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Galvanomagnetic phenomena and surface roughness in thin metallic films
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We study the galvanomagnetic properties of an electron gas in quasibidimensional structures such
as thin films, submitted to a magnetic induction perpendicular to their surfaces. The confinement

generates electronic quantum states that are gathered in a subband scheme. We determine the elec-
tron distribution functions in the different subbands by solving the appropriate set of Boltzmann
equations. Then we derive the general expressions of transport coefficients and discuss the varia-
tions of the Hall effect and magnetoresistance with film thickness in the special case in which elec-
trons are scattered by impurities and surface roughness. In thin metallic films where the correlation
length describing surface roughness is less than the electron Fermi wavelength, we find a Hall con-
stant proportional to thickness d and a magnetoresistance that follows a d law.

I. INTRODUCTION

The effect of surfaces on the electrical properties of
thin metallic films is a very old problem; Fuchs and Son-
dheimer' were the first to incorporate surfaces via bound-
ary conditions in a classical Boltzmann equation to deter-
mine the electron distribution function and the variations
of conductivity with film thickness. Their theory has
been improved many times but only a quantum treat-
ment can account for size efFects appearing when the
electron mean free path becomes higher than the film
thickness. Quantum-size effects were studied first by San-
dormirskii but he assumed perfect plane surfaces. The
surface roughness was introduced in a quantum theory by
Prange and Nee for interpreting surface impedance and
skin effect in the presence of high magnetic fields. More
recently Tesanovic et al. and, with a similar theory,
Trivedi and Aschroft, examined the behavior of the elec-
trical conductivity by incorporating deviations from ideal
plane surfaces in boundary conditions on the electron
Hamiltonian. We have also studied this problem by in-
troducing the effect of surface roughness as a perturba-
tion of a perfect Hamiltonian describing an electron mov-
ing between the two plane surfaces; we found that it was
equivalent to a perturbation localized on the ideal sur-
faces.

The influence of surface roughness on galvanomagnetic
phenomena such as Hall efFect or magnetoresistance has
never been investigated either theoretically or experimen-
tally. The purpose of the present work is to extend the
ideas developed in Ref. 7, introducing a magnetic induc-
tion 8 perpendicular both to the film surfaces and the ap-
plied electric field. We assume 8 sufficiently small for
neglecting the Landau level quantization. We want to
obtain variations of the Hall and magnetoresistance
coefficients with the film thickness. These variations are
governed not only by the electron wave functions shape
but also by the number of filled subbands. Moreover we
want to determine how galvanomagnetic effects depend
on the roughness parameters such as the root-mean-

square deviations from the average thickness and the
roughness correlation length.

In Sec. II we introduce the model describing an elec-
tron in a metallic film submitted to an electric field E and
a magnetic induction, respectively, parallel and perpen-
dicular to its surfaces. Electrons, scattered by defects
such as impurities and surface roughness, make transi-
tions between quantum states of a subbands set. Equa-
tions satisfied by the different electron distribution func-
tions associated with each subband are derived. In Sec.
III we solve the preceding set of equations and we discuss
the validity of the notion of relaxation time. Then, in
Sec. IV, we calculate the general expressions of the trans-
port coefficient of an electron gas filling the subband set;
particular attention is paid to Hall and magnetoresistance
coeScients. The results are applied to a film with perfect
surfaces but with embedded impurities in Sec. V. In Sec.
VI we explain the model describing scattering by surface
roughness; we exhibit the variations of the Hall constant
and of the magnetoresistance with thickness. Detailed
results are given in the limit of small roughness correla-
tion length as compared with the electron Fermi wave-
length. We conclude in Sec. VII with some comments.

II. QUANTUM AND STATISTICAL BACKGROUND

In an ideal quasibidimensional structure, the motion of
a charge carrier is separated into two independent parts.
The first one, which is parallel to both limiting structure
plane surfaces, is a free-particle motion. The associated
wave function is a normalized plane wave, S ' e'"~,
and corresponds to a kinetic energy R k /2m; p is the
projection of the carrier position vector r onto a surface
plane and k is a two-dimensional wave vector quantized
by the usual periodic conditions; S is the sample surface
area and m is the carrier effective mass. The second part
of the motion is along the z axis, perpendicular to both
surfaces, and is determined by a unidimensional potential
V(z) which confines carriers between the two parallel
surfaces. The associated localized wave functions and
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$2/ 2

Cvk
= E,v+

2m
(2')

The dispersion law c,k defines the parabolic subband v.
We observe that c, depends os d.

