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Plasmons in a superlattice with periodic defects
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The plasmon excitation spectrum for a multiple-quantum-well superlattice with rectangular de-
fect barriers in each quantum well is calculated in the random-phase approximation. It is demon-
strated that both the intersubband and the intrasubband plasma frequencies can be effectively tuned
subject to variations of the parameters characterizing the defect barrier in the quantum well, such as
the barrier width, its height, and its position in the quantum well. For example, by varying the de-

0
feet barrier width from 0 to about 40 A, an order-of-magnitude increase is obtained in the intersub-
band plasma frequency, with corresponding changes in the intrasubband mode. It is shown that the
variations of the collective excitation frequencies follow closely the electron energy subband struc-
tures and are therefore equally tunable via the defect barrier.

I. INTRODUCTION

The remarkable tailorability of subband structures of a
semiconductor superlattice brought about by the intro-
duction of either barriers in the quantum-well regions or
potential wells in the barrier regions has recently been en-
visioned by Beltram and Capasso' and Peeters and Vasi-
lopoulos. These authors have demonstrated that the ad-
ditional barriers (or wells) can effectively change the sub-
band widths, as well as the energy gaps between the sub-
bands. For example, an order-of-magnitude increase of
the width of the lowest subband can be achieved as a re-
sult of varying the width of the positive potential barrier
in the middle of the quantum well; moreover, an even
greater change in the separation between the two lowest
subbands is thus realized at the same time. In particular,
when the strength of the additional barrier (defined to be
the product of the barrier height times its width) matches
the barrier strength of the original superlattice without
defects, the energy gap between the two lowest subbands
vanishes, reminiscent of the disappearance of band gaps
along certain directions for a crysta1 with unit cells con-
taining more than one identical atom. Whereas such a
phenomenon is only "accidental" in nature for crystal lat-
tices, it can be designed in the newly proposed superlat-
tice structure. Virtually infinite possibilities exist for tun-
ing the subband structures with the various combinations
of the three parameters characterizing the additional bar-
rier (well) at one's disposal: the height, the width, and
the position of the barrier (well). From the crystal
grower's standpoint, such a superlattice with a complex
unit cell is well within the realm covered by today' s
growth techniques, such as molecular beam epitaxy
(MBE). One such example, as proposed by Peeters and
Vasilopoulos, is based on the GaAs/Al„Ga, As
multiple-quantum-well superlattice. By increasing (either
gradually or abruptly) the alloy composition (the value of
x) in a confined region of the quantum well, a positive po-

tential barrier of desired shape can be created. A number
of interesting applications taking advantage of the newly
found tunability of the superlattice subbands have al-
ready been proposed, such as infrared-signal detecting,
and surface-states tunneling. While the subband struc-
ture of a superlattice with complex unit cells is fairly well
understood, ' its implications in the collective behavior
of the electrons and in charge-transport processes in such
structures remain unexplored. Of particular importance
for experimental investigations such as far-infrared spec-
troscopy, light scattering, and fast-electron energy loss is
the knowledge of the plasmon spectrum and its features
associated with the complex unit cells. Specifically, it is
expected that the plasma frequencies of both the inter-
subband modes and the intrasubband modes can be tuned
by controlling the parameters characterizing the positive
barrier or the negative we11. In anticipation of the rich-
ness of the plasmon spectra in the superlattice with a
complex unit cell, and to stimulate experimental interest,
we have undertaken a theoretical investigation of the
dielectric response and collective excitations of the new
class of superlattice. In the remainder of this paper we
report on our study in three parts. In Sec. II, we present
the wave-number frequency-dependent dielectric func-
tion. The normal modes (plasmons), corresponding to
the zeros of the dielectric response function, are studied
in Sec. III. Concluding remarks and discussions of the
special features of the predicted modes are presented in
Sec. IV.

II. DIELECTRIC FORMULATION

Consider a superlattice grown along the z-direction
with period I. Conduction electrons are free to move in
the xy plane, but are subject to a periodic potential in the
z direction. Single-electron states are described by a wave
vector k=(k, k, ), with k =~k~=(k„+k )' and
—~/l &k, &~/l, as well as by a subband index n. The
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electronic energy is defined by e«(q, co) =5GG. —U (q, q, + G)il'GG. (q, co), (3)

Ak +E.k2' z

with the Coulomb matrix element (x is the high-
frequency background dielectric constant)

where m is the electron effective mass, corresponding to
the one-electron state

4 2

u(q, q, +G) =
~[q +(q, +G) ]

(4)

(2)

where 3 is a normalization area in the xy plane. The
Bloch function u„i, (z) can be obtained, e.g. , with a"2
Kronig-Penney-type procedure.

