of the stability of the diamond structure not
requiring extensive numerical work is possible if one uses
the bond-orbital approximation.!® Four different hybri-
dized sp? orbitals are formed at each atom, pointing in
the directions of its four tetrahedral bonds. Due to the
tetragonal symmetry of the distorted diamond lattice, all
bonds are equivalent to each other, and it is sufficient to
consider just one bond (see Fig. 1). We consider the bond
between the atom at the position (0,0,0) and the atom at
(a/4,a/4,c/4). The sp3-hybrid orbitals pointing from
these atoms in the direction of their mutual bond
are represented by |h)=(|1,s)+|l,p.)+|1,p,)
+[1,p,))/2 for the first atom, and |h,)=(]2,s)—
12,p,>—12,p,) —12,p,))/2 for the second atom, where
|i,a) denotes the atomic orbital a of atom i. We can
now form a bonding orbital |b)=2""2(|h,)+1|h,)),
which roughly represents the valence band, and an anti-
bonding orbital |a)=2""%(|h,;)—|h,)) representing
the conduction band. The energy of the bonding orbital
is [using Eqgs. (A2) and (A3) for H]

e,=(b|H|b)=¢,+d *q, , (B1)
and that of the antibonding orbital is

e,=(alHla)=¢e,—d 9, , (B2)
where

e, =1(e)+3e)) (B3)
and

7lh:%["’Issa”-”"lppﬁ“Z(”l+”2+"3)71spa

—(ny+ny 13 (M0 —Mppr)] - (B4)

The values for the parameters 7 are given in Appendix A,
and n;=n,=1ta/d and ny=1c/d in the case of the
tetragonal symmetry of Fig. 1. If there is no shear distor-
tion (a =c), we find that n, =n,=n,=1/V'3, and thus

M =10~ Mo — 3+2\/3)7]3pa]=—3.32 . (BS)
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Without electron-hole excitations (£=0 and thus
T,=0), the valence band is filled and we can approximate
the electronic band-structure energy per bond (containing
two electrons) as E, ~2¢g,. The repulsive energy E, is ad-
justed such that the correct equilibrium bond length and
bulk modulus is obtained. The dependence of the total
energy on the bond length is thus, using Egs. (8) and (9),

Eb ( 0) =

2¢,+E,=2V3d,By(d—d,)*+const  (B6)

for uniform contractions (a =c). To obtain an estimate
for K, at £=0, we have to consider the change of 7,
upon a shear distortion (characterized by the parameter
8), due to the change in bond angles. It is n;=n,
=(1-8")(1+8)/v3 and n;=(1—8%)(1—28)/V3;
thus n,+n,+ny;=v3(1—8%) and it follows from Eq.
(B4) that

Mh (8) n0+\/3/2[nspa+\/3(nppo ’rlppﬂ')]62 .

The repulsive energy E, depends only on the bond length
and is independent of the angle between bonds. Thus we
obtain, from Egs. (11), (A1), and (B1),

3 9 _, d*

(0)_58—82'15 ]—6d0 wnh s

which results in
3v73

K, (0)~—"——=
! 16d3

[Mgpo+V3(0ppe —Mppr)1=2.87dg 2 . (BT)

Note that this result for the angular force constant of
semiconductors in their ground state has already been ob-
tained by Harrison using a different geometry.!®

A finite density £ of the electron-hole excitations re-
sults in a corresponding change in the total energy and
thus in the force constants. These changes are obtained
from the average excitation energy, which depends on the
electronic density of states and the temperature T, of the
electron gas. For the rather qualitative arguments of this
appendix, we assume that £ remains constant. Actually,
our numerical results indicate that £ depends only weakly
on small distortions of the diamond lattice and that the
small changes in § have only a minor influence on the
elastic constants.

For small £ and correspondingly low T,, the electron-
hole excitations are located around the gap. Thus the im-
portant hole states are at the top of the valence band.
They can be roughly represented by the states at the A
point (k=0), which have pure p-like character. Their en-
ergy is given by the p-p hopping elements and the four-
fold coordination of the atoms. Thus the energies for the
px-and p,-like states are [Egs. (A2) and (A3)]

pr:Epy:Eg_4d~2["%(nppa_nppv)+7’ppv] ,  (B§)
and, for the p,-like state,
Epz282—4‘1_Z[ng(nppognppvprnppﬂ] : (B9)

Similarly, the relevant electron states at the bottom of the
conduction band have mainly s-like character. They are
represented by the corresponding state at the A point,
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which has pure s-like symmetry. Its energy is

g, =e0—4d 2, . (B10)

The energies of the electron-hole excitations around the
direct gap are then approximated as g R The depen-

dence on small shear distortions in first order in § =0 is

g€, =€ €, ~& —E,+4d " Hn,,—n,,,)5 (B11)
and
€5 —E, E —-Ep——%d“z(nppa—"qppv)(? , (B12)
where
&, —E, =€)~y +4+d 2,0+ 27, 3050)
=e)—e)+7.76d ~* (B13)

is the average energy of the electron-hole excitations,
which depends only on the bond length. The total num-
ber of electron-hole excitations per bond is 2. Thus, the
change in the total energy per bond due to uniform
changes in the bond length is given by
E,(£)~E,(0)+2&(¢, —s ). Expanding d =~d;?
—2dy3(d — d0)+3d0 (d d,)?, we obtain, from Eq. (8)
(using the numerical values derived above),

