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The standard eight-band Kane model envelope-function formalism for rectangular superlattices
(SL’s) is extended to compositionally graded and doping SL’s with arbitrary potential profiles. SL
band structures along the growth direction are described by a set of coupled differential equations
that is easily solved numerically with use of Runge-Kutta methods. A detailed application of this
approach to graded Hg,_,Cd, Te SL’s is presented. For a given period and a wide range of band
offsets, the SL band gap increases as the composition profile changes from rectangular to sinusoidal
to triangular (symmetric) to sawtooth (asymmetric). This and other effects of SL shape are dis-
cussed in terms of known quantum-well results and the inherent degree of “‘interdiffusion” in the
SL. Calculated subband structures for Hg,_,Cd, Te sawtooth SL’s agree well with recent tight-
binding calculations. An inconsistency in the limited experimental data available for this system is

identified.

I. INTRODUCTION

Most realistic electronic-structure calculations for
semiconductor superlattices (SL’s) assume that the con-
stituent band edges vary in a rectangular manner.! Many
of the theoretical techniques developed for these calcula-
tions are therefore applicable only to undoped composi-
tional superlattices with sharp interfaces (e.g.,
GaAs/AlAs). The present paper is concerned with an ex-
tension of one of these techniques—the multiband
envelope-function approximation' 3 (EFA)—to systems
with more complicated band-edge profiles. The approach
that we develop is quite general and is intended for appli-
cations to both doping SL’s and to compositionally grad-
ed systems (either intentionally graded or resulting from
interdiffusion.) In a previous study,® we used this ap-
proach to demonstrate the feasibility of developing an
8-12-um infrared detector based on an InAs;_, Sb, dop-
ing SL. Here we present a more detailed account of this
method and consider its application to compositionally
graded Hg, _  Cd, Te SL’s of various shapes.

The EFA is widely recognized as one of the most sim-
ple and versatile techniques available for studying semi-
conductor SL’s.! Single-band EFA (“effective-mass
theory”) calculations are routinely performed for arbi-
trary potential shapes and usually provide valuable in-
sight.>~7 Multiband EFA calculations for rectangular
SL’s yield more quantitative descriptions that have been
successfully compared in many cases to experiments'>
and to more sophisticated calculations®® (e.g., tight-
binding or pseudopotential). Previous attempts at ex-
tending the multiband EFA to nonrectangular SL’s have
generally had limited applicability and/or involved
cumbersome numerical techniques.'®”'? The present ap-
proach, by contrast, applies to any direct-band-gap
diamond- or zinc-blende-structure SL system and em-
ploys standard numerical methods'? (Runge-Kutta). The
basic EFA differential equations that we consider are de-
rived from the modified eight-band Kane model k-p
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Hamiltonian used by Johnson er al.> Although this
Hamiltonian includes only one second-order k-p term, it
provides an accurate description of the electron (el),
light-hole (1h), heavy-hole (hh), and spin-orbit split-off (so)
bands in open-gap semiconductors and the corresponding
bands in inverted-gap materials (e.g., HgTe). EFA results
based on this Hamiltonian for the lowest subbands in rec-
tangular HgTe/CdTe SL’s are virtually indistinguishable
from those of a 54-band k-p model.'*

To focus the discussion, we consider the application of
this approach to the four distinct types of graded
Hg,_,Cd, Te SL’s shown in Fig. 1. The actual growth of
such structures by laser-assisted molecular-beam epitaxy
(MBE) has recently been reported.'"!>!® Figures 1(a)
and 1(b) represent the familiar rectangular SL and a
sinusoidal grading, respectively. To be consistent with
Ref. 16, we will refer to the symmetric structure in Fig.
1(c) as a triangular SL and the asymmetric structure in
Fig. 1(d) as a sawtooth SL.