In a real quasibidimensional structure, carriers interact
with different defects: impurities, phonons, surface
roughness, etc. This interaction produces transitions be-
tween states

~
vk ); in the Born approximation framework,

we can introduce a transition probability per unit time
W„„(k,k') for a carrier to pass from the state ~vk) of
subband v to the state v'k' ) of subband v'.

When carriers are in thermal equilibrium at tempera-
ture T, the mean number of carriers in a state ~vk) is
given by the Fermi-Dirac distribution function

fp(e g) = [1+exp(e„z —ez )/ks T] '. Here e~ is the Fer-
mi energy which depends on the volume carrier density n
and also on the film thickness d. It is deduced from the
relation

v vmax max

n = g n, = g f JV,(e)fp(e)de,
v=1 v=1

(3)

where n is the density of electrons filling subband v,
while

JV„(e)= Y(e —e„)
Sm

(4)

energies are, respectively, labeled g,(z) and e,,

(v=1,2, . . . , v,„). Thus the carrier Hamiltonian in this
ideal quasibidimensional structure is simply

p2 p2
Hp= + + V(z)

2m 2m

and we have, for the stationary states and energies

Hpivk) =c.„,ivk)

with

(r~vk) =1(,„(r)=S '~ e'"i'g„(z)

and It is clear that for a fixed n, vF is a discontinuous func-
tion of d. If vF))1, the discontinuities of vF are very
small and the exact variation law can be replaced by the
approximate continuous function:

' 1/3
3n

VF— d .

In CoSi2 metallic films, the electron density n is about
3XIOz~ cm and v~=0. 3d (A). This gives 3&v+&60
when 10&d (200 A.

Once vF is known, we can immediately evaluate n by

( v~+ 1)(2v~+ 1 )
n, = +

2d 6
7T 2v

2d3

Again, if vF ))1,

n„= 2 VF 2VF+
Zd

When a static electric field E parallel to the sample sur-
faces and a perpendicular magnetic induction B are
externally applied to carriers, their stationary distribu-
tion function f,(k) in state ~vk) differs from fp(e, i, ). If
we assume a sufficiently weak magnetic induction for dis-
carding the Landau level quantization, the functions

f„(k) obey the following system of semiclassical
Boltzmann equations:

is the density of states in subband v. In Eq. (4), Y(E) is
the unit step function.

In the following we will often make use of the number,
vF, of subbands whose minimum c is below c.F. At fixed
density n, vF is a function of d. For instance, in the ideal
case where the film surfaces act on carriers as an infinite
repulsive potential, V(z) is an infinite well and
E„=(fi rr /2md )v In . that case v+=Int[ez/ (R rr /
2md )]'r2. Another useful definition of vz is given by the
double inequality

v~(4vz~ 3v~—1) &— d'& v~(4vz~+9v~+5) .

e Ak max

E+ XB Vi f,(k)= g QI W„,, (k', k)f, , (k')[1—f„(k)]—W„„(k,k')f„(k)[1—f„(k')]) .
v'=1 k'

(9)

We consider only elastic collisions between electrons and
defects; this approximation is convenient for scattering
by impurities, surface roughness, and acoustical phonons.
In this case

W, , (k, k')= W, ,(k', k)

=P, , (ik —k'i)6(e.„—E.„),
where P„.( ~k —k'~ ) =(2'/A')[(vk~H, ~v'k')

~
depends

only on ~k —k'~. The last important restriction will be to
limit the calculations to first order in the electric field E.
Thus we look for the solution of the Boltzmann equations

(9) in the form

f,(k) =fp(c.„„)+P„(k),
where P„{k) is linear in the electric field E.

Calculations become simpler by introducing the new
set of functions g,, (k) related to P„(k) by

(12)

Finally, to first order in E, the system of coupled equa-
tions that describe the behavior of the set g, (k) is
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k cos8 ——k(k XB).V&g, (k)

= g W (k, k'}[k'g„(k')—kg, (k)],
v', k'

(13)

where 0 is the angle between the two vectors k and E.
It has been shown elsewhere that in absence of mag-

netic induction, the equivalent set of Eqs. (13) can be
decoupled and solved by introducing relaxation times
r,(e) attached to each subband v. We will show that in
the presence of a magnetic induction we can again decou-
ple the set of Eqs. (13) and introduce the same r„(e) set,
but the interpretation is less simple than in the 8 =0 situ-
ation.

III. DISTRIBUTION FUNCTIONS
AND RELAXATION TIMES

The functions g, ,(k) =g„(k,8) are periodic in the angle
between E and k, with period 2m. Thus

g„(k)= g a„„(k)e'" (14)

As k =[(2m /fi )(e„l,—e„)]', we can consider the
Fourier coefficient 0„„('k)as a function of e 1, and define

new coeScients

a, „(e„l,)=a„„(k) .