The dielectric-response function in the presence of a
periodic potential was first discussed by Ehrenreich and
Cohen, and later rederived by Wiser in a reciprocal-
lattice representation. Similar approaches have also been
used to treat semiconductor superlattices. ' Here, we
will only present the result of the dielectric function of a
superlattice with a complex unit cell. The derivation us-

ing the self-consistent-field method ' is a standard one,
and it can be found elsewhere (Refs. 6—10). In the present
case, for a system with periodic translational invariance
with period I, the electronic polarizability, which relates
the impressed potential to the induced charge density,
and the dielectric function, which relates the self-
consistent potential to the impressed potential, can be
conveniently cast in matrix form with the reciprocal-
lattice translation G =2nm/1 (n =0,+1,+2, . . . ) as their
indices. Thus the longitudinal dielectric function is given
by

and the noninteracting electron density-density correla-
tion function

11'GG (q, co)= g y'„„'.(k„q„co)I„'„,(k, q, G)
k, , n, n'

XI„„,(k„q„G) .

Here
II„„(k„q„G)=— dz u„'I, (z)e ' 'u„i, + (z)

0 2 "Z+Z (6)

and

f (E„g+q)—f (E„„)

where f(E) is the Fermi-Dirac distribution function.
Equation (7) is essentially the two-dimensional polariza-
bility, but with the Fermi level shifted by the subband en-

ergy. At zero temperature the two-dimensional (2D)
wave-vector integration can be performed analytically,
leading to the real and imaginary parts similar to those of
a strictly 2D electron sheet obtained by Stern"

Rey'„„'.(k„q„co)=— I

8(E~—e„& + )
— sgn(q 2m'')—8(Q& —

kF& )(Qf —
kF~ )'~

+8(EF—e„& ) ++ sgn(q +2m'')8(Qz —kFz )(Qz —kFz )

and

Imp'„„', (k„q„co)= — [8(EF—e„,„+ )8(kF, —Q f )(k~, —Q f )' —8(EF—e„„)8(kFz—
Qz )(kFz —

Q~ )' ],

where

det~V(q, co)
~

=0, (10)

where the dielectric matrix is given by Eq. (3). Equation

~n'k + ~nk
Z Z Z

q mco' ~ mes'

2 g 2

kF, =2m(EF —E—„i, +q ), kF~ =2m(EF —e„„),
Z Z "Z

and EF is the Fermi energy. Also 8(x) is the Heaviside
unit step function, and sgn(x) —=8(x)—8( —x) is the sign
function.

The collective modes are at the frequencies given by
the roots of the determinantal equation

(10) becomes intractable when the electrons are very
much localized in the individual quantum wells, in which
case many reciprocal-lattice vectors must be considered.
However, if the electron wave functions within adjacent
quantum wells overlap substantially, a quasi-three-
dimensional treatment is more appropriate where only a
few reciprocal-lattice vectors need be considered. In par-
ticular, in an experimental context, plasmons are detected
at long wavelengths, using, e.g. , far-infrared absorption,
which corresponds to q «2~/I and q, &&2m/l. Under
these conditions the plasmon-dispersion relation
simplifies to

1 —U(q, q, )1100'(q, cu) =0,
which can be readily solved to yield the frequencies of
both the intrasubband and intersubband plasmons.
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The system we choose to consider is the one
treated by Peeters and Vasilopoulos, which is a
GaAs/A1 Ga& As multiple-quantum-well superlattice
with a defect barrier in each quantum well ~ One period
of this structure is shown in Fig. 1. In this notation, the
width of the well is m and that of each barrier separating
two adjacent wells is b so that I =b+m. The electron
effective mass is I*,m&*, m& inside the quantum well, the
barrier and the defect, respectively. (The notation and
values of the material parameters are the same as those
used in Ref. 2.) The electron efFective mass in the alloy
Al, Gai „As is given by m/m, =0.067+0.083x and the
barrier height is taken to be Vo =(0.693x +0.222x ) eV.
We take x =0.3 for the Al, Ga, ,As in the barrier and
x =0.4 in the defect. The subband energy can be ob-
tained in a straightforward way with the use of a
transfer-matrix method for a Kronig-Penney potential
problem. This also yields the Bloch functions. Howev-
er, the electronic wave functions obtained are hardly use-
ful since they must be expressed as a product of transfer
matrices and can only be represented via a numerical ta-
bulation. In the present analysis for plasmon excitations
we adopt an approximation scheme in which the single-
particle energy is given by the Kronig-Penney calcula-
tion, while the single-particle wave functions are deter-
mined by considering only the first few Fourier com-
ponents of the periodic superlattice potential, and the
plasmon-dispersion relation we solve is given by Eq. (11).