Preliminary annealing studies'® suggest that graded
Hg,_,Cd, Te SL’s are less sensitive to interdiffusion than
rectangular HgTe/CdTe SL’s. This result is of consider-
able technological interest in view of the potential of
these materials for infrared applications.!” The present
analysis of graded Hg, _,Cd, Te SL’s is also motivated by
the fact that this system provides a highly nontrivial test
of the EFA in view of the band crossing that occurs near
x=0.15. Figure 2 shows the composition dependences
(assumed linear'®) of the Brillouin-zone-center I'y, Ty,
and I'; states in bulk Hg, . Cd, Te on an absolute energy
scale. At large x, these states represent the conduction-
band minimum, the valence-band maximum, and the
zone-center spin-order split-off state, respectively, as in
most direct-band-gap semiconductors. The inverted-gap
structure that occurs for small x results from the crossing
of the I'y level below I'y. We will assume in this paper
that the bulk-band alignments in any of the SL structures
shown in Fig. 1 are determined entirely by the composi-
tion dependences in Fig. 2. The quantity A thus
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FIG. 1. Schematic profiles of the varying Cd concentrations
along the growth directions in Hg,_,Cd, Te (a) rectangular, (b)
sinusoidal, (c) triangWlar, and (d) sawtooth superlattices.
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Here the quantities E(z), E\(z)=E;(z), and E(z)
denote the energies of the bulk I';, I'y, and I'; states, re-
spectively, at position z (even when I'¢ lies below T'g), P is
the bulk momentum matrix element defined in Ref. 3,
my, is the heavy-hole effective mass, and m,, is the free-
electron mass. For later convenience, we define the ener-
gy units E,=3P?/m,. Equation (1) neglects both
strain?? and inversion asymmetry, which are believed to

ENERGY
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FIG. 2. Assumed composition dependences of the bulk I,
I's, and I'; zone-center states in Hg,_,Cd, Te from which the
superlattice bulk-band-edge profiles are determined. A denotes
the valence-band offset between HgTe and CdTe.
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represents the valence-band offset between HgTe and
CdTe, whose value remains controversial,'® although it is
now generally believed®® to be >300 meV. Because of
the band inversion that occurs for small x, the use of a
multiband EFA approach for Hg, _ . Cd, Te SL’s is abso-
lutely essential. The present results for sawtooth SL’s are
in good agreement with previous tight-binding calcula-
tions.?! A comparison to experiment is less meaningful at
this point because of uncertainties in the interpretation of
the available data'® (cf. Sec. III).

II. FORMALISM

We assume that at each position z along the growth
direction, the corresponding bulk material is well de-
scribed by the isotropic eight-band Kane model k-p
Hamiltonian considered by Johnson et al.> For a bulk
wave vector k=(0,0, k,), this Hamiltonian decouples into
two equivalent 4 X 4 blocks, which may be written as

0

0
0 . (1)

Epy(2)—#k;/2m 3y

f

play a minor role in Hg, , Cd, Te heterostructures. The
inclusion of only one second-order k-p term (for the hh
band) further simplifies the present approach and is
justified by the still rather imprecise knowledge of the
Hg,_,Cd, Te bulk-band structure. In the limit E  — oo,
Eq. (1) reduces to the still simpler “two-band” Hamiltoni-
an (involving coupled el and 1h states) used in the original
EFA work of Bastard.’

The SL band structure is most easily calculated in the
EFA for SL wave vectors K=(0,0,q) along the z direc-
tion. The dispersion 1Z will not be considered in this pa-
per, but is obtainable from results for K=0 using the SL
K-P approach of Johnson et al.>?* To implement the
EFA, we replace the quantity k, in Eq. (1) by the opera-
tor —i(d /dz) and write the wave function for SL band L
at wave number g as

YV, (=3 Fl92u,r), (2)

where u (1) is the bulk zone-center Bloch function corre-
sponding to the a (=el,lh,so,hh) basis state associated
with Eq. (1). As usual, we will assume that the u’s are
independent of x in Hg,_,Cd,Te; it follows that the as-
sociated momentum matrix element P is independent of z
in the SL. The quantities F'-9(z) in Eq. (2) are the en-
velope functions associated with the SL state ¥, .. Ac-
cording to Bloch’s theorem, these quantities must satisfy
the condition

F'L9(z +nd)=e'F L9 (z) 3)
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where d is the SL period and n is an integer. Combining
the F,’s into a single column vector F allows us to write
the Schrodinger equation for the SL at energy E as

H(0,0, —id /dz)F(z)=EF(z) . (4)

Here, and in most of what follows, the superscripts (L, q),
which denote a particular SL eigenstate, are suppressed
for notational convenience.