These coefficients obey the set of equations derived from
Eq. (13}:

k cos8+ico, g n „a„( ,e}1e'" = g g W, „,(k, k')[k'a„„(e„.z )e'" —ka„„(e„l,)e'" ] .
v', k' n = —co

co, =eB/m is the cyclotron pulsation. The set of functions e'" is a basis for periodic functions; thus we deduce from
Eq. (15) and from the property upon which W„, (k, k') depends only on k, k' and cos(8' —8)=cosa that all the
coefficients a, „(e,l, ) are zero except a„+,(e„l,) which satisfy the linear relations

k[ —,'+icy, a„+,(e„l,)]=g W, „.(k, k')[k'cosaa„+&(e„l, .)
—ka„+,(e 1, )] .

v', k'
(16)

Then, let us multiply the two sides of Eq. (16) by
k 5(e —e„l, ) and perform a summation upon k. As elec-
tron collisions are assumed elastic [e„z=e,,l,. in Eq. (16)],
we obtain

T(e)=C '(e)F(e) . (22)

For the following it is important to define a new matrix
T(e) homogeneous to a time:

max

F,(s)[ ,' +ice,a„ +,—(e)]= —g C,„.(e)a,. +, (s),
v'= ]

(17)
This allows to transform the last expression for a, +, (e)
into

a, (e)=a,*,
, (s)

where

SmF„(e)=gk 5(e —e q)= (e —s„)Y(e—e, ) (18)
k 7T

'
= —

—,'+I [1+ice,T(e)] 'T(e))„, . (23)

and

max

C„,.(e)=5„,. g g k W„„(k,k')5(& —e„l, )

p= 1 k, k'

—g k k'W „(k,k')5le —e „) .
k, k'

(19)

Finally when we substitute this last result in Eqs. (14),
(12), and (11},the electron distribution functions f„(k) in
the different subbands v are given by

flk ~ 0(e k) 1f„(k)=fo(e„„)+eE
~~vk

X g(e' I [1+ico, T(s 1, )]
Now it is interesting to define two matrices, C(e) and

F(e), whose matrix elements are, respectively, C, (e)
and

X T(e,z) I, +c.c. ) . (24)

F „(e)=F,(c.)5„, (20)

= —
—,'g [[C(c)+ice,F(e)] 'F(e))„ (21)

where F„(s) is given by Eq. (18). This allows to obtain
immediately

a, (s) =a,*, , (e)

We recall that this final expression for f (k) is only valid
if electric and magnetic fields are sufficiently weak (linear
phenomena in E and no Landau quantization) and if elec-
tron collisions are elastic.

Now let us discuss the possible existence of a relaxation
time r (e 1, ) associated with each subband v. The ques-
tion is does the left-hand side of the linearized Boltzmann
equation (9) equal
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erik ~
f„(k)=fo(e k)+eE

~Evk
cosOQ [T( E,,„)]„,

As, in this case, the left-hand side of the linearized
Boltzmann equation is exactly

eE rk ~f0(e ~)

&
.V&f0(e„&)= eE — cos8

m Be„i,

it is trivial to show that a relaxation time exists having

f„(k)—fo(e„„)
r„(c,,„)

In the absence of magnetic induction, co, =0 and Eq.
(24) reduces to

the expression

r„(e)=g [T(v. )],,„=g[C '(e)]„ F„(e) .

In the general case where co,&0, the left-hand side
L (k) of the linearized Boltzmann equation, derived from
the result (24) for f (k), is

~ (k) ~irik ~fo evk 1

m Be i 2

max

X g (e' [[1+ice,T(e,i,)] ']„„.+c.c. )
v'= 1

which is clearly diFerent from

max

g [T(e„i,)]»

g (e' [[1+ice,T(e„&)] 'T(e„i,))„„+c.c. )
fo(e i) irik ~fo(e i) 1= —eE

r„(e,i, ) m Be„i, 2

Nevertheless, in the presence of a magnetic field, it
remains correct to use a relaxation time if and only if
v,„=1, because in that case

»(k) —fo(&lk)

In conclusion, when an electron gas is filling a system
of subbands, as encountered in a quasibidimensional
structure, the coupled linearized Boltzmann equations
can always be decoupled and solved. Nevertheless we
must pay attention to the fact that in the presence of a
magnetic field B, the standard relaxation time method for
solving the Boltzmann equation cannot be applied. This
method is valid only if BWO and v,„=1 of if B =0 and

&1+max—

Here (g(e)),, denotes the average of the function P(e)
over all the energies of subband v and is defined by

Bfo(e)f g(c)JV, ,(e)(e —e, ) de

f JV(e)(e —e) '
de

0 BE,

(29)

(30)

where A;(e) is the density of states in subband v previ-
ously defined [see Eq. (4)]. A similar derivation yields the
following expression for the perpendicular component j~
of the current density:

2

ji =Et', g g ( [[1+co,T (e)] 'T (e)I,,, )„.