F(£)~31.04d 3¢, (B14)
and, together with Eq. (2),
Ko(£)=4V3d,B,+93.1d; ¢, (B15)

for small £. It can thus be clearly seen that the presence
of an electron-hole plasma results in a large pressure,
p(E)xdy*F(E)xd, &, at the ground-state equilibrium
bond length. Considering shear distortions, we observe
that the energy of an electron-hole excitation with a p,-
or p,-like hole state increases for an increasing distortion
parameter 8, whereas the energy of the excitation with a
p,-like hole state decreases at the same time. At finite
temperatures T,, the number of excitations with decreas-
ing energy increases and the number of excitations with
increasing energy decreases. Thus the average energy of
the electron-hole plasma decreases upon a shear distor-
tion, resulting in a decrease (or softening) of the effective
shear constant. The thermal average of the excitation en-
ergy is

3 3
~ ‘El(es—epu)[l—f(sp#)] “gl[l—f(sp#)] ,

(B16)

where l—f(sp“) is the number of holes. For small
&, —E, 05, we obtain that l—f(epu)ZI—f(Ep)
+f g, )[1 f(Ep)]Be(Ep“-—Ep). Thus the sum of Eq.
(B16) can be easily evaluated as

B.f(E,) 23
g,)— f S« ,% ,
Pt

which results in
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E (§)=(e,—E,)— 2B, £(E, (Mo =y, d 487,

(B17)

where we have been using Egs. (B11) and (B12). For
small §=0 it is f(§,)=1—§~1. The temperature re-
quired to give a finite £ can qualitatively be estimated
from the difference between the energies of the bonding
and antibonding orbitals (representing the valence and
conduction bands, respectively). The chemical potential
is approximately in the middle of the gap; thus
,u2(5b+e )/2 and §~exp[ B,(e,—¢€,)/2)]. Tt follows

[Egs. (B2)—(B5)] that B, ~d 37, lllngl and we obtain, from
Eq. (B17), to second order in §,

— —, 128
E, ~(e,—E,)—d,* 9, o (M — M6 IE] (B18)

The total energy per bond is E,(§)=E,(0)+2£E, and
the angular force constant K, [see Eq. (11)] is given by

K (&)= 2[(3*/38%)E, (&) +4d0 (£)], where the second
term ehmmates the effect of the bond-length expansion
(= 8?%). Thus,

K\(£)=K,(0)=d 2215 (1, = 7, £/ |In€]

~d;2(2.87—26.3&|In&|) (B19)

for small £&. Note that the first derivative of K ,(§) with
respect to £ has a logarithmic singularity at £=0, because
the temperature T, —0 for £—0. The dependence of the
shear constant on £ is then

[ey—enpl(§)=~d;y?

(6.62—11.56—60.6£|In&|) . (B20)

The shear constant decreases for increasing &, but not
linearly, in contrast to the roughly linear dependence of
K, and F on §. We expect that Eq. (B20) overestimates
the effect of the holes on the shear constant, because the
majority of the electron-hole excitations depends less on a
shear distortion of the lattice than the electron-hole exci-
tations at the top of the valence band (note that, e.g., the
bottom of the valence band is of pure s-like symmetry,
and the energy of this hole state does not depend on a
shear distortion).

Considering large densities, £—0.5 (which require
high temperatures T, ), we observe that the electron-hole
excitations have to be distributed on the whole valence
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and conduction bands. A rough estimate of the average
energy of the electron-hole excitations is the obtained
from the difference between energies of the bonding and
antibonding orbitals; thus E, ~¢, —¢, and the total ener-
gy per bond becomes

E,(§)=E,(0)+4d "*n,é=—2d *9,(1—26)+E
(B21)

As before, we expand in a Taylor series around d =d,,
and obtain

F(§)~—8nd, *=26.6d,° (B22)

and
Ko(£)~(4V3)d B, —

for £—0.5. In comparison with the results for small &
[Eqgs. (B14) and (B15)], we see that a linear increase of
f(&) and K (&) with & is predicted in both cases with
nearly the same coefficient (the relative deviation is less
than 20%). Thus we expect that a linear behavior ap-
proximately holds for all &, including intermediate values.
Note that the dependence of the angular force constant

(&) on £ is of a rather different nature. From Eq. (B11)
one would find that K, (§)=(1—2£)K,(0) for £—0.5.
This is in strong contrast to the decrease of K, obtained
for small ¢ from Eq. (B20), which is several times as
large. Thus one would expect that K,(£) first decreases
rather rapidly, and then levels off, approaching zero slow-
ly for large £&. Thus, the shear constant becomes [Eq.
(12)]

[e;;—cp)(E)——22.7d;3E<0,

24nd, € (B23)

(B24)

due to K,(£)=0 and the presence of a positive F. Note
that the shear constant becomes negative only because of
the force F (acting along the bond direction) due to the
presence of an electron-hole plasma.

We observe that the shear constant is, for a given value
of &, always directly proportional to d, > in Egs. (B20)
and (B24), and we thus expect that the shear constant
could be described by the universal form

[c;;—cp)(E)~6.62d,°g(&),

where g(&) is approximately the same function [with
g(0)=~1 and g(0.09)~0] for all three group-IV elements
G, Si, and Ge.

(B25)
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