The 4 X4 matrix equation (4) decouples into a 3X3
matrix equation for the light-particle states (el, 1h, and so)
and a scalar equation for the hh states. In Hermitian
form, the hh equation becomes
# d 1 d

sz

Fin(2)+[Ey,(z) = E]Fy,(2)=0,

mpy(z) dz

(5)

which is the usual single-band EFA equation® for hole
states in the presence of a varying band edge E,,(z) and
effective mass my, (z). This equation, together with Eq.
(3) and the boundary conditions that F,; and
(m )~ ' dFy, /dz must be continuous, completely specify
the hh problem in a SL of any shape. The numerical
solution of this equation is straightforward using stan-
dard Runge-Kutta methods!® and will not be discussed
further. Analytical solutions are also possible in special
cases.”®

The 3X3 light-particle equation may be simplified in
several ways.»’ We first consider a reduction to a single
equation for F,,. This is done by expressing the lh and so
rows of Eq. (4) in the form

#E |V dF
Fy(2)=[Ey(z2)—E]"! 3m;’ dz"‘ 6)
and
#E | ' dF
F(z2)=[E.(z)—E]! 6m;’ dze‘ 7

Substituting Eqgs. (6) and (7) back into the first row of Eq.
(4) yields the desired equation,

E

Zp dF
3

dz

d

dz

2 1

E —Elh(z) + E —ESO(Z)

hZ
mg

+[E —E_,(2)]F,(z)=0. (8)
The associated boundary conditions,® obtained by in-

tegrating Eq. (8) across a boundary, are that F, and

dF
dz

2 1
+
E—Ey(z) E—Eg(z)

must be continuous.

For rectangular SL’s, Eq. (8) is sufficient to describe the
entire light-particle spectrum provided one avoids the
few singular energies corresponding to the E; or E_
values in the different layers. For nonrectangular SL’s,
however, the singular nature of Eq. (8) poses a more
severe problem since the condition E=E(z) or
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E=E_(z) occurs at some z value over a broad range of
energies. The most direct way to proceed, for a given en-
ergy, is to define internal boundaries at each z value for
which one of these conditions is met. Since the true
physical solution must be well behaved, the derivative
dF, /dz in Egs. (6) and (7) must vanish at such a bound-
ary. This condition, along with the continuity of F,,
eliminates the need to integrate directly across a singular-
ity. Numerical difficulties might still arise, however,
since Eq. (8) must still be integrated in the vicinity of
each singularity.

To circumvent this problem, we employ a more cau-
tious approach that avoids the singular regions entirely.
This is made possible by an alternative reduction® of the
3X 3 light-particle block of Eq. (4) to an equation for Fy,.
In analogy with Egs. (6)—(8), we obtain the identities

F ( )_ E]h(z)_E Flh(Z) 9)
T NE 2—E | V2
and
‘ﬁzE —-1/2
- -l P
Fel(z) [EeI(Z) E] 3m0
dFy, 1 d |En2—E
& 24 |Eno—g [, U0

and the associated lh equation,

# |E, | d 1 d |2E(2)+E,(z)—3E
my | 3 |dz | Ey(z)—E dz E (z)—E

X Fy(2)+[Ep(z)—EJF,(z)=0. (11

It is interesting to note in passing that, in the two-band
model of Bastard® (E,,— ), Eq. (11) is identical to Eq.
(8) with el and lh interchanged. For finite E , the ap-
propriate boundary conditions corresponding to Eq. (11)
are that the quantities

2E (z)+E,(z)—3E
E (z)—E

h(2)

and

2E (z2)+E(z)—3E
E (z)—E

L d
E.(2)—E dz

Fy,(z)

must be continuous.”