Both the function u„„(z) and the superlattice potential
Z

V(z) are periodic with the superlattice period 1, whose
Fourier expansions involve the reciprocal-lattice vectors
only,

and

uk (z)= gc(k, —G)e
G

V(z)= g VGe'G'.
G

(12)

(13)

Upon substituting Eqs. (12) and (13) into the single-
electron Schrodinger equation, the problem reduces to

one of finding the Fourier coefficients c (k„—G). Retain-

ing only the first three Fourier components of the super-
lattice potential, we obtain the wave functions

A„(k, )

u„k (z)= — [1+a„(k,)e '~'+a+„(k, )e's'],"z I
(14)

where g =2,vr jl is the shortest reciprocal-lattice vector;

a—„(k,)=
e„k —(k, +g) /2m —V„

and A„(k, ) is a normalization factor given by

A„(k, )=[1+a„(k,) +a+„(k, ) ] (16)

and

1 ~ .
V

. gbg (18)

With this approximate wave function the form factor of
Eq. (6) can be calculated in closed form. For example,
the 6 =0-term is given by

I„„(k„q„0)=A„(k, )A„(k, +q, )

X [1+a„(k,)a„(k,+q, )

+a+„(k, )a+„(k,+q, )] . (19)

In the nearly-free-electron model, the band gap at the
Brillouin-zone boundary is 2~ Vs~. Thus, from Eq. (18),
the energy gap between the two lowest subbands vanishes
when Vbsin(bg/2) = csin(dg/2). This approximation
differs from the exact result Vbb = Vzd by about 10% for
the parameters we used in our calculations. The nearly-
free-electron approximation is therefore fairly accurate in

describing the plasmon spectrum of superlattices with

periodic defects.

The first three Fourier components of the superlattice po-
tential are

Vo= (bVb—+d V~ ),1

III. COLLECTIVE EXCITATIONS
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FIG. 1. Representation of the potential profile in a superlat-
tice containing one defect barrier of width d. The center of the
defect is at a distance s from the middle of the quantum well.
The width of the quantum well is equal to w.

The normal modes of the collective charge-density os-
cillations of the superlattice determined by the solutions
of Eq. (10) fall into two categories: (a) those arising from
virtual electronic transitions within a given miniband, to
be referred to as intrasubband plasmons, and (b) those re-
sulting from virtual electronic transitions between
different minibands, called intersubband plasmons. In
the case of a superlattice with a complex unit cell, both
modes are frequency-tunable subject to variations of the
parameters characterizing the additional barrier in the
quantum well. In the following, we assume that the elec-
tron density is such that only the lowest subband is occu-
pied initially, the Fermi level is always below the second
subband. Thus there is only one intrasubband plasmon
mode, involving electrons in the lowest subband.
Amongst the many possible inter subband plasmon
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branches we shall focus attention on the one involving
the two lowest subbands.

In the long-wavelength limit ( ql « 1 ), it can be
shown ' that the intrasubband plasmon frequency is
given by

30

25
Sa=O

co =co sin e+~ cos e (20)

where sin8=q/(q +q, )', cose=q, /(q +q, )', and
co =4rre nollrml is the square of the bulk plasma fre-
quency (where no is the areal density of the 2D electron
gas) and clz =0

4me no
2

CO

~m, l
(21)

Qi
0

I 1 l ) I

&0 40 SO 80
O

100

Elk
2

XI(Ei~)
1 dk,

m, g f(E,q)
k

(22)

The effective mass along the growth direction of the su-
perlattice is defined by

FIG. 2. Plot of the frequency of the plasmon modes [Eq. (11)]
as a function of the positive potential barrier width d. We take
ql =0. 1 and l =250 A, b =50 A, w =200 A, s =0, V&=313
meV, Vb=228 meV, and no=1. 5X10' cm '. The values of
the electron effective mass in the barrier and quantum-well re-
gions are given in the text.

Thus the long-wavelength intrasubband plasmons depend
crucially on the direction of propagation. For a plasmon
propagating in the plane of the quantum well, its frequen-
cy is co . On the other hand, for propagation along the
growth direction of the superlattice the frequency is re-
duced to co which is determined by the subband disper-
sion relation. For a flat (dispersionless) subband the
effective mass m, ~~, consequently co ~0. In general,
for an oblique direction of propagation, the resonance fre-
quency is a hybridization of cop with co&, given by Eq.
(20).