IV. TRANSPORT COEFFICIENTS

The expression for the current density parallel to the
surfaces of the quasibidimensional structure is

(26)

j i
= — g, f d k k cos8$ (k) .

md {p~)2
(27)

Integration on 0 is straightforward; we get

where P (k)=f„(k)—fo(e &) is given by Eq. (24). Factor
2 in Eq. (26) accounts for the electron spin.

We separate j into its two components j] and j~~, re-
spectively, parallel and perpendicular to the electric field
E.

n, ,e
y &(T(.))..&, ,

mv v

2

o, =co,g g( I [1+co,'T'(e)] 'T'(e) I,„)
m

n e 2

g ([[1+co,T (e)] 'T (e)I,, )„.
m

(32)

(33)

(34)

Next, we introduce the three conductivity coefficients
o.0, o. „and o.

2 where o.
0 is the usual conductivity in ab-

sence of magnetic field, while o.
, and o.

2 are the parts of
conductivity which are, respectively, odd and even in B.
If u is a unit vector, perpendicular to the surfaces, the ex-
pression for the current density is

j=ooE+cr, (B)uXE+o2(B)uX(uXE) . (31)

We deduce iinmediately from Eqs. (28) and (30) that

2

ji=EQ g ( I [1+~'T'(e)] 'T(e) I. , ),
m

(2&) We notice that, as expected, the conductivity o.o, at B=O,
is simply
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n e 2

oo=g " (r„(e)).. . (35)

2
—

1

n e
p, = g —' (.,(.)).

where r (s) is the electron relaxation time related to sub-
band v and previously defined by Eq. (25).

In order to describe Hall and magnetoresistance effects
in samples with a rectangular shape, it is necessary to ex-
press the electric field E as a function of the current den-
sity j. This is achieved by inverting Eq. (31):

E=poj+p, (B)uX j+p2(B)uX(uX j), (36)

Po ~o
—

1

p& (o, )'+ ( o 0
—o, )'

cr ( (0'0 o'2)o 2

P2 OO
(cr, ) +(cro o2)—

From the exact expression for the resistivity po

where po is the resistivity at zero magnetic field while,
again, p, (B) and p2(B) are, respectively, odd and even in

B. These three coefficients are related to o.o, 0, and 0.
2

by

P] AR
RH = and

Po
(38)

For a degenerate electron gas and to lowest order in mag-
netic field, the expressions for RH and bR/R can be
simplified into

2

([C '( )],,F ( ))I
)

it is easy to discuss the validity of the Mathiessen's rule
applied to metallic films. If electron scattering is pro-
duced by two types of defects, the matrix element
[C(e)],„defined by Eq. (19) is simply the sum

[C,(e)]„„+[C2(e)],,„of the two terms corresponding to
the contribution of each type of scatterers. But it is clear
that C '(e)W[C, (e)] '+[Cz(e)] '; thus the total resis-
tivity po cannot be the sum of the partial resistivity p~ o
and p2 o due to each type of defects. Only in the special
case where electrons fill only one subband, is the
Mathiessen's rule valid.

Furthermore the Hall constant RH and the magne-
toresistance coefficient AR /R of a rectangular thin film
are related to p, and p2 by equations

1
R H

F

g n, , T,, ~ (sp)
V, V

T

VF

g n„T, (eF)
V, V

'2 (39)

bR
R

CO
2
C

Vp

gn, T'„„
V) V

VF Vp

(sF) — g n„T„(eF) .g n„T„„(sF)
V, V V~V

2VF

y n„T„„(eF)
V, V

(39')

In Eqs. (38) and (39), vF is the number of subbands whose
minimum c. is lower than the Fermi energy c.F. We must
pay attention to the condition for degeneracy of the elec-
tron gas: (sF —s,, ) ))kz T, which must be fulfilled for all
subbands v~v .

At fixed electron density all the transport coefficients
o.;,p;, RH, AR/R depend on the film thickness d. This
dependence is not only explicit in the calculation of the
matrix elements T„„.(e) but also implicit in the number of
occupied subbands v~. Depending on the nature of elec-
tron scattering, the variations of transport coefficients
with d can be either smooth or very strong. In order to
illustrate this point, we perform, in the following sec-
tions, calculations on the conductivity, Hall, and magne-
toresistance coefficients of a degenerate electron gas scat-
tered by static impurities and by surface roughness.