The reason for considering this alternative formulation
is that, in the vicinity of a z value for which E=F (z),
which would be a singularity in Eq. (8), Eq. (11) is per-
fectly well behaved.?* Conversely, Eq. (8) is well behaved
in the vicinity of a z value for which E =FE(z), which
would be a singularity in Eq. (11). At an energy that in-
tersects only one bulk band, E(z) or E,(z), we therefore
consider only whichever equation—(8) or (11)—is non-
singular. Following the heavy-hole procedure, we solve
this equation numerically using a Runge-Kutta approach,
together with the appropriate boundary conditions and
the Bloch condition, Eq. (3). In the more complicated
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FIG. 3. Example of a sawtooth superlattice of period d with
E.(z) and E,(z) intersecting at the point z*. To avoid numeri-
cal difficulties at the energy E, Egs. (8) and (11), are solved on
the left and right sides of z*, respectively.

case of an energy that intersects both E,(z) and E,(z),
we first divide the interval of interest up at the point z*,
which is defined by the condition that E (z*)=E (z*)
(cf. Fig. 3). We then obtain numerical solutions over the
entire interval by applying the Runge-Kutta method to
Egs. (8) and (11) on opposite sides of z* in a manner that
avoids the singularities [e.g., Eq. (8) would be used to the
left of z* in Fig. 3]. The full boundary-value problem is
then easily solved by invoking the SL boundary and
Bloch conditions along with the additional requirements
that F;(z) and F},(z) must be continuous at z *.

III. APPLICATION TO Hg,_,Cd, Te SUPERLATTICES

Calculations for Hg, _,Cd,Te SL’s are performed us-
ing the bulk k-p parameters listed in Table I. All except
for E,; are assumed to be temperature independent and to
vary linearly between the HgTe and CdTe parameters of
Ref. 3. (The lack of x dependence in E, and m;, follows
from this assumption.) As in previous studies,”’ we mod-
el temperature effects in the SL by changing the input
values of E, in accordance with the known temperature
dependence of the bulk-band gap. Unless otherwise
specified, we assume the currently most popular value?
of the valence-band offset between HgTe and CdTe:
A=350 meV.

Figure 4 shows the resulting band gaps at 0 and 300 K
for the four differently shaped Hg, _,Cd,Te SL’s in Fig.
1. The minimum and maximum x values in each case
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FIG. 4. Calculated band gaps at 0 and 300 K (assuming
A =350 meV) as functions of period for the four Hg,_,Cd,Te
superlattices in Fig. 1 with 0.05 =x =0.4. The rectangular su-
perlattices here and in Figs. 5 and 6 have equal layer
thicknesses.

were chosen to be 0.05 and 0.4, respectively, as in the
MBE-grown samples of Ref. 16. For the sake of compar-
ison, we constrain the rectangular SL’s here to have indi-
vidual layer thicknesses equal to half their periods. This
fixes the average Cd concentration in each SL considered
to be x=0.225. An immediate consequence of this is that
all of the SL gaps at a given temperature converge in the
limit of small period to the gap of the corresponding alloy
with x=0.225. This behavior is well known?® in the case
of rectangular SL’s and is intuitively reasonable for the
other shapes as well. With increasing period, all of the
SL gaps decrease monotonically at a rate that increases
from sawtooth to triangular to sinusoidal to rectangular.
The rate of decrease is independent of temperature in the
sawtooth case, but the variation among the results for
different shapes is slightly larger at 300 K than at 0 K.
The observed shape dependence is consistent with the
known effects of interdiffusion in HgTe/CdTe SL’s.””:?
For a given period, the least “interdiffused” structure, the
rectangular SL, has the smallest band gap, while the most
“interdiffused’’ structure, the sawtooth SL, has the larg-
est gap, closest to that of the completely mixed alloy.
The relative ordering of SL gaps is also consistent with
simple quantization conditions”'® for differently shaped
quantum wells (QW’s). The lowest-energy levels in rec-
tangular and sawtooth QW’s, for example, fall off as L >
and L 273, respectively, where L is the well width.'® Al-

TABLE 1. Bulk k-p parameters for Hg, _,Cd,Te used as input for superlattice calculations. All
quantities other than E,, are assumed independent of temperature. All energies in eV; m, in units of

the free-electron mass m,.

*
Ep M ph E,, Epnn

E.0 K) E (300 K)

17.5 0.7 —1.0+(0.1—A)x —Ax

—0.3+(1.9—A)x —0.122+(1.547—A)x
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though useful as a heuristic device, this QW analogy may
not always be reliable in the case of Hg, _,Cd,Te SL’s
because of their complicated ‘“‘type III” (i.e., inverted-
gap) nature.