The long-wavelength limit of the intersubband plasma
frequency approaches the subband separation as the wave
vector approaches zero, but is nontheless never exactly at
the subband separation, due to the dispersion of the sub-
bands. This is in contrast to the case of Aat subbands
where the intersubband plasrnon matches the subband
separation as the wave number approaches zero.

In demonstrating the dependence of the plasmon fre-
quencies on the parameters describing the barrier in the
quantum well of the superlattice, we choose to vary the
barrier width d, while keeping the barrier height V& and
its position fixed. Specifically, we consider the case where
the barrier is in the rniddle of the quantum well, i.e.,
s =0. Only with such a symmetric potential profile of the
unit cell can a null band gap between the two lowest sub-
bands be achieved.

In Fig. 2, a set of solutions of the plasmon dispersion
relation [Eq. (11)] as a function of the positive potential
barrier widths are shown graphically. Both the intrasub-
band and the intersubband plasmon frequencies are seen
to vary substantially as a function of the width of the de-
fect barrier. In particular, the intersubband plasmon fre-
quency is reduced from -30 meV when the defect bar-
rier is absent to -3 meV for a defect barrier width of
d =38 A. An order-of-magnitude reduction in this mode
frequency thus results. The lowest frequency of the inter-
subband plasmon (corresponding to d =38 A) obtains

when the band gap vanishes at the Brillouin-zone bound-
ary (q, =~/I). For subbands with dispersion, the inter-
subband plasmon is broadened into a band, bounded at
the top by the q, =n/1 branc. h, and the branch having

q, =0 at the bottom, for a given value of the wave num-
ber q. While such a bandwidth of the intersubband
plasmon is barely discernible in the present case of small

q (qd =0.1) for d & 38 A, it becomes significant as d in-
creases, reaching about 2 meV at d = 100 A.

The intrasubband plasmons are, like their intersubband
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FIG. 3. The calculated plasmon modes as a function of wave
0

number q for a defect barrier width d =20 A, and electron den-

sity n o
=2 X 10' cm . Here the intersubband plasmon modes

(top band) and the intrasubband plasmon band are separated by
a gap of -2 meV. The values used in the calculation for l, b, w,

s, Vz, and Vb are given in the caption of Fig. 2.
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FIG. 4. Same as Fig. 3 but for d =40 A, and no = 1.5 X 10'
cm . The intersubband plasmon modes are contained within
the intrasubband plasmon band. The values used in the calcula-
tion for I, b, w, s, Vb, and Vd are given in the caption of Fig. 2.

FIG. 6. The two lowest subbands for the three values of de-
fect width d presented in Figs. 3—5 are plotted as a function of
the wave number q, . The values used in the calculation for I, b,
w, s, Vb, and Vd are given in the caption of Fig. 2. Solid lines:
d =20 A; chain lines: d =40 A; dotted lines: d =60 A.
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FIG. 5. Same as Fig. 3 but for d =60 A, and no=2X10'
cm . The intersubband plasmon modes are contained within
the intrasubband plasmon band. The values used in the calcula-
tion for I, b, w, s, V&, and Vd are given in the caption of Fig. 2.

counterparts, broadened into a band in the presence of
subband dispersion. However, unlike intersubband
modes, the upper bound of this plasmon band corre-
sponds to q, =0, and the lower bound has q, =m/l.
Whereas the q, =0 intrasubband frequency is insensitive
to the variation of the defect barrier width, Fig. 2 clearly
shows that the frequency of the q, =m. /I mode at first in-
creases as d increases, reaching a maximum at d = 38 A,
then decreases as d is further increased. Such a sharp
contrast in the d dependences of the two frequencies (cor-
responding to q, =0 and q, = n /I) serves to remind one of
the difference in the nature of the collective charge-

density oscillations along the superlattice growth direc-
tion and perpendicular to it: the former is a direct conse-
quence of the delocalization of electrons from the indivi-
dual quantum wells which leads to a finite subband
width, hence finite electron effective mass along the
growth direction. Such a close correspondence with the
subband width makes the collective oscillation along the
growth direction equally controllable as the subband
width. Furthermore, like the subband width, this collec-
tive mode is sensitive to the detailed composition of the
superlattice unit cell. On the other hand, the collective
charge-density oscillation in the plane of the quantum
well involves in-plane electronic motion (which is free-
electron-like irrespective of the superlattice unit-cell
structure) only, with frequencies essentially fixed by the
2D electron density and the superlattice period.