V. HALL EFFECT AND MAGNETORESISTANCE
IN AN IMPURITY SCATTERING MODEL

H, =Up 5(r —r, ), (40)

where U describes the strength of an electron-impurity

All transport coefficients are expressed through the
matrix T(e) defined by Eq. (22). Thus, we have to evalu-
ate the transition probability per unit time W, (k, k )

and, more precisely, the matrix ( ( vk~H,
~

v'k')
) in which

H; is the Hamiltonian describing the interaction between
an electron and A, impurities embedded within the film.
For simplicity the impurity scattering potential is
schematized by a contact potential:
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interaction.
A straightforward derivation yields

U2
' fdz lg, (z, )g„(z) ' .

S
(41)

In Eq. (41), the overbar denotes an average over the dis-

order of the impurity sites r; and n, =N, /Sd is the im-

purity density. Result (41) is particularly simple because
it does not depend on k and k' and, as a consequence, the
matrix T(e) will be diagonal.

Again, for simplicity, we assume that electrons move
along the direction perpendicular to surfaces as in an
infinite potential well. Thus g„(z)=(&2/d )sin(viz/d )

and we immediately get

Un,„' (I+-,'fi„„) . (42)

The derivation of T(s) is particularly simple; we obtain

T„„(e)=5„, dA 1

n, U m —,'+&, (43)

where v, is the number of subbands whose minimum c, is
lower than s. T„„(e)becomes a step function of energy.

For the particular case of a degenerate electron gas and
for v~vF

dA' 1T, (eF)=
n, U m —2+&F

(44)

dpi 1
~„(e~)= T„(eF) =~, =

n; U m —,'+&p

We immediately deduce from Eq. (35) that at zero mag-
netic field, the conductivity is

(d)
ne fi d 1

n, U m 2+&g(d)
(4&)

The ratio of oo(d) to the bulk conductivity pro (d = ~ ) is
quite simple:

op(d)

oo(d= ~ )

3n
1/3

—+v (d)
1

F

(46)

This result is identical to the one obtained in Ref. 6. It

Equation (44) shows that T„,(eF) is independent of v
( ~ vF) while Eq. (43) proves that T„„(e)does not depend
on c provided c. remains near cF. This last remark is im-
portant for the calculation of mean values such as
( T,„(e)), or ( T~„(e)/[I+co, T,„(s)]),(with p =2, 3) by
a Sommerfeld's development around cF. All these mean
values which occur in the ~, coefficients are exactly equal
to

T (eF ) or ( T~„(eF)/[ I +co, T„„(eF)] ) „
provided ( c,F

—e, ) ))k~ T.
F

Thus, in this impurity scattering model, the relaxation
times r„(eF), calculated for the Fermi energy eF, are
identical for all subbands:

shows that, at a fixed low electron density, when vF is

equal to 1 in the complete d variation ranges, the ratio
cro(d )/cro (d = ~ ) is a linear function of d. This may be
applied to a semiconducting quantum well. On the con-
trary, in a metallic film, vF ))1, then vF-(3n/n)'~ d
and

oo(d) —oo(d = ~ )

o.o( d = oo )

1 1 1

2(3n /1T)'
(47)

the relative deviation of the conductivity from its bulk
value is proportional to the inverse thickness d

In this impurity scattering model, the Hall effect and
the magnetoresistance are trivial; from Eqs. (37) and (38),
we get R&= —1/ne and AR/R =0. The thickness d is
not an acting parameter on Rz or AR /R.

VI. HALL EFFECT AND MAGNETORESISTANCE
IN A SURFACE ROUGHNESS MODEL

A. A model of the electron scattering by surface roughness

As in the case of impurity scattering, we need to know
the Hamiltonian H, describing the electron interaction
with the two nonideal thin film surfaces. If these surfaces
were ideal planes distant of d and perpendicular to the z
axis, their equations would be z =+d/2. Moreover they
would create two potential barriers whose heights would
be V+ and V, respectively. The electron Hamilton Ho
defined at the beginning of Sec. II becomes

H = +V Yz ——+V Yz+-p
2m 2

(48)

where Y(z) is the usual step function.
In fact, the two real surfaces are not ideal planes; their

equations depend on the projection p of the position vec-
tor r unto a plane perpendicular to the z axis:

z=+ —+f (p) .
2

Here, the functions f+(p) describe entirely the roughness
of each surface. Thus the electron Hamiltonian is

The effect of surface roughness on the electrical con-
ductivity of thin films has been experimentally studied in
the past few years, in semiconducting GaAs-Ga Al, As
quantum wells and in CoSi2 ultrathin metallic films. ' In
the first case, the electron gas has a small density
(n =10' cm ) and, therefore, fills often one subband,
and occasionally two. For metallic CoSi2 films, the elec-
tron density is higher than 10 cm and the number of
filled subbands vF increases with d and reaches several
tenths for thickness d around 100 A.