Qualitatively, the present results reproduce many of
the features seen in the limited optical-absorption data of
Cheung and Chen.'® In particular, Fig. 4 confirms the re-
duced sensitivity of the SL band gap to the period in a
graded system. It was this effect led Cheung and Chen to
suggest that, for a given band gap, a Hg,_,Cd,Te
sawtooth SL might be less sensitive to interdiffusion than
the corresponding rectangular SL.

A closer examination of the experimental data, howev-
er, reveals what we believe is an internal inconsistency in
Ref. 16; in several cases, the ‘“fundamental’” SL gap re-
ported is significantly larger than that of the equivalent
bulk alloy (same X) at the same temperature. For exam-
ple, a 125- A- -period sawtooth SL with X=0.225 is claimed
to have a gap of close to 300 meV at 300 K, while the al-
loy gap at that temperature is only 226 meV. Without
this warning sign, we would be tempted to attribute the
uniformly larger experimental gaps (compared to the cal-
culated values) to either a greater amount of
interdiffusion or a smaller band offset (cf. Fig. 5) in the
MBE-grown samples.”’ While these effects may indeed
play a role, they alone cannot account for the observation
of SL gaps larger than those of the equivalent alloy. We
thus suspect that some of the absorption features that
Cheung and Chen'® identify as fundamental gaps may ac-
tually involve higher subband excitations, with the weak-
er absorption in the gap regions obscured by interference
and other effects. An example of such a reinterpretation
is given below. Clearly, a more extensive, quantitative,
study of optical absorption in graded Hg,_,Cd,Te SL’s
would be useful.

The sensitivity of the present results to the value of the
band offset is examined in Fig. 5. Calculated gaps at 0 K
are plotted over the range 0= A =500 meV for SL’s with
a fixed period of 125 A and the same minimum and max-
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O L L
0 200 400
A (meV)

FIG. 5. Sensitivities of the calculated 0-K band gaps to the

assumed value of the HgTe/CdTe valence-band offset A. The

period in each superlattice is 125 A and the composition range
is the same as in Fig. 4.
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imum Cd concentrations as in Fig. 4. The relative order-
ing of the gaps is unaffected by variations in A. The ob-
served reduction in gaps with increasing A is well known
in the case of rectangular HgTe/CdTe SL’s.?** The mag-
nitude of the reduction from A=0 to A=500 meV itself
decreases by more than 50% as the SL shape changes
from rectangular to sinusoidal to triangular to sawtooth.
This trend is again consistent with a decreasing amount
of ““interdiffusion” in this series since, in the limit of a
completely mixed alloy, the band gap becomes indepen-
dent of A. A decreasing sensitivity to A also occurs for
any SL shape as the SL period is reduced. Since reason-
able changes in A produce only quantitative changes in
the present results, we will continue to use a fixed offset
of 350 meV from here on.

All of the SL band gaps in Figs. 4 and 5 occur between
the lowest SL conduction-band state and the highest SL
heavy-hole state. SL subband structures over a more ex-
tended energy rate at 0 K are plotted in Fig. 6 for the
same composition (a) sawtooth, (b) triangular, and (c) rec-
tangular SL’s as discussed above. The solid black and
cross-hatched regions in the figure represent the allowed
SL heavy-hole and light-particle states, respectively, for
K=(0,0,9). By convention, the three conduction sub-
bands shown for each system are usually denoted C1, C2,
and C3, counting upwards in energy, and the three
heavy-hole (light-hole) subbands are denoted HH1 (LH1),
HH2 (LH2), and HH3 (LH3), counting downwards in en-
ergy. For each of these sets of states, the subband edges
closest to the fundamental gap lie at ¢g=0 for odd-
numbered subbands and at ¢ =w/d for even-numbered
subbands.