While Fig. 2 shows plasma frequencies for a small and
fixed q value, the general dependence on the wave num-
ber q for several representative values of d are shown in
Figs. 3—5. For a defect barrier width d =20 A, the
plasmon dispersion is plotted in Fig. 3. Here the inter-
subband plasmon modes (top band) and the intrasubband
(bottom band) plasmon band are separated by a gap of
-2 meV. Thus they should be clearly distinguishable ex-
perimentally. However, such a distinction is lost for
larger values of d. At d =40 and 60 A, shown in Figs. 4
and 5, respectively, the intersubband plasmon modes are
contained within the intrasubband plasmon band, and
can no longer be separated from the latter. These
changes in the plasmon dispersion relation follow closely
the variations in the subband widths and subband separa-
tion. To illustrate the close correspondence between the
subband structures and the collective excitation spectrum
we show in Fig. 6 the two lowest subbands for the three
values of d considered in Figs. 3—5 as functions of the
wave number q, . It is clear on examination of the plasma
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dispersion relations presented in Figs. 3—5 in conjunction
with Fig. 6 that almost all the salient features of the
former can be traced to the structure of the subbands.
This also justifies the use of the approximate Bloch func-
tions, since it is the single-electron energy that plays the
most important role in the determination of the collective
behavior of the electrons.

IV. CONCLUSIONS

In summary, we have discussed collective charge-
density fluctuations in a semiconductor superlattice with
periodic defect barriers located in the quantum wells, and
have examined the dependence of the plasmon spectra on
the characteristics of the defect barriers. It is demon-
strated that by simply varying the defect barrier width
from 0 to about 40 A, one can bring about an order of
magnitude change in the intersubband plasmon frequen-
cy, and similar changes in the intrasubband plasmon fre-
quency, which points to the possibility of tailor-made
plasma frequencies in this unique class of semiconductor
superlattices. In view of the important technical advan-
tages this new class of semiconductor superlattices have
to offer over conventional superlattice structures, and the
impending applications such as in infrared detectors and
tunneling devices, a clear understanding of the collective
behavior of the electrons in these novel structures is
necessary in both the evaluation of device performance

and further exploration via such standard techniques as
infrared spectroscopy, light scattering, and fast-electron
energy loss. Our work represents a first step toward such
an understanding, and in presenting it we hope to stimu-
late further theoretical and experimental interest in this
problem. The predicted plasma spectra of the "defec-
tive" multiple-quantum-well superlattice should be ob-
servable with any of the above mentioned techniques. In
this regard the intersubband mode for small defect bar-
rier widths is especially promising since it is not Landau-
damped at long wavelengths (qd (1), and is far removed
from the intrasubband mode. In contrast the lower
branch of the intrasubband plasmon is not clearly
separated from the single-particle excitation, and is there-
fore subject to Landau damping. For larger defect bar-
rier widths the intersubband mode is submerged in the in-
trasubband plasma spectrum, and it will be interesting to
see experimentally whether the two resonant frequencies
will show up as separate signals or as a mixture of the
two.

ACKNOWLEDGMENTS

The authors are grateful to Dr. J. Yang for participa-
tion in the early stage of this work, and to Professor N. J.
M. Horing for useful discussions. One of us (G.G.) ac-
knowledges partial financial support by the Natural Sci-
ences and Engineering Research Council of Canada.

'F. Beltram and F. Capasso, Phys. Rev. B 38, 3580 (1988).
F. M. Peeters and P. Vasilopoulos, Appl. Phys. Lett. 55, 1106

(1989).
C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley,

New York, 1986).
4W. Trzeciakowski and B. D. McCombe, Appl. Phys. Lett. 55,

891(1989).
5G. Gumbs and A. Salman, Phys. Rev. B 41, 10 124 (1990).
H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

7N. Wiser, Phys. Rev. 129, 62 (1963).
H. Ishida, J. Phys. Soc. Jpn. 55, 4396 (1986).

9X. L. Lei, R. Q. Yang, and C. H. Tsai, in Physics of Superlat
tices and Quantum Wells, edited by C. H. Tsai et al. (World
Scientific, Singapore, 1989).

'oX. D. Zhu, X. Xia, J. J. Quinn, and P. Hawrylak, Phys. Rev.
B 38, 5617 (1988).

' F. Stern, Phys. Rev. Lett. 18, 546 (1967).