It has been already shown that the zero magnetic
field conductivity, when limited by electron scattering on
rough surfaces, may vary strongly with d. For instance,
if vF=1 we obtain O. -d, while if vF ))1,0. shows oscil-
lations, generally too small to be experimentally ob-
served, whose average obeys approximately a d law.
The question is now to predict the behavior of the Hall
and magnetoresistance coefficients.
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changed into H =H0+H, where

d dH=V Y z —— f—(p) —Y z ——
i + 2 + 2

in f+(p)ld

H, = —V+ f+(p)6 z ———V f (p)5 z+-d d
2 2

+V Y z+ — f—(p) —Y z+-d d
2 2

(49)
(50)

Indeed the surface roughness is far lower than the thick-
ness d:f+(p) ((d. Now we can develop H, to first order

Finally H, appears as a perturbation fully localized on
the ideal plane surfaces z =+d /2.

Next we have to calculate the matrix element:

r

l&~klH, l'k'&I'= —' g g V„V„C.* ~ "C.—~ "C.—~' 'C—: ~' " '
—f—d'p f d'p""' ""' ''f, (p)f, (p')

(51)

We remark that
&f f ) =~'6 (55)

lim —f d p f d p'e""' ""~ ~'fz(p)f„(p')
S ~S S S

= f d'pe'" '~(f f
S

(52)

(f„f„)= lim —f f„(p')f„(p+p' )d p' .
1

(53)

where (f„f„)is the correlation function of the two
functions which describe the roughness

where 6 is a function which has significant values only if
p& („. We will give more details on 6 later.

As the right-hand side of Eq. (52) is the Fourier trans-
form of (f„f„),we can introduce the Fourier transform
F(k) of G(p) and we get for the matrix element describ-
ing the interaction of an electron with two rough sur-
faces:

It is reasonable to assume that the roughnesses of the
two different film surfaces are not correlated; therefore

l&vk H, v'k'&I'= —g &„,, „(d)~'„gg(g„lk—k l),
1

g=+

(f„f„)=5„„(f„f„). (54)

where

(56)

Moreover, in the absence of a precise knowledge on
roughness, we imagine that the autocorrelation (f„f„)
is an isotropic p function and is essentially characterized
by two physical parameters. The first one h„describes
the root-mean square of the height of the bumps on the
surface rI and the second one g„ is the roughness correla-
tion length of the same surface. Finally, in this model,
which has been introduced for the first time by Prange
and Nee in their treatment of surface impedance, we as-
sume that

2

A, ., „(d)=V„g,,

d
(57)

B. Transport coefficients

All transport coefficient calculations requires
knowledge of the matrix elements C,, (e) defined previ-
ously by Eq. (19). With the last result (56) and for the
Fermi energy c=EF, we find

2 F
, (E )= g g~g~ g.,.k~F g g„„(d)f daF((„k „(a))—k, ,Fk, FA, ,, „(d)f dac s oF(ag„k, (a))

0

(58)

In Eq. (58), k„F is the length of the Fermi wave vector as-
sociated with subband v, such that

k-, ,Fn, —
277d

' (60)

$2
1.2kvF=~F ~v .

2m
(59) the other quantity k...(a) is simply l k,~ —k, , F l

Here k F is also related to the density of electrons filling
subband v by

k, (a) =(k,,F +k,;F 2k,~k„.Fcosa)'— (61)

Unlike the impurity case treated just before, the matrix
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A„„(d)= lim A„, (d)=
V ~oc

)g

The deviations from the limit V„—+ ~ have been already
studied" for a single subband structure, in a GaAs-
Ga Al, ,As quantum well.

In summary, in the low-correlation-length limit and for
infinite potential barriers at the film surfaces, we can
write the diagonal matrix C(E) in the form

C„,(EF)=5,, , Sm F(0)
7T

vF(vF + 1)(2vF+ 1)
6 (63)

where 6 g stands for the sum b g =b, +(++6 g . All
transport coefficients will depend on b, ( and it will not
be possible to distinguish between the roughness of the
two different film surfaces by analyzing experimental
transport results. In this limit of low-correlation length,
C„„(eF)is proportional to the value F(0) of the Fourier
transform of the autocorrelation function of f(p). For a
large variety of functions G(p), F(0)/~ is approximately
unity. For instance, F(0)=m for the traditional auto-

2
correlation function G(p)=e ~, while F(0)=2m for
G(p)=e

From expression (63) for C(e), we immediately deduce
that

C(eF ) is generally nondiagonal. Nevertheless there exists
a particular case where C(eF ) is diagonal. To see this, let
us assume that g„k, ~ «1 (this condition is fulfilled as
soon as g„k,/«1, since k„„and k, F «k, F for all

v, v'&vF); then we can approximate F(g„k,,, (a)) by
F(0) in Eq. (58) and the integral Jo dacosaF(0) van-

ishes obviously. In conclusion, for the sufficiently low-
correlation length we expect the matrix C(sF ) to be diag-
onal.