A strong similarity exists between Fig. 6(a) and the re-
cent tight-binding results of Chang et al.?' for a
Hg, ,Cd, Te sawtooth system with 0.08 =x =0.45. Ad-
ditional EFA calculations (not shown) confirm that the
small differences between these two sets of results are due
almost entirely to the slightly different composition
ranges considered. This consistency between these two
theories is similar to that which is regularly achieved for
rectangular HgTe/CdTe SL’s.® The fact that in that case
the theories also agree well with experiment® further sup-
ports our contention that existing data for graded
Hg,_,Cd,Te SL’s should be reevaluated. We have al-
ready speculated that at least some of the so-called ab-
sorption “‘edges” in Ref. 16 might actually represent
higher-energy transitions between SL subbands. To pur-
sue this point, we consider, as an example, the case of the
125-A- -period sawtooth SL for which structure is seen in
optical-absorption data'® near both 300 and 500 meV. In
a sawtooth system, all intersubband transitions are al-
lowed even at K =0 because of the lack of reflection sym-
metry in the z direction. Figure 6(a) thus suggests that
the observed absorption features for a period of 125 A
may be due to HH1 (or HH2)— C2 and HH3— C3 tran-
sitions, respectively. A more definitive identification is
not possible at this point without more quantitative ab-
sorption data and a full calculation of the absorption
coefficient.

The differences between the subband structures in Fig.
6 for the different SL shapes are best understood by con-
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sidering the HH, LH and C states separately. The HH
states in each case are extremely narrow even for SL
periods as small as 100 A. Thisis a consequence of the
relatively large my;, values in bulk Hg, ,Cd, Te (cf.
Table I), which make it difficult for heavy holes to tunnel
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FIG. 6. Theoretical heavy-hole (shaded) and light-particle
(cross-hatched) subbands at 0 K, for wave vectors along the
growth directions, for the same (a) sawtooth, (b) triangular, and
(c) rectangular superlattices as in Fig. 4.

through the valence-band-potential barrier, which ex-
tends from —17.5 meV (x=0.05) to —140 meV (x=0.4).
We recall that the HH states are described by a decou-
pled single-band equation, (5), for which the effects of SL
shape are well known. The QW analogy should certainly
hold in this case. Indeed, we find that, in the limit of
large periods, the confinement energies of the lowest HH
states in Fig. 6 approach the expected values”!®3° for the
corresponding QW’s. This explains why the separation
between successive HH subbands increases in the case of
rectangular SL’s (where QW energies go as n2) and de-
creases in the case of sawtooth and triangular SL’s (where
QW energies go roughly as n2/3). The fact that the sepa-
ration between HH1 and HH2 is actually larger in the
triangular case than in the sawtooth case is also con-
sistent with exact QW results.'®3® (We note that the
differences between the sawtooth and triangular cases are
especially interesting since the widths of the classically al-
lowed regions at any energy in these two cases are identi-
cal.)

Unlike the HH subbands, whose energies are strongly
dependent on the SL shape and period, the upper edges of
the LH1 subbands in Fig. 6 appear to be independent of
both. The fixed location of these states near —80 meV
corresponds to the average energy of the bulk valence-
band maximum in these systems. Similar behavior for
the uppermost LH1 edge was observed in previous calcu-
lations for InAs, _,Sb, doping SL’s.* We attribute this
effect to the fact that the valence-band-potential barrier
in these cases is too small to effectively confine light par-
ticles (bulk light-hole effective masses here are
<0.04m); the LH1 state thus spreads out and “experi-
ences” the average potential. The detailed behavior of
other LH states is more difficult to analyze in view of the
considerable band mixing that occurs in Hg;_,Cd, Te
and the inadequacy of the QW analogy for extended
states. Nevertheless, some remnants of the QW behavior
still exist, such as the larger separation between LH1 and
LH2 for the triangular SL, compared to the sawtooth.

Lastly, we turn to the conduction-subband structure.
The bulk I’y level in these SL’s varies from —223 to
+320 meV. The SL C states, which are derived primari-
ly from bulk “‘el” basis functions, are thus more strongly
confined than the LH states, despite the approximate
equality between bulk electron and light-hole effective
masses in Hg,_,Cd, Te. This stronger confinement is
reflected in the larger variation in the location of the C1
subband minimum with SL shape and period, and in the
slightly smaller widths of the C1 subbands compared to
their LH1 counterparts. As the SL period decreases, the
confinement becomes less effective and the C1 subband
minima all approach the average value of the bulk
conduction-band edge, +49 meV. The behavior of
higher conduction subbands in Fig. 6 is again complicat-
ed by the multiband nature of the problem. As was the
case for LH subbands, we see a larger separation between
Cl and C2 in the triangular SL, compared to the
sawtooth. The rectangular results in Fig. 6(c) are unusual
in that the subband width actually decreases from C1 to
C2, but then increases again for C3. This is due to the
nonmonotonic energy dependence of the tunneling proba-
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bility of light-particle states through the Hg, ,Cd, ,Te
barrier layers.?> The same effect does not show up in the
sawtooth and triangular SL’s because the barrier width
itself changes with energy.