Moreover although it is possible to evaluate exactly the
term A,„. (d) defined by Eq. (57), we prefer to replace it
by its limit when V„~~. In this limit, the electron is
confined in an infinite one-dimensional quantum well and

2 2

V V
Pld

F(d) (d)0,(d) = r(-d)co, 7.(d) gm v4+~2+(d)

n (d)
0,(d)= —~(d)co,'r (d) g„=, v [v +co, (d)]

(66)

(67}

where the common factor r(d) is homogeneous to a time
and defined by

m n 1 6d
~5& F(0) g2g2 vF(vF+ 1)(2vF+1)

(68)

1
R0

n, , /v4

n, , /v

2 (69)

It is remarkable that all the coefficients o 0, 0.1, and 0.
2 are

independent of the effective mass m of the charge car-
riers.

If the electron gas fills only one subband, we find exact-
ly for the Hall and magnetoresistance coefficients:
RH= —1/ne and bR/R =0. There is no variation of
these two coefficients with the thickness d. Such results
are valid to all orders in the magnetic induction B and
they can be applied to an electron gas in a semiconduct-
ing quantum well, with a small electron density.

If the electron density increases, the second subband
can be filled; when the Fermi energy crosses the bottom
of the second subband, we predict a discontinuity of the
conductivity which is rather important: b,cr/o =4/5;
but there is no discontinuity of the Hall and magne-
toresistance coefficients.

For metallic films, the electron density is such that
vF & 2 and it is very hard to satisfy the condition
co, r(d) ) 1 for ordinary magnetic induction. For in-
stance, in CoSi2 films, it has been shown that the

0
coefficients 6 and g are about a few A, while the electron
density n =3 X 10 cm; thus vF -—0, 3d (A) and
10 B & co, r(d) & 0, 2B (B in T) as d increases from 10 to
100 A. We conclude that only the low magnetic field
range co, r(d) «1 is easily investigated in the metallic
films case. In this low-field range we get

T„(EF)=5.."~'A F(0) vF(vF+1)(2vF+1) g'g' v'

(64)

and

vF
2

"F' ' n (d)
oo(d)= r(d) gPl

(65)

and that the relaxation time corresponding to subband v
is simply r,(eF }=T,,„(eF). This relaxation time de-
creases with v as v and its variations with the thickness
d are included in the factor d /v~(vF+ 1)(2vF + 1) (we
must not forget that, at fixed electron density n, vF is a
function of d).

Finally, inside the limits where the result (64) is valid,
the basic conductivity coefficients o.o, o, and o.2, defined
by Eqs. (32)—(34), take the simple expressions:

AR —0 7 (d)
y n, /v'
i=1

g n, , /v'
i=1

y n. /v'
v=1

g n, /v'
v=1

(7o)

Equations (69) and (70) associated with Eqs. (5) and (7) al-
low one to compute exactly the variations of RH and
AR /R with thickness.

In the limiting case where vF »1, we known that vF is
a linear function of d: vF ——(3n /m )' d. Expressions (65),
(69), and (70) reduce in this case to
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e ~ 1 d
4~2' F(0) g2g2 (3n /~)1/3

X 1— 1

1/3 2

6

(3n /vr)' d vr

2
1 e ~ 1

525 ~'trt F(0) g'g'

8 d 1 8

(3n /vr)' d 7r

4 1 1 12 1RH-—— 1+
5~ e (3n/m. )' (3n/~) d

{71)

(72}

(73)

toresistance are modified by the presence of the two
scattering mechanisms; the variations of RH with d
remains rather smooth, while those of AR/R are still
rapid. (ii) In the surface roughness scattering case, all of
the preceding results were obtained analytically because
we limited the developments to the low-correlation-
length range. In fact, it is easy to find an exact expression
for the matrix C(E) even if gk, ,F ~ 1. This has been done
in Ref. 7 where a Gaussian autocorrelation function G(p)
was chosen. But the inverse matrix C '(E) which is
necessary to obtain the matrix T(e) needs to be computed
by numerical techniques. In the absence of experimental
results on RH and AR/R clearly related to roughness
scattering, it does not seem necessary to explain this in
detail.