To conclude this paper, we consider a more useful
comparison of Hg,_,Cd, Te sawtooth and rectangular
SL’s from a practical viewpoint. For infrared applica-
tions, there is little reason (in theory, at least) to consider
any rectangular SL other than that composed of alternat-
ing HgTe and CdTe layers.!” This is the system that any
nonrectangular Hg,_ Cd, Te SL has to compete with.
Figure 7 thus compares the 0-K band gaps in two rec-
tangular HgTe/CdTe systems with different ratios of lay-
er thicknesses (1:1 and 3:1) to the 0-K band gaps in two
sawtooth systems with equivalent X values (0.5 and 0.25).
As in Fig. 4, we see a convergence in the limit of small
periods to the gaps of the equivalent alloys. The diver-
gence between sawtooth and rectangular results at larger
periods is now much larger, however, because of the wid-
er composition ranges (and, hence, larger potential bar-
riers) considered. Because of this divergence, the same
10-pm (~120-meV) gap that is obtained in a (24 A
HgTe)/(8 A (CdTe) SL or a (50 A HgTe)/50 A CdTe) SL
can also be obtained with the much larger periods of 100
and > 300 A, respectively, in the corresponding sawtooth
systems. .

A comparison of the two 100-A-period SL’s with
the same 10-um gap is particularly interesting. By
differentiating the calculated C1 dispersion curves, we
find that the sawtooth SL, because of its smaller X value,
has a much smaller electron effective mass (0.004m, com-
pared to 0.092m). Probability densities associated with
the band-edge envelope functions in the two cases are
shown in Fig. 8. The larger barrier heights in the rec-
tangular SL result in a stronger localization of both the
HH1- and Cl-edge states. The sharper interfaces in this
system also introduce a larger lh component in the Cl1

- Sawtooth

__ 600}
% — Rectangular
£ (HgTe/CdTe)
o 400t
<
O 1:1
a 0 (x<1
Z 200+
<
o

3.1 0(x (0.5

o J |
0 100 200 300
PERIOD (A)

FIG. 7. Comparison of the calculated 0-K band gaps in two
HgTe/CdTe rectangular superlattices (with the indicated ratios
of layer thicknesses) and two Hg,_,Cd, Te sawtooth superlat-
tices (with the indicated composition ranges) with the same
average Cd concentrations.
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edge. This latter effect results in a weaker band-edge
optical-absorption strength in the rectangular SL. Fol-
lowing Refs. 3 and 4, we find that, for light incident along
the z direction, the ratio of the square of the SL band-
edge optical matrix element to the square of the bulk
hh—el band-edge matrix element is given by |aVC|2,
where

avc=d“fo"[Fg'u)]*F;*hH‘(z)dz . (12)

For the two systems in Fig. 8, the calculated |a,.| turns
out to be 0.45 for the rectangular SL and 0.61 for the
sawtooth SL. This suggests that, given a rectangular SL
of a particular period and band gap, it should be possible
to construct a larger-period sawtooth SL with the same
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FIG. 8. Calculated probability densities associated with the
dominant envelope function contributions to the lowest C1 (top)
and highest HH1 (bottom) states in (a) a (50 A HgTe)/(50 A
CdTe) superlattice, and (b) a 100-1&-period sawtooth superlattice
with 0=<x <0.5. A full period is shown in each case, with the
Cd concentration increasing from left to right.
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gap and a comparable, or even larger, band-edge absorp-
tion strength. In view of this result and the possibly
enhanced stability of the latter system,'® further studies
of Hg,_ ,Cd, Te sawtooth SL’s are clearly warranted.
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