.(cF)=5 n, mU
(vF+ —,

' )
Ad

vr A F(0) vF(vF+ 1)(2vF+ 1 }+
m

X b, 'g'v' (74}

The results (72) and (73) concerning the Hall and magne-

It was already known that, in the low-correlation-
length range, the conductivity of metallic films obeyed
approximately a d law. Such a law is very different from
the result era-d valid for a semiconducting film with
only one filled subband.

We remark on Eqs. (72) and (73) that RH is approxi-
mately a linear function of d while AR /R presents a very
strong variation in d . We recall that in the opposite case
where electrons fill one subband, RH = —1!ne and
AR /R =0.

Let us discuss in more detail the Hall constant RH. It
is not inAuenced at all by the roughness parameters 6
and g (in the limit of the low-correlation length). More-
over the leading term in Eq. (72) is not proportional to
the inverse electron density but to n . Another ex-
pression for this leading term is RH ———(I/ne) —,', vF. It
differs from the bulk value by a factor —,', v~ which varies
between 1 and 10 in CoSi2 when d increases from 10 to
100 A. Such a variation must be detectable experimental-
ly.

As far as we are concerned regarding the magnetoresis-
tance AR/R, its exact value depends on the roughness
parameters b, , g, and F(0). The root-mean square of the
height of the bumps on surfaces is about one or two in-
teratomic distances; 6 =4 A in CoSi2. In such a metallic
film the electron density is n =3 X 10 cm ' and g can

0

be very small for rather imperfect surfaces: g = 2 A.
Then, with a 1 T magnetic induction, we find
10 '&hR/R &10 'when10&d &100A.

Let us conclude this section by two remarks. (i) In the
presence of both impurity and roughness scattering, the
total matrix time T(E) is easily deduced, in the limit of
small correlation length, from the partial results (44) and
(64):

VII. CONCLUSION

We have investigated galvanomagnetic properties of
thin metallic films in which the electron quantum states
are gathered in an energy set of subbands. More precise-
ly we have studied quantum-size effects in the case where
electrons are scattered elastically by surface roughness
and impurities and are submitted to a magnetic induction
perpendicular to film surfaces. We have solved the set of
Boltzmann equations which govern the electron distribu-
tion functions in the different subbands; for that purpose,
we have introduced a matricial relaxation time T(s)
which replaces the usual relaxation time of standard
transport theories. Nevertheless, contrary to the zero
magnetic induction case, the collision part (right-hand
side) of the Boltzmann equations cannot be replaced by
the traditional relaxation term (unless the number of sub-
bands in the set reduces to one). Using the matrix ele-

ments of T(E), we have given the expressions of the con-
ductivity tensor and of the Hall and magnetoresistance
coefficients.

When electrons interact with impurities through a con-
tact potential, the Hall constant takes the trivial value

(
—1/ne ) while there is no magnetoresistance. The origin

of these results is explained by the scalar nature of the
matricial relaxation time T(cF ) and by the fact that the

relaxation times associated to the different filled subbands

are identical.
When electrons are scattered by surface roughness, the

transport coefficients depend on the shape and the
characteristic parameters of the autocorrelation function
describing roughness. At a sufficiently low-correlation
length as compared with electron Fermi wavelength, the
matrix T(E) is diagonal and calculations of transport
coefficients become easy. We have shown that the varia-
tions of these coefficients with the film thickness depend
strongly on the number vF of subbands filled by the elec-
tron gas. In the case where vF=1, which is encountered
in semiconducting quasibidimensional structures at low
electron density, we recover the known results on the
conductivity: o -d; and in the case vF )&1, which is

the case of metallic films, a-d' with s =2. We have
studied the behavior of the Hall and magnetoresistance at
low magnetic induction. When v„=1, the results are not
surprising: RH = —1/ne and AR /R =0. But when
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vF »1, we have found RH = —
( 1 lne ) —,', vF —d while

AR /R -d', with s'=6. The Hall constant does not de-

pend on the parameters describing the surface roughness
and does not give directly the value of the electron densi-

ty; it is also proportional to the number of occupied sub-
bands which varies with n and d. The magnetoresistance
in metallic films depends very strongly on thickness,
through a power law which is nearly the same as that
obeyed by the conductivity in a semiconducting quasibi-
dimensional structure with vF=1. Moreover, from the
variations of the magnetoresistance with either the ap-
plied magnetic induction or the film thickness, it is possi-
ble to determine the product of the root-mean square of

the bumps on the film surface with the roughness correla-
tion length. All the preceding results are valid only if the
correlation length is neglected as compared with the elec-
tron Fermi wavelength. If not, the matrix relaxation
time T(E) is no longer diagonal and we expect corrections
to the difterent power laws discussed above; numerical
computation will be easily made as soon as experimental
results are published.
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